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Abstract. We show that the class of strongly jump-traceable c.e. sets can be

characterised as those which have sufficiently slow enumerations so they obey

a class of well-behaved cost functions, called benign. This characterisation
implies the containment of the class of strongly jump-traceable c.e. Turing de-

grees in a number of lowness classes, in particular the classes of the degrees

which lie below incomplete random degrees, indeed all LR-hard random de-
grees, and all ω-c.e. random degrees. The last result implies recent results of

Diamondstone’s and Ng’s regarding cupping with superlow c.e. degrees and

thus gives a use of algorithmic randomness in the study of the c.e. Turing
degrees.

1. Introduction

K-triviality has become central for the investigation of algorithmic randomness.
This property of a set A of natural numbers expresses that A is as far from random
is possible, in that its initial segments are as compressible as possible: there is a
constant b such that for all n, K(A � n) ≤ K(n) + b, where K denotes prefix-free
Kolmogorov complexity. The robustness of this class is expressed by its coincidence
with several notions indicating that the set is computationally feeble (Nies [18];
Hirschfeldt and Nies; Hirschfeldt, Nies and Stephan [10]; for more background on
these coincidences see [17, Ch. 5]).

• lowness for Martin-Löf randomness: as an oracle, the set A ∈ 2ω cannot
detect any patterns in a Martin-Löf random set.

• lowness for K: as an oracle, the set A cannot compress any strings beyond
what can be done computably.

• being a base for Martin-Löf randomness: A is so feeble that some A-random
set can compute it.

The key for this equivalence is the notion of cost functions and obeying them.
Cost functions were originally introduced to expose the similarity of constructions of
typical sets in the various classes. The by-now standard construction of a promptly
simple K-trivial set ([6]) resembles the earlier construction of a set that is low for
Martin-Löf randomness ([12]), and the construction of a set which is low for K
(Mučnik 1999, see [2] or [17, 5.3.35]). The requirements, which want to enumer-
ate numbers into the set A that is being built, are restrained from doing so not
by discrete negative requirements, such as in the standard Friedberg construction
of a low set, but by a cost function, which has a more continuous nature. This
resemblance between the constructions of “typical” representatives in the classes
mentioned above was the seed for the proofs of equivalence of these notions. Tech-
nically, this equivalence is summarised in the Main Lemma of [17, Section 5.5],
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which indeed yields the harder implication that each K-trivial is low for K. A fur-
ther application of that Main Lemma characterizes the class of K-trivial sets by
the standard cost function cK: a ∆0

2 set A is K-trivial if and only if there is a
computable approximation 〈As〉 of A such that∑

s<ω

cK(x, s)[[x is least such that As(x) 6= As+1(x)]]

is finite, where cK(x, s) =
∑

x<y<s 2−Ks(y). In a sense, the canonical way to con-
struct a K-trivial set is the only way to construct such sets.

All known characterisations of the class of K-trivial sets involve an analytic
component such as Lebesgue measure or prefix-free Kolmogorov complexity. A
still standing question is whether this class can be defined using purely combinato-
rial tools, as used in computability theory outside its interaction with algorithmic
randomness. A one-time candidate was the class of strongly jump-traceable sets.
Traceability was introduced into computability theory by Terwijn and Zambella
[24] for their study of another lowness notion, that of lowness for Schnorr random-
ness; a variant was also used by Ishmukhametov [11] in his study of strong minimal
covers in the Turing degrees. A third variant, jump-traceability, was introduced by
Nies in [19]. The strong version of jump-traceability was defined by Figueira, Nies
and Stephan [7]. They showed that a non-computable strongly jump-traceable c.e.
set exists. For the formal definitions, recall that a c.e. trace for a partial function ψ
is a uniformly c.e. sequence 〈Tx〉 of finite sets such that for all x ∈ domψ we have
ψ(x) ∈ Tx. An order function is a computable, non-decreasing and unbounded
function h : ω → ω \ {0}. A c.e. trace 〈Tx〉 is bounded by an order function h if
for all x, |Tx| ≤ h(x). Finally, a set A is strongly jump-traceable if for every order
function h, every partial function ψ : ω → ω which is partial computable in A has
a c.e. trace which is bounded by h.

In [3], Cholak, Downey and Greenberg showed that the attempt to define K-
triviality using strong jump-traceability fails, but that in fact, restricted to the c.e.
degrees, the strongly jump-traceable degrees form a proper sub-ideal of the ideal
of K-trivial degrees. This was the first known example of such an ideal. Several
questions remained open:

(1) How does the ideal of strongly jump-traceable c.e. sets relate to other ideals
and classes of degrees? Most of these classes are known to be contained
in the K-trivial degrees but are not yet known to be distinct from the
ideal of K-trivial degrees. Here we mostly think of classes derived from
algorithmic randomess, such as the collection of degrees which are bounded
by an incomplete random degree. Cholak, Downey and Greenberg showed
in their paper that the strongly jump-traceable degrees are all ML-non-
cuppable, another example for such a class, but no further examples were
known.

(2) Can the strongly jump-traceable sets be characterised by cost functions?
Related to that is the question of the complexity of this ideal. Can trace-
ability for some fixed order ensure strong jump-traceability? Is this ideal a
Σ0

3 ideal, like the K-trivial ideal, or is it more complicated?
(3) What is the status of non-c.e. strongly jump-traceable sets? The notion

of K-triviality is inherently enumerable; the cost function characterisation
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implies that every K-trivial set is computable from a c.e. one. Does the
same hold for strong jump-traceability?

(4) Are there other characterisations of the strongly jump-traceable sets, which
would indicate that this notion is robust?

(5) Are there other natural ideals between the strongly jump-traceable de-
grees and the K-trivial degrees? Are there natural proper sub-ideals of the
strongly jump-traceable degrees?

