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Abstract. We prove several quantitative Ramseyan results involving ternary
complete trees with {0, 1}-labeled edges where we attempt to find a complete
binary subtree with as few labels as possible along its paths. One of these
is used to answer a question of Simpson’s in computability theory; we show
that there is a bounded Π0

1 class of positive measure which is not strongly
(Medvedev) reducible to DNR3; in fact, the class of 1-random reals is not
strongly reducible to DNR3.

1. Introduction

There have been many fruitful interactions between combinatorics and com-
putability theory. Examples include new combinatorial proofs of classical results
such as Mileti’s proof of the canonical Ramsey theorem [12], Montalbán’s newly
devised invariants for infinite linear orderings [13], Kierstead’s algorithmic online
version of Dilworth’s Theorem [9], and Füredi et. al. on inverting the difference
operator [7]. This paper is another example of such an interaction.

We study edge-labelings of rooted trees. A tree is ternary if each non-leaf has 3
children and binary if each non-leaf has 2 children. A tree is complete if all leaves
are at the same distance from the root, and the depth of a complete tree is the
distance between the root and a leaf. If T is a complete ternary tree of depth n, we
define B(T ) to be the set of all binary subtrees of T that are complete with depth
n. A tree T is edge-labeled if each edge in T is assigned a label from the set {0, 1}.
We define Tn to be the set of all ternary, complete, edge-labeled trees of depth n.

If T ∈ Tn, r is the root of T , and σ is a leaf in T , then reading the elements along
the path from r to σ in T gives a path-label x ∈ {0, 1}n, and we say that σ has
path-label x. We define L(T ) to be the set of all path-labels in T . Given T ∈ Tn,
we wish to find a subtree S ∈ B(T ) that minimizes |L(S)|. For each T ∈ Tn, let
f(T ) = min{|L(S)| : S ∈ B(T )}, and for each n, let f(n) = max{f(T ) : T ∈ Tn}.

The combinatorial thrust of our paper is to study the behavior of f(n) as n grows.
In Section 2, we show that limn→∞(f(n))1/n exists; our bounds on f(n) imply that
this limit has a value between 21/ log2 3 ≈ 1.548 and 2. In Section 3, we show that
if c <

√
log2(4/3) ≈ 0.644, then there is a constant γ such that f(n) ≤ γ2n−c

√
n.

Consequently, the ratio f(n)/2n tends to zero as n grows. This result has the
following Ramsey interpretation: for large n, every edge-labeled complete ternary
tree of depth n admits a complete binary subtree of depth n whose path-labels
constitute an arbitrarily small fraction of the space of all possible path-labels. In
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Section 4, we prove that f(n) ≥ 2(n−3)/ log2 3. Our techniques lead to a solution of
a problem in computability theory and effective randomness.

In his survey paper [19] on mass problems and randomness, Simpson asked
whether for all k ≥ 3, the Medvedev degree of DNRk bounds the Medvedev de-
gree of every Π0

1 class of positive measure. We give precise definitions in Section
5, but the gist of the question the question concerns comparing the computational
difficulty of diagonalization with a constant bound with that of constructing a set
which is effectively random. The full background and motivation for this question,
which we answer in the negative in this paper, can be found in Section 5. In fact,
we obtain the stronger result that the class of Kurtz random reals is not Medevedev
reducible to DNR3.

The solution of the problem involves continuous maps from the ternary version
3N of Cantor space to the standard binary one 2N. It turns out that once the
computability aspects of the problem are untangled, the key to our solution is
purely combinatorial. Sections 2, 3 and 4 present the combinatorial results and can
be read independently of Section 5, which presents the application in computability
theory.

2. Some facts and a question about f

We begin by collecting a few simple facts about f(n). The following recursive
bounds on f(n) are instructive.

Proposition 2.1.
(1) If n is a positive integer, then f(n+ 1) ≤ 2f(n).
(2) If r and s are positive integers, then f(r + s) ≥ f(r)f(s).

Proof. To prove (1), let T ∈ Tn+1 be a tree with root r, and let T0 and T1 be
subtrees of T rooted at two children of r. Since T0, T1 ∈ Tn, by induction each Ti
has a binary subtree Si ∈ B(Ti) containing at most f(n) path-labels, and combining
these subtrees with the root of T yields a binary subtree of T with at most 2f(n)
path-labels.

To prove (2), let R ∈ Tr be a tree in which each R′ ∈ B(R) contains at least
f(r) path-labels, and let S ∈ Ts be a tree in which each S′ ∈ B(S) contains at least
f(s) path-labels. Obtain T ∈ Tr+s by attaching a copy of S at each leaf in R. Each
binary subtree of T contains at least f(r)f(s) labels. �

Proposition 2.1 is helpful in computing the first few values of f .

Proposition 2.2.
(1) If 1 ≤ i ≤ 4, then f(i) = i.
(2) 6 ≤ f(5) ≤ 8.

Proof. We leave part (1) as an exercise for the reader. For part (2), note that
f(2)f(3) ≤ f(5) ≤ 2f(4) by Proposition 2.1 and apply part (1). �

Proposition 2.1 has further consequences. First, the upper bound f(n + 1) ≤
2f(n) shows that f(n)/2n is a non-increasing sequence, and because f(n) ≥ 0, it
follows that limn→∞ f(n)/2n exists. Indeed, we shall see that this limit is zero.
Another consequence of Proposition 2.1 is that limn→∞ (f(n))1/n exists.