The main results. We answer the first two questions. The solution for the second
question gives a unified approach to one kind of “box-promotion” constructions.
Two examples of such constructions were first given in [3].

We begin with a few definitions, following [17]. A monotone cost function is a
computable function c which associates with every number x < ω and stage s < ω
a “cost” c(x, s), a non-negative rational number, of changing the approximation
As(x) for membership of x in A at stage s. We require that for each x, the sequence
〈c(x, s)〉s<ω is non-decreasing, and converges to a limit c(x); we require that the
limit cost function c(x) is non-increasing with x, and indeed, that for any fixed
stage s, the cost 〈c(x, s)〉x<ω at stage s is non-increasing.

We say that a computable approximation 〈As〉 of a ∆0
2 set A obeys a cost func-

tion c if the sum ∑
s<ω

c(x, s)[[x least such that As(x) 6= As+1(x)]]

is finite. We say that a ∆0
2 set A obeys a cost function c if there is some computable

approximation 〈As〉 for A which obeys c. In this terminology, Nies’s result above
is that a ∆0

2 set is K-trivial if and only if it obeys the standard cost function cK.
We note, by the way, that if A is a c.e. set which obeys a cost function c, then A
has a computable enumeration which obeys c [20].

We usually require our cost functions to satisfy the limit condition limx→∞ c(x) =
0, where again c(x) = lims c(x, s). In this paper we introduce a class of cost function
that satisfy the limit condition in a restrained and predictable manner.

Definition 1.1. A (monotone) cost function c is benign if there is a computable
function g such that for every positive rational ε, g(ε) bounds the size of any
collection I of pairwise disjoint intervals of natural numbers such that for all [x, s) ∈
I we have c(x, s) ≥ ε.

For example, the standard cost function cK is benign: for any ε > 0, any I as
in the definition cannot have size greater than 1/ε, because the witnesses, in the
universal machine, for cK(x, s) ≥ ε for [x, s) ∈ I must all be distinct; this is because
the intervals in I are disjoint.

Here is another way to understand the definition of benignity. Let ε > 0. Set
yε
0 = 0, and if yε

k is defined, and there is some s such that c(yε
k, s) ≥ ε, then set

yε
k+1 to be the least such s. If c satisfies the limit condition limx c(x) = 0, then

this process has to halt after finitely many iterations. Then c is benign iff there is
a computable (in ε) bound on the number of iterations of this process.

Our main theorem settles the first part of Question (2) above.

Theorem 1.2. A c.e. set A is strongly jump-traceable if and only if it obeys all
benign cost functions.
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Since cK is benign, this implies the main result of [3], that every strongly jump-
traceable c.e. set A is K-trivial.

As for the second part of Question (2), we show the following.

Theorem 1.3. For any benign cost function c, there is a c.e. set A which obeys c
and is not strongly jump-traceable.

In light of Theorem 1.2, this says that for every benign cost function c there
is another, more stringent, and yet still benign, cost function d, such that there
is a c.e. set which obeys c but not d. Theorem 1.3 implies Cholak, Downey and
Greenberg’s result from [3] that the ideal of strongly jump-traceable degrees is
strictly contained in the ideal of K-trivial degrees. The techniques we use elaborate
on their techniques in the language of procedures and cost functions.

In light of the connection between strong jump-traceability and benign cost
functions, exhibited by Theorem 1.2 and Proposition 2.2, Theorem 1.3 is related
to Ng’s result from [14], that no single order function h can ensure strong jump-
traceability. In Section 3 we show that Ng’s result follows from Theorem 1.3.
Indeed, the results are close: alternatively, we could obtain Theorem 1.3 from Ng’s
theorem; we include a proof of Theorem 1.3 for completeness of presentation. We
remark that utilising techniques similar to the ones of Section 3, Ng went on to
show that the index-set for the collection of strongly jump-traceable c.e. sets is
Π0

4-complete, and so certainly is not Σ0
3.

Applying Theorem 1.2. The main theorem allows us to unify constructions
which show that the strongly jump-traceable degrees are a subclass of most of the
subclasses of the K-trivial degrees which are considered in the study of algorithmic
randomness.

Recall that Y ≤LR X if every X-random set is Y -random. A set X is called
LR-hard if ∅′ ≤LR X. The class of LR-hard sets is denoted LRH. Kjos-Hanssen,
Miller, Solomon (see [22] or [17, 5.6.30]) showed that a set is LR-hard if and only
if it is (uniformly) almost everywhere dominating. Nies [17, 6.3.14] showed that an
LR-hard random set can be Turing incomplete.

Theorem 1.4. Every strongly jump-traceable c.e. set is computable from any LR-
hard random set.

As an immediate corollary we see that in the c.e. degrees, the collection of
strongly jump-traceable degrees is contained in the collection of degrees which are
bounded by incomplete random degrees. The motivation for Theorem 1.4 is the
following key open problem in algorithmic randomness [13, Question 4.6]: does the
collection of c.e. sets which are bounded by some incomplete random set coincide
with the collection of c.e., K-trivial sets? The former collection is known to be con-
tained in the collection of K-trivial c.e. sets, but the reverse implication remains
open, and is considered one of the major open problems in the field. It is our hope
that Theorem 1.4 will contribute to our understanding of bounding by incomplete
random sets.

Hirschfeldt showed that if A is an incomplete c.e. set, X is an incomplete random
set, and ∅′ ≤T A ⊕ X, then X is LR-hard (see [17, Theorem 8.5.15]). Hence
Theorem 1.4 implies the result from [3], that no strongly jump-traceable c.e. set is
ML-cuppable. Again, it is an important open problem whether the class of ML-
non-cuppable sets coincides with the K-trivials [13, Question 4.8].
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The authors were surprised to discover the following result.

Theorem 1.5. If a c.e. set is strongly jump-traceable, then it is computable from
any ω-c.e. random set.

In contrast with the situation regarding the LR-hard random sets, we can show
(Theorem 5.3) that there is a K-trivial set which is not computable in some ω-c.e.
random set. Indeed, recent research by the authors together with Hirschfeldt shows
the converse of the foregoing theorem, and hence the coincidence of the c.e. strongly
jump-traceable sets and the sets which are computable from every ω-c.e. random
set [9].

Theorem 1.5 can be improved as follows. In [8], the authors define a binary
relation which is a very strong version of weak truth-table reducibility: Y ≤T (tu) X
(Y is reducible to X with tiny use) if for every order function h, there is a reduction
of X to Y whose use function is bounded by h. By making our cost functions
stringent, we can in fact show that if A is c.e. and strongly jump-traceable, and X
is an ω-c.e. random set, then A is reducible to X with tiny use (Proposition 5.2).

The analogy between Theorem 1.4 and Theorem 1.5 leads to the following def-
inition. For a class C of sets, we let C♦ be the class of all c.e. sets A which are
computable in every random set in C. Thus, these two theorems can be stated as
the inclusions

SJTc.e. ⊆ LRH♦

and
SJTc.e. ⊆ (ω-c.e.)♦,

where SJTc.e. denotes the collection of strongly jump-traceable c.e. sets.
We recall that Hirschfeldt and Miller (see [23] or [17, 5.3.15]) used a cost function

construction to show that C♦ contains a promptly simple c.e. set for each null Σ0
3

class C. Thus the content of Theorems 1.4 and 1.5 is that if for a given C, Hirschfeldt
and Miller’s construction happens to use a benign cost function, then every strongly
jump-traceable c.e. set can be viewed as being produced by their construction.

Applying randomness in degree theory. The class (ω-c.e.)♦ has an unexpected
application. Recall that a set B is superlow if B′ ≤wtt ∅′. A problem in c.e. degree
theory, which turned out to be quite difficult to solve, was whether superlow cup-
pability coincided with low cuppability (which in turn was shown to be equivalent
to having a promptly simple degree in the classic [1]). This question was recently
settled in the negative by Diamondstone [5]. In parallel, Ng [15] showed that in
analogy with the almost deep degree of [4], there is a non-computable c.e. degree
which joins every superlow c.e. degree to a superlow degree; he called such degrees
almost superdeep. We show in Section 5, using the class (ω-c.e.)♦, that the degree
of every strongly jump-traceable c.e. set A is almost superdeep, thus extending the
results of both Diamondstone and Ng. In fact we show a much stronger property:
A⊕B is superlow for every superlow set B, without the restriction that B be c.e.
It is reasonable to conjecture that this property characterizes SJTc.e.. In contrast,
Ng has built an almost superdeep degree that is not strongly jump-traceable.

The remaining questions. To end this introduction, we discuss the status of
Questions (3)-(5) from Page 2. In yet unpublished work, Downey and Greenberg
showed that in contrast with the jump-traceable sets, every strongly jump-traceable
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set is ∆0
2, indeed is K-trivial. Theorem 1.2 seems to indicate that like K-triviality,

strong jump-traceability is a notion which is inherently enumerable. Downey and
Greenberg currently conjecture that every strongly jump-tracable set is computable
in a c.e. one; this would imply that all the results in this paper extend to all
strongly jump-traceable sets. It seems likely that the characterisation of strong
jump-traceability in terms of cost functions would play an important role in a
possible verification of this conjecture. In contrast, Nies thinks that the conjecture
will be answered in the negative.

For the fourth question, recent results of the authors together with Hirschfeldt
[9] show that the class of strongly jump-traceable degrees is indeed robust, as it
coincides with some of the “diamond classes” defined above, such as (ω-c.e.)♦,
Superlow♦ and Superhigh♦. Again these results use benign cost functions in a fun-
damental way to show that each strongly jump-traceable c.e. set is in the diamond
class. However, no natural classes which lie strictly between the strongly jump-
traceable and the K-trivial degrees have yet been found. Ng [16] has defined and
investigated a class which is strictly contained in the strongly jump-traceable de-
grees. This class is obtained by partially relativising strong jump-traceability to all
c.e. sets, and seems to be Π0

5-complete. In contrast with the strongly jump-traceable
degrees, the degrees in this small class cannot be promptly simple. Another line
of inquiry examines what happens to the classes C♦ when C is increased beyond
the class of ω-c.e. sets. We say that a ∆0

2 set Y is ω2-c.e. if it can be computably
approximated while counting down the natural well-order of ω×ω at each change.
Nies has recently shown that (ω2-c.e.)♦ is a proper subideal of (ω-c.e.)♦ = SJTc.e.

[21]. Not much is known otherwise.

2. Proof of the main theorem

In this section we prove Theorem 1.2. We first prove the easy direction: if A is a
c.e. set which obeys every benign cost function, then A is strongly jump-traceable.
This is implied by the following Proposition 2.1. Recall that for any set A, JA

denotes a universal A-partial computable function; to show that a set is strongly
jump-traceable, it is sufficient to show that for every order function h, JA has a
c.e. trace which is bounded by h. Note that if A obeys every benign cost function,
then it obeys cK, and so is K-trivial. It follows ([19],[18]) that A is jump-traceable:
every A-partial computable function has a c.e. trace which is bounded by some
order function. Hence it is sufficient to prove the following.

Proposition 2.1. Let A be a c.e., jump-traceable set, and let h be an order func-
tion. Then there is a benign cost function c such that if A obeys c, then JA has a
c.e. trace which is bounded by h.

Proof. Since A is c.e., tracing JA(n) is equivalent to tracing the correct JA(n)
computation. In other words, let ψA(n) be the stage at which JA(n) converges
with an A-correct computation. Since A is jump-traceable, there is a c.e. trace
〈Sn〉 for ψA which is bounded by some order function g.