Proposition 2.3. If an = (f(n))1/n and β = sup {an}, then lim an = β.
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Proof. Note that β ≤ 2 since f(n) ≤ 2n. Fix ε > 0 and choose m so that am ≥
β − ε/2. Let n be large, and divide n by m to get a quotient q and remainder r.
Iteratively applying Proposition 2.1, we have that

f(n) ≥ (f(m))q f(r) = (am)mqf(r) ≥ (am)n−r.

Hence, we have that an ≥ (am)1−r/n. Because (am)1−r/n → am as n → ∞, it
follows that there exists n0 such that n ≥ n0 implies that an ≥ am−ε/2. Therefore,
for each n ≥ n0, we have that β − ε ≤ an ≤ β.

We thank colleagues in a seminar for pointing out that this result can also be
proved by noting that g(n) = log f(n) is a superadditive function, i.e. g(m+ n) ≥
g(m) + g(n) for all positive integers m,n. Also g(n)/n is bounded. It then follows
from a result known as Fekete’s Lemma (see [16], #98, page 23, solution on page
198) that limn g(n)/n exists and equals sup g(n)/n. Restating this in terms of f
completes the proof. �

It follows from the previous two propositions that

lim
n→∞

(f(n))1/n ≥ (f(3))1/3 = 3
√

3 ≥ 1.442.

We shall see in Corollary 4.4 that

lim
n→∞

(f(n))1/n ≥ 2
1

log2 3 ≥ 1.548.

On the other hand, the best known upper bound is the trivial bound

lim
n→∞

(f(n))1/n ≤ 2.

This leads to the main open problem regarding bounds on f(n).

Problem 2.4. What is limn→∞ (f(n))1/n?

3. An upper bound on f(n)

We begin collecting results needed to establish our upper bound on f(n). The
following proposition is central to the task at hand. It is implicit in the proof of
Theorem 6 of [8], which is a sort of forerunner of our Theorem 5.2. It was also
stated explicitly by Robert Goldblatt in [5] (bottom of page 561) where it was
applied to solve a problem in modal logic. It may well have occurred elsewhere in
the literature, but we are not aware of work previous to our paper on bounding the
number of path-labels in binary subtrees of edge-labeled ternary trees.

Proposition 3.1. Let T be a complete ternary tree of depth n. If each leaf in T
is colored red or blue, then there exists S ∈ B(T ) such that all leaves in S share a
common color.

Proof. Let r be the root of T and let T1, T2, and T3 be the subtrees of T rooted
at the children of r. By induction, each tree Tj contains a subtree Sj ∈ B(Tj) in
which all leaves share a common color. By the pigeonhole principle, at least two of
the Sj contain leaves of the same color. Combining these with the root of T , we
obtain S ∈ B(T ) as required. �

Proposition 3.1 has a very useful consequence. When X ⊆ {0, 1}n, we let X be
the complementary set {0, 1}n \X.
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Corollary 3.2. If T ∈ Tn and X is a subset of {0, 1}n, then there exists S ∈ B(T )
such that either L(S) ⊆ X or L(S) ⊆ X.

Proof. Label a leaf σ in T red if the path-label from the root of T to σ is in X and
blue otherwise. By Proposition 3.1, there exists S ∈ B(T ) such that all leaves share
a common color. If this color is red, then L(S) ⊆ X. Otherwise, L(S) ⊆ X. �

Our strategy to bound f(n) from above is as follows. We prove our bound by
induction, and to prove f(n) is small, we use that f(m) is small for a carefully
chosen number m < n.

Consider T ∈ Tn. We first find a complete binary subtree S′ of depth m such
that |L(S′)| ≤ f(m). For each leaf σ in S′, let Tσ be the subtree of T rooted at σ.
Note that each Tσ is a member of Tn−m. To extend S′ to a complete binary subtree
of depth n, we wish to find a family of complete binary subtrees Sσ ∈ B(Tσ) such
that |

⋃
σ L(Sσ)| is as small as possible.

So the key for this process is arguing not only that given a single edge-labeled
ternary tree we can find a complete binary subtree with few path-labels, but actually
that given a family of edge-labeled ternary trees, we can find corresponding binary
subtrees such that the total number of path-labels used in all of the binary subtrees
together is small. Corollary 3.2 gives some control over the path-labels that appear
in the binary subtrees. In order to find the binary subtrees, we apply Corollary 3.2
numerous times with different subsets of {0, 1}n. We are particularly interested in
applying Corollary 3.2 to families of subsets of {0, 1}n with a certain structure.

Definition 3.3. Let α ∈ [0, 1], and let Υ be a ground set. Two partitions {X,X}
and {Y, Y } of Υ are α-orthogonal if all four of the cross intersections: X ∩ Y ,
X ∩ Y , X ∩ Y , and X ∩ Y , have size at least α|Υ|/4. A family of partitions X is
α-orthogonal if each pair of distinct partitions in X is α-orthogonal.

While we construct large α-orthogonal families for an arbitrary ground set Υ,
we apply our construction in the case Υ = {0, 1}n. Note that if α < 1 and X and
Y are chosen independently and uniformly at random from all subsets of a large
ground set, then {X,X} and {Y, Y } are α-orthogonal with high probability. This
suggests a natural way of constructing large α-orthogonal families. We shall need
Chernoff’s inequality.

Theorem (Chernoff’s Inequality). (See [14, Theorem 4.2].) Let Z1, Z2, . . . , Zt be
mutually independent random indicator variables where Zl = 1 with probability pl
and Zl = 0 with probability 1 − pl, let Z =

∑t
l=1 Zl, and let µ = E[Z] =

∑t
l=1 pl.

If 0 ≤ δ ≤ 1, then Pr[Z < (1− δ)µ] < e−µδ
2/2.

Lemma 3.4. Let α ∈ (0, 1), and Υ be a ground set of size t. There exists a family
of pairwise α-orthogonal partitions of Υ of size at least⌊√

2
2

(
e

(1−α)2

16

)t⌋
.

Proof. Let r =
⌊√

2
2 e

(1−α)2

16 t
⌋
. For each 1 ≤ j ≤ r, choose a subsetXj ⊆ Υ uniformly

and independently at random. We claim that with positive probability, {Xi, Xi}
and {Xj , Xj} are α-orthogonal when i 6= j. In particular, this implies that with
positive probability, the partitions are all distinct and that

{{
Xj , Xj

}
: 1 ≤ j ≤ r

}
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is an α-orthogonal family of size r, which implies that some such family exists. Let
X =

{{
Xj , Xj

}
: 1 ≤ j ≤ r

}
.

For each pair {i, j} with 1 ≤ i < j ≤ r, let Aij be the event that one of the four
cross intersections between

{
Xi, Xi

}
and

{
Xj , Xj

}
has size less than α t4 , and let

A =
⋃
ij Aij , so that A is the event that X is not an α-orthogonal family. We show

that Pr[A] < 1.
Of course Pr[A] ≤

∑
ij Pr[Aij ]. Similarly, we have that Pr[Aij ] ≤ 4p, where p is

the probability that |X ∩ Y | < α t4 where X ⊆ Υ and Y ⊆ Υ are chosen uniformly
and independently at random. For each x ∈ Υ, let Zx be the random indicator
variable for the event that x ∈ X ∩ Y , and let Z =

∑
x Zx, so that Z = |X ∩ Y |.

Note that the Zx are mutually independent random indicator variables and Zx = 1
with probability 1/4. By Chernoff’s inequality,

p = Pr
[
Z < α

t

4

]
< e−(t/4)(1−α)2/2 = e−

(1−α)2

8 t.

It follows that

Pr[A] ≤
∑
ij

Pr[Aij ] ≤
∑
ij

4p = 4
(
r

2

)
p < 2r2e−

(1−α)2

8 t ≤ 1

and hence Pr[A] < 1 as required. �

It is possible to construct larger α-orthogonal families using more sophisticated
probabilistic tools, such as the Lovász Local Lemma. However, these larger families
do not give substantial improvements to our bounds on f(n), so we omit them.

Lemma 3.5. Let ε > 0 and let k = log2(ε−2 ln 4). If T1, . . . , Tr ∈ Tn and n ≥
log2(r) + k, then there are binary subtrees Sj ∈ B(Tj) such that∣∣∣∣∣∣

⋃
j

L(Sj)

∣∣∣∣∣∣ ≤
(

3
4

+ ε

)
2n.

Proof. Let α = 1 − 4ε, so α < 1. By Lemma 3.4, there is a family X of pairwise
α-orthogonal partitions of {0, 1}n of size

⌊
2−1/2eε

22n
⌋
≥
⌊
2−1/2eε

2(rε−2 ln 4)
⌋

=
⌊
2−1/2er ln 4

⌋
=
⌊
22r−1/2

⌋
> 2r

Fix an arbitrary linear ordering on {0, 1}n. For each {X,X} ∈ X , we apply Corol-
lary 3.2 to each of the trees T1, . . . , Tr. LetD{X,X} be the subset of {T1, . . . , Tr} con-
sisting of those trees T for which Corollary 3.2 produces a binary subtree S ∈ B(T )
where L(S) ⊆ min{X,X}, where the minimization is with respect to the chosen
ordering on {0, 1}n.

Because |X | > 2r, there exist distinct partitions {X,X} and {Y, Y } in X with
D{X,X} = D{Y,Y }. LetD = D{X,X}. For each Tj , we select Sj ∈ B(Tj) as follows. If
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Tj ∈ D, then we may choose Sj ∈ B(Tj) such that L(Sj) ⊆ min{X,X}. Alternately,
if Tj 6∈ D, then we may choose Sj ∈ B(Tj) such that L(Sj) ⊆ max{Y, Y }.

Note that none of the Sj contains a path-label in Z = max{X,X} ∩min{Y, Y }.
Moreover, because X is α-orthogonal, we have that |Z| ≥ (α/4)2n. It follows that∣∣∣∣∣∣

⋃
j

L(Sj)

∣∣∣∣∣∣ ≤ 2n − (α/4)2n ≤
(

3
4

+ ε

)
2n.

�

We remark that the hypothesis n ≥ log2(r)+k cannot be relaxed beyond reducing
k. Indeed, suppose that r = 2n and index the ternary trees by vectors in {0, 1}n. If
each Tx is edge-labeled so that L(Tx) = {x}, then L(S) = {x} for each S ∈ B(Tx).
Consequently, regardless of which subtrees are chosen,

⋃
x L(Sx) = {0, 1}n.

Our main result (Theorem 3.7 below) asserts that for sufficiently small constants
c > 0 the function f is O(2n−c

√
n). We now briefly outline the proof of this result.