Suppose that JAr (n)↓ with use u. We say that this computation is certified if
there is some t, u < t < r, such that Ar � u = At � u such that t ∈ Sn at stage
r. We want to make sure that the cost of all x < u at stage r is at least 1/h(n).



BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 7

Hence we let

c(x, s) = max
{

1
h(n)

: ∃ r ≤ s
(
JAr (n) is certified, with use u > x

)}
.

Note that this definition indeed makes c monotone.
We first argue that c is benign. Let ε > 0 and suppose that I is a set of pairwise

disjoint intervals of natural numbers such that for all [x, s) ∈ I, c(x, s) ≥ ε. Find
some n∗ such that h(n∗) > 1/ε. Let [x, s) ∈ I. Then there is some n < n∗ and
r ≤ s such that JAr (n), with use u > x, is certified. Say that t < r witnesses that
JAr (n) is certified. The key is that t ∈ (x, s) (as x < u < t < r ≤ s), and so, since
the intervals in I are pairwise disjoint, and t ∈ Sn, we have

|I| ≤
∑

n<n∗

|Sn| ≤
∑

n<n∗

g(n).

Since n∗ is obtained effectively from ε and g is computable, this bound on |I| is
also effective.

Now suppose that A obeys c. Let
〈
Âs

〉
be a computable enumeration of A such

that ∑
s<ω

c(x, s)[[x least such that Âs(x) 6= Âs+1(x)]] < 1.

Enumerate a trace 〈Tn〉 for JA as follows: enumerate J bAs(n) into Tn at stage s if
there is some r < s such that Ar � u = Âs � u, where u is the use of the computation
J

bAs(n), and this computation gets certified at stage r.
Let n < ω and let s0 < s1 < · · · < s|Tn|−1 be the stages at which we enumerate

numbers into Tn; say that the computation J bAsk (n) gets certified at stage rk < sk.
Let uk be the use of that computation. For each k < |Tn| − 1 there is some
stage wk ∈ [sk, rk+1) such that Âwk

� uk 6= Âwk+1 � uk, as by stage sk+1, the
computation J

bAsk (n) is injured by some number below uk entering A. By design
and since wk ≥ sk,

c(uk − 1, wk) ≥ c(uk − 1, sk) ≥ 1/h(n).

Hence |Tn| − 1 ≤ h(n). Now replacing h by h+ 1 completes the proof. �

In fact, the proposition can be strengthened: the cost function c can be chosen
independently of A.

Proposition 2.2. For every order function h there is a benign cost function c such
that for any c.e. set A which obeys c, JA has a c.e. trace which is bounded by h.

The proof of Proposition 2.2 uses the notion of a universal trace 〈Sn〉 for an
order function p. Let p̃ =

⌊√
p
⌋
. There is an effective listing

〈
S1, S2, S3, . . .

〉
of

all c.e. traces which are bounded by p̃. Let Sn =
⋃

e<eh(n) S
e
n. Then 〈Sn〉 is a c.e.

trace which is bounded by p, and for every partial function ψ, if ψ has a c.e. trace
which is bounded by p̃, then for almost all n ∈ domψ, ψ(n) ∈ Sn, so 〈Sn〉 almost
traces ψ.

Proof of Proposition 2.2. By [19, Prop 5.9] (also see [17, Thm. 8.4.15]), there is an
order function g̃ such that for every K-trivial set A, every A-partial computable
function has a c.e. trace which is bounded by g̃. Let g = g̃2, and let 〈Sn〉 be a
universal trace for g.
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Now let c be the cost function which is obtained by running the proof of Propo-
sition 2.1 using the c.e. trace 〈Sn〉 and all possible c.e. oracles A. Namely, we say
that a computation JWe,r (n) is certified if We,r � u = We,t � u where u is the use of
the computation, and t ∈ Sn at stage r. We let

c(x, s) = max
{

1
h(n)

: ∃ e, r ≤ s
(
JWe,r (n) is certified, with use u > x

)}
.

Again this definition makes c monotone, and the argument in the proof of Propo-
sition 2.1 shows that c is benign.

Since both c and cK are benign, so is the cost function c+ cK. If A is a c.e. set
which obeys c + cK, then it obeys both c and cK. It follows that A is K-trivial,
so the converging time function ψA for JA has a c.e. trace bounded by g̃; so ψA

is almost traced by 〈Sn〉. The last paragraph of the proof of Proposition 2.1 now
shows that JA is almost traced by a c.e. trace 〈Tn〉 which is bounded by h. Of
course a finite modification gives a full trace. �

We now turn to the proof of the harder direction of Theorem 1.2: we show that
if A is c.e. and strongly jump-traceable, then A obeys every benign cost function.
The argument is a generalisation of the box-promotion method proof from [3] which
shows that every strongly jump-traceable c.e. set A is K-trivial. Indeed, we prove
a converse of Proposition 2.2:

Proposition 2.3. For any benign cost function c, there is an order function h with
the following property: if A is a c.e. set such that JA has a c.e. trace bounded by
h, then A obeys c.

Instead of using the recursion theorem as in [3, 17], we rely on universal traces.
We first note that for every order function h′ there is an order function h such
that for any set X, if JX has a c.e. trace bounded by h, then every X-partial
computable function has a c.e. trace which is bounded by h′ (we say that X is
h′-jump-traceable). This is because every X-partial computable function is coded
in the jump function, and we can uniformly limit the rate of growth of the functions
which give the coding locations. So if 〈Tn〉 is a universal trace for h̃ = (h′)2, and JX

has a c.e. trace bounded by h, then every X-partial computable function is almost
traced by 〈Tn〉. In the following, it suffices to define the computable function h̃;
the function h in the theorem is then given by the remark above.