Using induction, assume the result for some m < n (which we will now need to pick
carefully, given n), and given T , pick a complete binary subtree S′ of depth m such
that |L(S′)| is bounded by γ2m−c

√
m for an appropriate choice of the constant γ.

Now we have two kinds of path-labels in S′: those that occur often (in the proof,
at least 2c

√
m many times), and those that do not. If a path-label x appears often, it

doesn’t matter how we choose to extend S′ at leaves σ with path-label x, because
the total number of path-labels for all leaves of S extending any such σ will be
limited. And if a label x does not appear often, then we can apply Lemma 3.5
to obtain trees Sσ extending all the leaves of S′ which are labeled by x, with a
bounded total number of labels.

Our next lemma is technical and determines how we choose the depth m of
subtree on which we apply induction. Because we apply Lemma 3.5 to a collection
of 2m trees of depth n−m, we need n−m to be large. On the other hand, we will
replace

√
m with

√
n in some of our bounds, so we want

√
m to be close to

√
n.

Lemma 3.6. Let c > 0 and k > 0. If n is a sufficiently large integer, then there
exists an integer m with 1 ≤ m < n such that n−m ≥ c

√
m+k and

√
n−
√
m ≤ c.

Proof. For positive x ∈ R, let y(x) = x − c
√
x − (k + 1). We have y(x) → ∞,

so for large enough real x, we can let h(x) =
√
x −

√
y(x). High-school al-

gebra shows that h(x) = n(x)
d(x) , where n(x) = (c + (k + 1)/

√
x) and d(x) =

(1 +
√

1− c/
√
x+ (k + 1)/x), for all sufficiently large x. Hence h(x) → c/2 as

x grows. Therefore h(x) ≤ c when x is sufficiently large. Let n be large enough
so that h(n) ≤ c and y(n) > 0, and let m = dy(n)e. Note that m < n since
y(n) < n− 1. Because m− 1 < y(n) ≤ m, we have that

n−m = n− (m− 1)− 1 ≥ n− y(n)− 1 = c
√
n+ k ≥ c

√
m+ k.

Similarly, we have
√
n−
√
m ≤

√
n−

√
y(n) = h(n) ≤ c. Finally, note that because

y(n) > 0, we have that 1 ≤ m. �

Theorem 3.7. If 0 ≤ c <
√

log2(4/3) ≈ 0.644, then there is a constant γ such
that f(n) ≤ γ2n−c

√
n.
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Proof. Because 2c
2
< 4/3, we may choose δ ∈ (3/4, 1/2c

2
). Let ε = δ − 3/4, let

k = log2(ε−2 ln 4) as in Lemma 3.5, and let n0 be large enough so that for all n ≥ n0

there is some m as in Lemma 3.6. Note that because δ2c
2
< 1, we may choose γ

to be large enough so that (1 + γδ)2c
2 ≤ γ holds and f(n) ≤ γ2n−c

√
n holds for all

n < n0. We prove that the bound holds for all n by induction.
Let n ≥ n0, apply Lemma 3.6 to obtain m, and consider T ∈ Tn with root r. Let

T ′ be the complete ternary subtree of T rooted at r with depth m. By induction,
there exists a complete S′ ∈ B(T ′) with |L(S′)| ≤ γ2m−c

√
m.

For each x ∈ {0, 1}m, let Ax be the set of leaves of S′ with path-label x. We
say that x ∈ {0, 1}m is frequent if |Ax| ≥ 2c

√
m, and we say that x is infrequent

otherwise. Let α be the number of frequent labels, and let β be the number of
infrequent labels.

For each leaf σ of T ′, let Tσ be the complete ternary subtree of T rooted at σ of
depth n−m. For each leaf σ in S′, we extend S′ at σ by selecting some Sσ ∈ B(Tσ).
The choice for Sσ depends on whether the path-label of σ in S′ is frequent or not.

If x is frequent, then for each σ ∈ Ax, we choose Sσ ∈ B(Tσ) arbitrarily. Oth-
erwise, suppose that x is infrequent, and let σ1, . . . , σr be the leaves in S′ with
path-label x. Because x is infrequent, we have r ≤ 2c

√
m. Moreover, each Tσ has

depth n −m and n −m ≥ c
√
m + k ≥ log2(r) + k. Therefore Lemma 3.5 implies

that there exist Sσ ∈ B(Tσ) such that
∣∣⋃

σ∈Ax L(Sσ)
∣∣ ≤ δ2n−m. Gluing together

all the trees Sσ yields S ∈ B(T ). We bound |L(S)| as follows.
First, we bound the number of path-labels in L(S) that extend frequent path-

labels. Note that by the definition of “frequent,” α2c
√
m ≤ 2m. If x ∈ {0, 1}m, then

the total number of path-labels in L(S) which extend x is at most 2n−m. Hence
the total number of path-labels in L(S) which extend a frequent path-label is at
most α2n−m ≤ 2n−c

√
m.

Next, we bound the number of path-labels in L(S) that extend infrequent path-
labels. If x is not frequent, then the number of path-labels in L(S) that extend
x is at most δ2n−m. Note that β ≤ |L(S′)| ≤ γ2m−c

√
m. Hence the number of

path-labels in L(S) that extend an infrequent path-label is at most βδ2n−m ≤
γ2m−c

√
mδ2n−m = γδ2n−c

√
m.

Adding these two bounds, we have that

|L(S)| ≤ (1 + γδ) 2n−c
√
m

= (1 + γδ) 2c(
√
n−
√
m)2n−c

√
n

≤ (1 + γδ) 2c
2
2n−c

√
n

≤ γ2n−c
√
n

as required. �

4. A lower bound on f(n)

Our strategy for bounding f(n) from below is to construct edge-labeled ternary
trees in which each path-label occurs along a limited number of paths, and then
extend these trees slightly.

Lemma 4.1. Define a sequence {am} of integers via a0 = 1 and am = d3am−1/2e
for m ≥ 1. For each m, there exists Tm ∈ Tm such that for each x ∈ {0, 1}m, the
set Ax of all leaves in Tm with path-label x satisfies |Ax| ≤ am.
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Proof. By induction on m. If m = 0, the statement holds trivially. For m ≥ 1, the
inductive hypothesis implies that there is Tm−1 ∈ Tm−1 in which each path label
occurs at most am−1 times. We extend Tm−1 to a complete ternary tree of depth m
as follows. Consider a path-label x ∈ {0, 1}m−1. At each vertex u in Ax, add three
children v1, v2, v3 adjacent to u. Of the 3|Ax| new edges, arbitrarily label d3|Ax|/2e
with label 0 and label the others with label 1. Repeating for each x ∈ {0, 1}m−1

yields Tm. �

It is straightforward to argue by induction that (3/2)m ≤ am ≤ 2(3/2)m − 1.
Solving the recurrence exactly has received some study. Odlyzko and Wilf showed
that am = bK(3/2)nc where K ≈ 1.6222 [18]; see also [4]. The sequence appears in
the On-Line Encyclopedia of Integer Sequences with sequence identifier A061419.
Our application requires only the easy upper bound am ≤ 2(3/2)m. By extending
the trees provided in Lemma 4.1, we obtain a lower bound on f(n).

Lemma 4.2. If m ≥ 0 and s = dlog2 2(3/2)me, then f(m+ s) ≥ 2m.

Proof. Obtain Tm as in Lemma 4.1, and let s = dlog2 2(3/2)me. We obtain a tree
T ∈ Tm+s by extending Tm as follows. Fix some x ∈ {0, 1}m, and let Ax be the
set of all leaves in Tm with path-label x. Because |Ax| ≤ 2(3/2)m, we may choose
distinct labels θ(σ) ∈ {0, 1}s for each σ ∈ Ax. Extend Tm at σ by attaching the
tree Tσ ∈ Ts with L(Tσ) = {θ(σ)}. Following the same extension procedure for
each label in {0, 1}m yields T .

Consider S ∈ B(T ) and let σ1, . . . , σr be the vertices of S at depth m. For each
σj , let τj be a leaf in S that is a descendant of σj . Because no two distinct leaves
τi, τj share a common path-label, we have that |L(S)| ≥ r = 2m, as required. �

Lemma 4.2 only yields a lower bound on f(n) when n is of a special form;
however, we claim that for each n, either n or n− 1 is of a form to which Lemma
4.2 applies. Let bm = m+ dlog2 2(3/2)me, and note that for m ≥ 1, we have that

bm − bm−1 = 1 + dlog2 2(3/2)me −
⌈
log2 2(3/2)m−1

⌉
< 2 + log2 3/2 < 3.

Because bm − bm−1 is an integer, we have that bm − bm−1 ≤ 2. We obtain the
following general lower bound.

Theorem 4.3. For each n, we have f(n) ≥ 2
n−3
log2 3 ≥ (0.269) · (1.548)n.

Proof. Letm be an integer such that either n or n−1 is equal tom+dlog2 2(3/2)me.
Lemma 4.2 implies that f(n) ≥ f(m+ dlog2 2(3/2)me) ≥ 2m. Note that

n− 1 ≤ m+ dlog2 2(3/2)me ≤ m+ (log2 2(3/2)m) + 1 = (log2 3)m+ 2

and therefore m ≥ (n− 3)/ log2 3. �

Corollary 4.4. We have that limn→∞ (f(n))1/n ≥ 2
1

log2 3 ≥ 1.548.

5. An application to computability theory

Our application requires a generalization to partial edge-labelings of the infinite
ternary tree. A ternary sequence is a finite sequence of 0’s, 1’s, and 2’s. The full
ternary tree is the collection of all ternary sequences, ordered by sequence extension.
This partial ordering can also be viewed as a (connected, acyclic) graph where two
sequences are joined by an edge if one is an immediate extension of the other, that
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is, the one extends the other by one digit. The empty sequence is the root of the
tree. The set of vertices at depth k is {0, 1, 2}k.

We consider partial edge-labelings of the full ternary tree. If στ is an edge in
the full ternary tree and τ extends σ by one character, then the level of στ is the
depth of τ . Hence, edges incident to the root are at level 1. Let U be an infinite
set of positive integers, which will indicate a set of levels of the full ternary tree; let
u1, u2, u3, . . . be an increasing enumeration of the elements of U . A U -edge-labeling
of the full ternary tree is an assignment of a label in {0, 1} to each edge at every
level in U . As before, reading the labels along edges in the path from the root to
a vertex σ gives a path-label, and reading the labels along the edges of an infinite
path starting at the root gives a path-label in {0, 1}ω, where ω = {0, 1, 2, . . .}. A
binary subtree S of the full ternary tree is complete if it has nonempty and has
no leaves. (Note that we are considering subtrees in the graph-theoretic sense. In
particular, such an S is “2-bushy” in the sense that every node at depth n has two
children at depth n+ 1.) For such a subtree S, let L(S) be the set of path-labels of
paths through S, as before. Also as before, our object is to find such an S with L(S)
“small.” However, it is easily seen that it is not possible in general to choose such
an S with L(S) countable. Instead, we ensure that L(S) has measure 0 in the usual
fair-coin measure on 2ω. This amounts to choosing S so that limn |L(Sun)|/2n = 0,
where Sk is the set of nodes and vertices of S with depth at most k.