The general idea of any box-promotion construction with c.e. oracle A is to
certify some appropriate A-configurations up to varying degrees of certainty. To
this end, we define an A-partial computable function ΦA; to certify As � u we define,
at stage s, ΦAs(z) for various z with use u and output s; the configuration is then
certified at a later stage t if At � u = As � u and s ∈ Tz at stage t. The degree
of certainty this certification gives us depends on the bound h̃(z) we have for the
size of Tz; we know that we cannot make more than h̃(z) − 1 many mistakes. So
if, for example, h̃(z) = 1, and As � u is certified at stage t, then we know that
A� u = As � u. Unfortunately, though, for almost all z we have h̃(z) > 1.

Specifically, to find an enumeration
〈
Âs

〉
of A which obeys c, we want to speed

up a given enumeration 〈As〉 of A and only accept sufficiently certified configu-
rations of A. To ensure obedience to c, if Âs(x) changes on some x such that
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c(x, s) ≥ 2−n, say, then we want to make progress, in the sense that the previous
version of A � x+ 1 was certified by some Tz such that h̃(z) ≤ n. The idea is to
ensure that because of this limit on |Tx|, this won’t happen more than n times.
Hence the sum ∑

s<ω

c(x, s)[[x is least such that Âs(x) 6= Âs+1(x)]]

will be bounded by
∑

n<ω n2−n, which is finite.
The part of the construction which deals with those x’s for which c(x, s) ≥ 2−n,

call it requirement Rn, may ignore those x’s for which c(x, s) ≥ 2−(n−1), as these
need to be certified in even stronger “boxes” Tz. All of these certification processes
need to work in concert; in general, at a given stage s, we will have u1 < u2 < u3 <
. . . such that As � u1 has to be certified with strength 2−1 (by R1), As � u2 has to
be certified with strength 2−2 (by R2), etc. The problem is that not every ΦA(z) is
traced by Tz; there are finitely many exceptions. Hence for every d < ω, a version
of the construction indexed by d will guess that ΦA(z) is traced by Tz for each z

such that h̃(z) ≥ d. Almost all versions will be successful. To keep the various
versions from interacting, each version will control its own (infinite) collection of
inputs z. That is, for every z, only one version of the construction will attempt to
make definitions of ΦA(z).

A common feature of all box-promotion constructions is that certification takes
place along a whole block of boxes which together form a “meta-box”. The point
is that to ensure that Rn only certifies n − 1 many wrong initial segments of A,
we need each failure to correspond to an enumeration into the same Tz. On the
other hand, if a correct initial segment is tested on some Tz, then this z is never
again available for testing other, longer initial segments of A. The idea is that if
one meta-box B used by Rn is promoted (by some s ∈ Tz for all z ∈ I discovered
to be wrong), then we break B up into many sub-boxes, and so on. The fact that c
is benign, witnessed by a computable bound function g, allows us to set in advance
the size of the necessary meta-boxes, thus making h̃ computable. A meta-box for
Rn can be broken up at most n times, so the necessary size for an original Rn

meta-box is (g(2−n))n+1.

Definition of h̃ and the initial meta-boxes. Let 〈In〉n≥1 be consecutive, pairwise

disjoint intervals of ω such that |In| = n(g(2−n))n+1. For all z ∈ In, let h̃(z) = n.
Next, we split each In into intervals I1

n, I
2
n, . . . , I

n
n , each of size (g(2−n))n+1. The

interval Id
n will be used by the d-version of Rn, which we denote by Rd

n. So we set
Bd

n,0, the initial meta-box for Rd
n, to be Id

n.
At any stage s, Bd

n,s will be an interval of ω whose size is a power of g(2−n). For
k ∈ {1, 2, . . . , g(2−n)}, we let Bd

n,s(k) be the kth subinterval of Bd
n,s of Bd

n,s of size
|Bd

n,s|/g(2−n).

d-stages and certification. As mentioned above, the d-version of the construction
guesses that for all n ≥ d, for all z ∈ Id

n, if ΦA(z)↓ then ΦA(z) ∈ Tz. The d-stages
sd

i are defined by recursion; these are the stages at which this guess looks correct.
We let sd

0 = 0. Given sd
i , let sd

i+1 be the least stage s > sd
i such that for every

n ∈ [d, i], for all z ∈ Id
n, either ΦAs(z)↑ or ΦAs(z) ∈ Tz,s. We ensure that the

d-version of the construction only makes definitions of ΦA at d-stages. Hence, if
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the d-version of the construction guesses correctly, there will be infinitely many
d-stages.

For a d-stage s = sd
i+1, let s̄ = sd

i be the previous d-stage. We say that As � u is
certified if

As � u = As̄ � u.

Definition of Φ. Fix d < ω and n ≥ d. Let i > n and s = sd
i . We describe the

action of Rd
n at stage s. Recall the sequence

〈
y2−n

k

〉
from the introduction, which

we rename 〈yn
k 〉: yn

0 = 0, and if yn
k is defined, then yn

k+1 is the least s such that
c(yn

k , s) ≥ 2−n, if such a stage s exists; otherwise, yn
k+1 is not defined. At a stage s

we can compute all yn
k for which yn

k ≤ s. We know that yn
g(2−n) is not defined.

The aim is that by the end of stage s, if k ≥ 1, yn
k ≤ s̄ is defined and As � yn

k

is certified, then we will have ΦAs(z)↓ with use yn
k for all z ∈ Bd

n,s(k): we say that
As � yn

k is tested in Bd
n,s(k). The inductive hypothesis on the construction is that

this indeed holds for all such k at the end of stage s̄, whereas if yn
k is not defined

at stage s̄, or it is defined but As̄ � yn
k is not certified, then for all z ∈ Bd

n,s̄(k) we
have ΦAs̄(z)↑.