A set U ⊆ N is computable if there is an algorithm which, given n ∈ N, decides
if n ∈ U . A U -edge-labeling is computable if there is an algorithm which, given an
edge στ in the full ternary tree, outputs the label on στ . A full binary subtree S
of the full ternary tree is computable if there is an algorithm that, given a ternary
sequence σ, decides if σ is a vertex in S. For our application to computability
theory, we also need the proof to be effective in the sense that we can choose S to
be computable if T and U are computable.

Theorem 5.1. Let U be an infinite set of positive integers, and let T be a U -edge-
labeling of the full ternary tree. Then there is a complete binary subtree S of T
such that L(S) has measure 0 as a subset of {0, 1}ω. Furthermore, if U and T are
computable, we may require S to be computable.

Proof. We prove the computable version of the result, and of course the other
version follows by the same argument, omitting all mention of computability. Let
r be the root of T . We obtain S by computing a sequence S0, S1, . . . of finite,
complete binary subtrees rooted at r. Each tree Sj is a proper subtree of Sj+1 and
L(Sj) has size at most (3/4)j · 2n, where n is the length of the path-labels in Sj .
We set S =

⋃
j Sj . Note that S is a full binary subtree of T and L(S) has measure

0. Moreover, S is computable; to see if σ is a vertex in S, simply compute Sj for
large enough j so that path-labels in Sj have length at least as long as σ and test
if σ is in Sj .

Let S0 be the binary subtree of depth 0 rooted at r. Given Sj , we show how to
compute Sj+1. We obtain Sj+1 by gluing trees of the same depth to the leaves of
Sj . These trees are obtained from a modified version of Lemma 3.5. This modified
version is explained next.

The argument of Lemma 3.5 easily extends to the partial edge-labeling case when
the n of the lemma is replaced by the length of the path-labels in the given partially
edge-labeled trees. In fact, the argument becomes easier because we are no longer
trying to establish a delicate upper bound on the number of labels. The key to
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applying the pigeon-hole principle in the proof of Lemma 3.5 is that |X | > 2r, where
X is a family of pairwise α-orthogonal partitions of {0, 1}n. If we now set α = 1 and
require n > 2r, we now achieve this easily by taking X = {{Xi, Xi} : 1 ≤ i ≤ n},
where Xi is the set of binary words of length n with a 1 in the ith bit, so that X
is a 1-orthogonal family of partitions of {0, 1}n. (This avoids the use of Chernoff’s
Inequality to construct a large α-orthogonal family, at the cost of making n much
larger than in the original version of Lemma 3.5 .) Since now α = 1, the first
inequality in the final line of the proof of Lemma 3.5 yields | ∪j L(Sj)| ≤ (3/4)2n.

Let m be the length of the path-labels in Sj , and let A be the set of all leaves
in Sj . Let n = 2|A| + 1. For each σ in A, let Tσ be the complete ternary subtree
rooted at σ whose leaves have depth um+n in T . Note that by construction, the
path-labels in Tσ all have length n.

Therefore, by the modified version of Lemma 3.5 discussed above, for each
σ ∈ A, there exists a complete binary subtree Sσ of Tσ of full depth such that
|
⋃
σ∈A L(Sσ)| ≤ (3/4)2n. Because A is finite and there are only a finite number of

candidates for each Sσ, we may compute such a collection of subtrees using brute
force. Let Sj+1 be the binary subtree obtained by gluing Sσ at each leaf σ in Sj .
Note that Sj+1 has depth um+n and the path-labels in Sj+1 have length m+ n.

For each x ∈ L(Sj), there are at most (3/4)2n path-labels in L(Sj+1) that extend
x. It follows that |L(Sj+1)| ≤ (3/4)2n ·|L(Sj)| = (3/4)2n(3/4)j2m = (3/4)j+12m+n,
as required.

�

Equip ω = {0, 1, 2, . . . } with the discrete topology. The product space ωω,
also known as Baire space, is a universal Polish space (a separable, completely
metrizable space). Medvedev [11] considered subsets of Baire space to be “mass
problems,” where the idea is that the elements of a set A are the solution of the
“problem.” For example, if A is a singleton {f}, then the problem A is the problem
of computing f . For another example, if A consists of all functions whose range is
some nonempty set X, then A is the problem of enumerating the elements of X.

When is one mass problem A at least as difficult as another problem mass B?
Medvedev [11] introduced a reducibility on mass problems which is now often called
Medvedev reducibility. Namely, B is Medvedev reducible to A, denoted B ≤M A,
if there is a uniform way to compute a solution for B given any solution for A.
Formally, this means there is a Turing functional Φ such that Φ(f) ∈ B for all
f ∈ A. In other words, there is a fixed oracle Turing machine which, given any
function f ∈ A as oracle, computes a function g ∈ B, which must of course be a
total function. Note that Medvedev reducibility extends Turing reducibility in the
sense that for f, g ∈ ωω, g is Turing reducible to f if and only if {g} is Medvedev
reducible to {f}.

The relation ≤M is a pre-partial ordering on Baire space. We call two mass prob-
lemsMedvedev equivalent if each is Medvedev reducible to the other, and Medevedev
equivalence is an equivalence relation. The equivalence classes are called Medvedev
degrees; the collection of degrees is turned into a degree structure by adding the in-
duced partial ordering. In fact, this degree structure is a distributive lattice, where
the least upper bound is induced by pairwise effective join

A× B = {f ⊕ g : f ∈ A & g ∈ B} 1

1Where (f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n + 1) = g(n).
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and greatest lower bound given by effective disjoint union

A t B = {0f : f ∈ A} ∪ {1g : g ∈ B}.

The Medvedev degrees have a least element 0 which consists of all mass problems
that contain a computable function. The greatest element, the degree of the empty
set, is usually ignored. The Medvedev degree of a mass problem A is denoted by
degM (A) or sometimes simply a.

Medvedev reducibility is also known as strong reducibility. This is because Much-
nik [15] later introduced a weaker version of Medvedev reducibility, the difference
being that uniform computation is no longer required: a mass problem B is Much-
nik (or weakly) reducible to a mass problem A if, for each f ∈ A, there is a Turing
functional Φ such that Φ(f) ∈ B. Here, the order of quantifiers allows for a differ-
ent functional Φ for each f ∈ A, and so the behavior of the reduction is no longer
uniform over the functions in A. The corresponding degree structure is isomorphic
to the sublattice of the power set of the Turing degrees, consisting of all the sets of
Turing degrees which are closed upwards, i.e. are unions of cones.

Now recall that Baire space ωω is actually a topological space with basis {Oτ : τ ∈
ω<ω}, where ω<ω =

⋃
n≥0 ω

n and the basic open set Oτ is given by Oτ = {f ∈
ωω : f extends τ}. Because τ is a finite list of numbers, algorithms can output the
basic open set Oτ implicitly by referring to τ .

The topological notions of open and closed sets can be refined using computabil-
ity theory. We say that an open set O ⊆ ωω is effectively open (or Σ0

1) if the
collection of basic open subsets of O is computably enumerable. The complement
of an effectively open set is effectively closed, or Π0

1. We note that a set is effectively
closed if and only if it is the set of infinite paths through a computable subtree of
ω<ω.

Of particular interest are effectively closed sets which are computably bounded,
in other words, are subsets of the subspace∏

n<ω

{0, 1, . . . , h(n)− 1}

of ωω, for some computable function h. These closed sets are the sets of paths
through trees which are finitely branching, and so are compact subsets of ωω; the
extra effectiveness condition implies that in some sense these sets are “effectively
compact.” Computably bounded Π0

1 classes have occurred as the set of solutions
to problems in logic, combinatorics, and algebra and other areas; for a survey
of this aspect of Π0

1 classes, see [1], for example. It turns out that computably
bounded Π0

1 classes are Medvedev equivalent to effectively closed subsets of Cantor
space {0, 1}ω = 2ω. Hence, much research was devoted to studying the Medvedev
and Muchnik degrees of effectively closed subsets of Cantor space; see [19] for
more details. Both substructures of the full degree structures are again distributive
lattices, as the lattice operations, applied to effectively closed sets, yield effectively
closed sets.

Let PM be the lattice of Medevedev degrees of effectively closed subsets of
Cantor space. In the lattice PM there is a greatest element 1, which is the degree of
the set of all consistent completions of Peano arithmetic, viewed as a mass problem
via standard coding. Another Π0

1 mass problem in 1 is the set DNR2 of {0, 1}-
valued diagonally nonrecursive functions. A function f ∈ ωω is called diagonally
nonrecursive if for all e we have f(e) 6= ϕe(e), where {ϕe}e∈ω is an effective list
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of all partial computable functions. Here f(e) 6= ϕe(e) means that either ϕe(e) is
undefined, or it is defined with a value unequal to f(e).

The set DNR of all diagonally nonrecursive functions is effectively closed, but is
not recursively bounded, indeed is not compact. However, we let, for every k < ω,
DNRk be the set of all diagonally nonrecursive functions

f : ω → {0, 1, 2, . . . , k − 1},
i.e., k-valued diagonally nonrecursive functions. These sets are Π0

1 and are recur-
sively bounded, hence their Medvedev degrees lie in PM . As mentioned,

degM (DNR2) = 1

is the greatest degree in PM . However, Jockusch [8, Theorem 6] showed that if we
let dk = degM (DNRk), then

d2 > d3 > d4 > . . .

is a strictly decreasing sequence. This contrasts with Jockusch’s result [8, Theorem
5]) that the Muchnik (weak) degrees of all of the classes DNRk coincide, i.e., the
classes DNR2,DNR3, . . . are all Muchnik equivalent.

If the classes DNRk are “high”, or close to 1, then classes of positive measure
should be considered “fat”, and so “low”, or close to 0. The measure we use is the
product probability measure, using the fair coin measure on {0, 1}. Simpson [19,
Corollary 7.11] showed a non-join result: if a ∈ PM is the Medvedev degree of a
Π0

1 class of positive measure, k ≥ 2, and b ∈ PM is not above dk, then the join
a∨b is not above dk either. Thus Π0

1 classes of positive measure are so weak, that
they cannot help any other Π0

1 class compute bounded diagonally nonrecursive
functions. Simpson asked [19, Remark 7.12] if the reason for this is that all Π0

1

classes of positive measure are Medvedev reducible to each DNRk. Here we answer
Simpson’s question in the negative:

Theorem 5.2. There is a Π0
1 class P ⊆ 2ω of positive measure which is not

Medvedev reducible to DNR3.