First, to see if Rd
n can make progress, we check if there is some witness k ≥ 1

such that As̄ � yn
k was tested in Bd

n,s̄(k), and such that

As � yn
k 6= As̄ � yn

k .

If so, then Rd
n can promote its meta-box Bd

n: We reset

Bd
n,s = Bd

n,s̄(k),

where k is the least such witness. We note that in this case, for every z ∈ Bd
n,s

we have, before we make any new definitions, ΦAs(z)↑, because at stage s̄ we have
ΦAs̄(z)↓ with use yn

k . Hence we can define ΦAs(z) for such z as we like: for all
l ∈ [1, k), As � yn

l is certified, and so for all z ∈ Bd
n,s(l) we define ΦAs(z) = s with

use yn
l .

Now if Rd
n does not promote its meta-box at stage s, then Bd

n,s = Bd
n,s̄; for all

k ≥ 1 such that As̄ � yn
k was tested at stage s̄, As � yn

k is still certified, and is still
tested in Bd

n,s(k) = Bd
n,s̄(k). If there are k such that yn

k ≤ s and As � yn
k is certified,

but As̄ � yn
k was not tested at stage s̄, then for all z ∈ Bd

n,s(k) = Bd
n,s̄(k) we have

ΦAs̄(z)↑, so we can define ΦAs(z) = s with use yn
k for all such z.

This ends the construction. Before we define the enumeration
〈
Âs

〉
of s and

show that the enumeration obeys c, we need to make sure that the construction is
consistent, in that the instructions can always be carried out. We can easily verify
that the inductive hypothesis holds at the end of stage s: if yn

k < s and As � yn
k is

certified, then it is tested in Bd
n,s(k); otherwise, for all z ∈ Bd

n,s(k) we have ΦAs(z)↑.
Another issue is to verify that each requirement Rd

n can always promote its meta-
box Bd

n when that is required, that is, it can divide Bd
n,s(k) into at least g(2−n)

many sub-intervals. This follows from the size of the original meta-box Bd
n,0 = Id

n

and the following lemma:

Lemma 2.4. The procedure Rd
n does not promote its meta-box more than n times.
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Proof. Let r < t be two stages at which Rd
n promotes its meta-box. Note that

for all s ≥ r, for all z ∈ Bd
n,s(z), if ΦAs(z) ↓ then ΦAs(z) ≥ r: when Bd

n,r is
redefined at stage r, we have ΦAr (z) undefined, and all new definitions, at stage
r or afterwards, are made with the value being the stage number. Let k be such
that Bd

n,t = Bd
n,t̄(k). By the conditions for promotion, we have At̄ � yn

k certified and
tested, so ΦAt̄(z) ∈ Tz,t (by the definition of a d-stage, which t is). Hence there is
a number s ∈ [r, t) in Tz for all such z.

Also, if t is the first stage at which Bd
n is promoted, then the same argument

shows that there is a number smaller than t in Tz for all z ∈ Bd
n,t.

The meta-boxes are nested, so if Bd
n were promoted n + 1 times, say for the

n+1st time at stage s, we’d have n+1 distinct numbers in Tz for all z ∈ Bd
n,s. This

contradicts the fact that Bd
n,s ⊂ Id

n and for all z ∈ Id
n we have n = h̃(z) ≥ |Tz|. �

We turn to define
〈
Âs

〉
and show that this enumeration of A obeys c.

Fix some d such that for all n ≥ d, for all z ∈ Id
n, if ΦA(z)↓ then ΦA(z) ∈ Tz. So

there are infinitely many d-stages. From now, we drop the superscript d from Rd
n,

d-stage, sd
i , B

d
n,s, etc.

By recursion we define a sub-sequence of stages. Let q(0) = 0, and given q(r),
let q(r + 1) be the least stage s greater than q(r) at which As � q(r) is certified.
For all r < ω, let Âr = Aq(r+2) � r. For all r, let xr be the least x such that
Âr−1(x) 6= Âr(x) (so xr < r). Let nr be the unique n such that

2−n ≤ c(xr, r) < 2−(n−1).

Hence, showing that
〈
Âr

〉
obeys c is equivalent to showing that∑

r

2−nr

is finite.

Lemma 2.5. For any r, there is some stage s ∈ (q(r + 1), q(r + 2)] at which Rnr

promotes its meta-box.

Proof. Let n = nr and x = xr. Let k be the greatest such that yn
k is defined and

yn
k ≤ r. We have x < yn

k , for otherwise, by monotonicity of c, we’d have

c(yn
k , r) ≥ c(x, r) ≥ 2−n

which would imply that yn
k+1 is defined and is not greater than r.

Hence yn
k ≤ r ≤ q(r). The choice of x and the fact that x < yn

k shows that

Aq(r+2) � y
n
k 6= Aq(r+1) � y

n
k .

However, by the definition of q(r + 1) and the fact that yn
k ≤ q(r), Aq(r+1) � yn

k

is certified, so it is tested on Bn,q(r+1)(k) at stage q(r + 1). We get a change on
As � yn

k by stage q(r+ 2), so if s is the least stage beyond q(r+ 1) at which As � yn
k

is not certified, then s ≤ q(r + 2) and Rn promotes its meta-box at stage s. �

It follows that for all n,
{r : nr = n}



12 NOAM GREENBERG AND ANDRÉ NIES

has size at most n, and so ∑
r

2−nr ≤
∑

n

n2−n

which is finite. This completes the proof of Proposition 2.3.

3. No single benign cost function suffices for strong
jump-traceability

In this section we prove Theorem 1.3: if c is a benign cost function, then there
is some c.e. set A which obeys c but is not strongly jump-traceable.

Let g be a computable bound function which witnesses that c is benign. In this
construction, for notational convenience, we replace g by g + 1, so g(ε) is strictly
greater than the number of pairwise disjoint intervals [x, s) such that c(x, s) ≥ ε.