In fact, we prove a stronger result. Measure and Π0
1 classes are closely tied to

notions of effective randomness. For more background see [19]; here we just mention
that every Π0

1 class of positive measure contains a tail of every Martin-Löf random
set2 (Kučera [10]), and that since the collection of Martin-Löf random sets is a
Σ0

2 set (an effective Fσ set), there are nonempty Π0
1 classes, necessarily of positive

measure, which contain only Martin-Löf random sets. Thus in the Muchnik (weak)
degrees, the degree of the set of Martin-Löf random sets is the same as the degree of
any Π0

1 class which contains only Martin-Löf random sets, is the greatest degree of
Π0

1 classes of positive measure. In the Medvedev degrees, the picture is not as tidy;
the Medvedev degree r of the set of Martin-Löf random sets is not in PM , and in
fact there is no greatest Medvedev degree of Π0

1 classes of positive measure (Terwijn
[17]). However, trivially, if P is a Π0

1 class which only contains Martin-Löf random
sets, then the identity functional witnesses that r ≤ degM (P ), and so Theorem 5.2
follows from the following theorem, which answers a question raised by J. Miller.

2Recall that a sequence X ∈ 2ω is Martin-Löf random if whenever 〈Un〉 is an effective sequence
of effectively open subsets of 2ω such that the measure of each Un is at most 2−n, we have
X /∈

T
n Un. Equivalently, the initial segments of X are incompressible, in the sense that there

is a constant c such that for all n, K(X � n) ≥ n − c; here K denotes prefix-free Kolmogorov
complexity. See, for example, [2] for more details on effective randomness.
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Theorem 5.3. r � d3.

Indeed, we prove a little more. Recall that a set X ∈ 2ω is Kurtz random (or
weakly 1-random) if it is not a member of any null Π0

1 subset of 2ω. This is a notion
of randomness which is much weaker than Martin-Löf randomness. We prove the
following, which implies Theorem 5.3:

Theorem 5.4. The set of Kurtz random sets is not Medvedev reducible to DNR3.

We note that in contrast, recently Greenberg and J. Miller [6] showed that the
set of reals which have effective Hausdorff dimension 1 is Medvedev reducible to
each DNRk.

Proof. Suppose for a contradiction that Φ is a Turing functional that witnesses that
DNR3 is Medvedev reducible to the Kurtz random sets. Hence, for each f ∈ DNR3,
we have that Φ(f) is the characteristic function of a Kurtz random set and is thus
total (i.e. given an input, returns a value after a finite amount of time). Without
loss of generality, we may assume that for all f ∈ 3ω, Φ(f) is total and {0, 1}-
valued. We do this by replacing Φ by a modified Turing functional which, with
oracle f ∈ 3ω and input n, simulates Φ until either Φ(f)(n) converges or it is
discovered by a systematic search that f(e) = ϕe(e) for some e, so f /∈ DNR3. One
of these events must occur since Φ(f) is total for all f ∈ DNR3. If the former occurs
first, the modified functional outputs Φ(f)(n), and otherwise it outputs 0 (say).

By compactness, and buffering the use of Φ-computations, we can obtain an
effective increasing sequence u1 < u2 < u3 < . . . such that for all n ≥ 1, for all
X ∈ 3ω, the X-use of computing Φ(X) � n is exactly un. Let U = {u1, u2, u3, . . . }.
Thus Φ yields a computable U -edge labeling of the full ternary tree 3<ω: for σ ∈
{0, 1, 2}un , we let Φ(σ) ∈ {0, 1}n be the result of applying Φ to the oracle σ, and
so we label the parent edge incident to σ in the full ternary tree with the last bit of
Φ(σ). That is, the path-label of σ is exactly Φ(σ) for all σ ∈

⋃
n≥1{0, 1, 2}un , and

hence for all f ∈ 3ω, Φ(f) is the path-label of f .
By Theorem 5.1, there is a computable full binary subtree S of 3<ω such that

L(S) is null in Cantor space. We show that L(S) is effectively closed by enumerating
the basic open subsets of its complement {0, 1}ω − L(S). For each n ≥ 1, compute
un and compute the set A of all vertices in S at depth un. Next, for each σ ∈ A,
compute the path-label of σ. In the enumeration, output all basic open sets Oτ
such that τ ∈ {0, 1}n is not the path-label of some σ ∈ A. It follows that L(S) is a
null Π0

1 class.
Let T be the subtree of 3<ω induced by the vertices τ such that DNR3 contains

an extension of τ . Note that if τ is in T , then because τ has three children in
3<ω and at most one violates the diagonally non-recursive condition, at least two
its children are in T . It follows that T and S contain a common infinite path
f ∈ {0, 1, 2}ω. Because f is an infinite path in T , we have that f is in DNR3.
Because f is an infinite path in S, we have that Φ(f) ∈ L(S), and so Φ(f) is a
member of a null Π0

1 class, which implies that Φ(f) is not Kurtz random. Hence
f ∈ DNR3 but Φ(f) is not Kurtz random, and so Φ fails to witness that the class
of Kurtz random sets is Medvedev-reducible to DNR3, as required. �
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