To prove the theorem, we enumerate a c.e. set A; the enumeration 〈As〉 which
we define will obey c. To ensure that A is not strongly jump-traceable, we design
an order function h and build a functional Ψ; we meet the requirements Re, which
say that the eth c.e. trace 〈Se

x〉 with bound h does not trace ΨA. The idea is that
Re will work with potential witnesses in some interval Ie of natural numbers; we
will define h(x) = e for all x ∈ Ie, and so Re will want to change the value of ΨA(x)
for some x ∈ Ie at least e times. To ensure that 〈As〉 obeys c, we sometimes need to
abandon a witness, because the cost of redefining ΨA(x), by enumerating the use
of the computation into A, becomes too large. Since c is benign we can calculate in
advance the total number of possible such abandonments Re may need to concede.
This yields a bound on the size of Ie. Hence h is computable. We defer the precise
definition of the Ie and the associated order function h until later.

To make the situation clear, we consider the first few requirements. An attempt
to meet R1 would have a witness x ∈ I1 for which we first define, at some stage s0,
ΨA(x) = s0 with use s0 + 1. At a later stage s1, s0 appears in S1

x, and we want
to enumerate s0 into A and redefine ΨA(x) = s1, meeting the requirements since
|S1

x| ≤ 1. If the cost c(s0, s1) is greater than the quota, say 1/2, allocated to R1,
then we need to abandon x and start afresh with a new witness. This can happen
only fewer than g(1/2) many times, so we need |I1| ≥ g(1/2).

Now consider R2. The process is similar, except that if x is not abandoned at
stage s1, then s1 may still appear in S2

x at a yet later stage s2, at which point we
want to enumerate s1 into A. We are now in a double bind, because enumerating
s0 into A at stage s1 has already cost R2 the amount of c(s0, s1), which was smaller
than R2’s quota (say another 1/2), but yet positive. If c(s1, s2) is greater than
what’s left to spend (1/2 − c(s0, s1)), then we need to abandon x and start with
a fresh witness, with a net loss of c(s0, s1) for R2 and no gain whatsoever. The
strategy is to take into consideration all possible such failures and “spread out
the investment”. Instead of being willing to spend it all each time, R2 declares
a quantity of 1/4 which is reserved to spending at a stage like s2, i.e., when it is
ready to meet the requirement. This means that it may abandon the witness at
the stage s2 fewer than g(1/4) many times. Between such abandonments, it may
spend one unreturned cost at a stage s1; so the amount it is willing to spend at a
stage s1 should be no more than 1/4g(1/4). So between abandoning witnesses at
an s2 stage, we may abandon fewer than g( 1

4g(1/4) ) witnesses. It follows that we
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need
|I2| ≥ g(1/4) g(

1
4g(1/4)

).

In general, Re’s total capital allotment is e2−e, and it is willing to overall spend
2−e at each level.

The actions of Re at level k, 1 ≤ k ≤ e, will be carried out through a procedure
P e

k . Re also uses procedures P e
0 which don’t incur any cost. Each procedure P e

k

for k > 0 calls a procedure P e
k−1 and expects it to return, at some stage sk, with

a witness x and some sk−1 such that ΨA(x) = sk−1 with use sk−1, and such that
|Se

x| ≥ k at stage sk. There are two possibilities:
(a) It violates that computation by enumerating sk−1 into A, redefining ΨA(x) = sk

with use sk + 1. Then it waits for sk to appear in Se
x, so that |Se

x| ≥ k + 1 and P e
k

can return to the procedure P e
k+1 which called it. If k = e then the requirement is

met.
(b) The cost csk

(sk−1) of enumerating sk−1 at stage sk is too big, bigger than a
threshold δe

k. In this case x gets cancelled, and a new run of P e
k−1 is called.

We calculate the necessary thresholds δe
k and a bound ne

k on the total number
of times a procedure P e

k can be called. We call P e
e once, so let ne

e = 1. Hence
δe
e = 2−e, and ne

e−1 = g(δe
e). Inductively, given ne

k for k > 0, we set

δe
k =

2−e

ne
k

and
ne

k−1 = ne
k g (δe

k) .
Recall that we are splitting ω into consecutive intervals 〈Ie〉, where Ie is the reservoir
of inputs to ΨA that Re has access to. If we now require that |Ie| = ne

0, there are
sufficiently many inputs for Re. Recall also that we define the order function h via
h(x) = e for all x ∈ Ie.

We now describe the action of each procedure.
A procedure P e

0 , called at some stage s0, chooses a fresh x ∈ Ie, defines ΨA(x) =
s0 with use s0 + 1, and waits for s0 to appear in Se

x. When this happens, the
procedure returns, with output x and s0.

A procedure P e
k , for 1 ≤ k ≤ e, calls a procedure P e

k−1. When that procedure
returns at stage sk, with a witness x such that ΨA(x) = sk−1 with use sk−1 + 1,
we compare c(sk−1, sk) and δe

k:
• If c(sk−1, sk) > δe

k, then we cancel x, and call a new run of P e
k−1.

• Otherwise, we enumerate sk−1 into A, and redefine ΨA(x) = sk with use
sk +1. We wait for sk to show up in Se

x. When this happens, the procedure
returns, with the witness x.

When a procedure P e
k defines ΨA(sk) with use sk + 1, while waiting for sk to

appear in Se
x, if A � sk + 1 changes due to the action of procedures working for

other requirements, then P e
k redefines ΨA(x) with the same value and use. In this

way the different requirements Re essentially don’t interfere with each other.
The construction starts procedure P e

e at stage e.

The verification follows the basic plan.

Lemma 3.1. If k > 0, then a single run of a procedure P e
k calls at most g(δe

k)
many procedures P e

k−1.
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Proof. Let t1, t2, . . . , tm be the stages at which a P e
k−1 procedure returns, with

witnesses x1, x2, . . . xm, but the run of P e
k does not return, necessarily because

c(rl, tl) ≥ δe
k, where rl = ΨAtl (xl) is the stage at which the run of P e

k−1 which
returns at tl has defined ΨA(xl). Since rl > tl−1, the intervals in

{[rl, tl) : l = 1, 2, . . . ,m}
are pairwise disjoint, so m < g(δe

k) by the hypothesis that c is benign via g− 1. �

Lemma 3.2. For each k ≤ e, at most ne
k runs of P e

k are ever called.

Proof. This is proved by reverse induction on k.
For k = e: we only call P e

e once, and we defined ne
e = 1.

Let k < e, and assume the lemma holds for k + 1: no more that ne
k+1 calls of

procedure P e
k+1 are made. By Lemma 3.1, every run of P e

k+1 calls at most g(δe
k+1)

many runs of procedure P e
k , so the total number of runs of P e

k which are called is
at most

ne
k+1g(δ

e
k+1) = ne

k. �

Corollary 3.3. A run of P e
0 can always choose a fresh x ∈ Ie as a witness.

Proof. By Lemma 3.2, at most ne
0 runs of P e

0 are ever called. Each such run requires
one witness x ∈ Ie. We defined |Ie| = ne

0 so we never run out of witnesses. �

Lemma 3.4. If a run of P e
k returns with a witness x at some stage, then |Se

x| ≥ k
at that stage.

Proof. This is proved by (forward) induction on k. It is clear for k = 0. Suppose
that this holds for k−1. Suppose that a run of P e

k returns at some stage sk+1. Then
there was a stage sk at which a procedure P e

k−1, called by this run of P e
k , returned

with the same witness x, and by induction, at that stage sk, we had |Se
x| ≥ k − 1.

The run of P e
k then defined ΨA(x) = sk. Note that sk is not in Se

x at stage sk. On
the other hand, sk appears in Se

x at stage sk+1, so at that later stage we must have
|Se

x| ≥ k. �

Lemma 3.5. Each requirement Re is met.

Proof. Lemma 3.4 implies that the original run of P e
e cannot return. By induction

we see that there must be some k ≤ e such that some run of P e
k never returns but,

if k > 0, every run of P e
k−1 which is called by that run of P e

k does return (we can
call that a golden run of P e

k ).
By Lemma 3.2, there is a last run of P e

k−1 which is called by the golden run of
P e

k , and returns with witness x at some stage sk. (If k = 0 then s0 is the stage at
which the golden run of P e

0 is called, and x is the witness which is chosen.) The
golden run of P e

k goes on to define ΨA(x) = sk and waits forever for sk to show up
in Se

x. At the end, we have ΨA(x) = sk so 〈Se
x〉x is not a trace of ΨA, which means

that Re is met. �

Lemma 3.6. The enumeration 〈As〉 obeys c.
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Proof. For every e and every k = 1, 2, . . . , e, at most ne
k runs of P e

k ever return, and
each time one such run returns, it enumerates into A a number whose cost at the
time is bounded by δe

k. Hence the total amount spent by all the runs of P e
k is

ne
k δ

e
k = 2−e.

It follows that∑
s<ω

c(x, s)[[x least such that As(x) 6= As+1(x)]] ≤
∑

e

e2−e

which is finite. �

Corollary 3.7 (Ng [14]). For every order function h there is an order function h̃

such that there is a c.e. set which is h jump-traceable but is not h̃ jump-traceable.
Hence, there is no order function h such that the strongly jump-traceable degrees
coincide with the h jump-traceable degrees.

Proof. Because of the proximity between the tracing of all A-partial computable
functions and tracing JA, it is sufficient to show that for every order function h
there is a c.e. set A which is not strongly jump-traceable, but such that JA has a
c.e. trace bounded by h.

Given an order function h, by Proposition 2.2, let c be a benign cost function
such that for every c.e. set A which obeys c, JA has a c.e. trace bounded by h.
By Theorem 1.3, there is a c.e. set A which obeys c and is not strongly jump-
traceable. �

4. The diamond class for being LR-hard

In this section we prove Theorem 1.4: every strongly jump-traceable c.e. set is
computable in every LR-hard random set. The class LRH is Σ0

3 by the equivalence
of LR and LK-reducibility (see [17, 8.5.12]). Nonetheless, it is somewhat hard to
work with. We actually show that SJTc.e. is a subclass of a H♦, where H is a class
which contains LRH and is nicer than LRH. The class H we use is the class of
∅′-tracing sets.

Definition 4.1. A set X is ∅′-tracing if there is some order function h such that
every ∆0

2 function f has an X-c.e. trace which is bounded by h.

Importantly, this definition is not a true relativisation of the notion of c.e. trace-
ability. If it were, we would say that ∅′ is c.e. traceable relative to X if there is some
X-computable non-decreasing, unbounded function h such that every f ≤T ∅′ ⊕X
has an X-c.e. trace bounded by h. Full relativisation of c.e. traceability, and in
fact of many other notions, does not yield useful concepts, at least not as useful
of partial relativisation as in Definition 4.1. In this paper, we choose to use the
preposition “by” to denote partial relativisation as in Definition 4.1: a set X is
∅′-tracing iff ∅′ is c.e. traceable by X. We remark that the preposition “by” was
also used by other authors to denote full relativisation, but so have “in” and “over”.

Proposition 4.2. Every set X ∈ LRH is ∅′-tracing.
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Proof. We say that X is JT -hard if there is an order function h such that J∅
′
has

an X-c.e. trace bounded by h (∅′ is jump-traceable by X). Simpson [22], relying on
work of Kjos-Hanssen, Miller and Solomon, showed that every X ∈ LRH is JT -hard.
Clearly, every JT -hard set is ∅′-tracing. �

Now, the plan is to find some ∆0
2 function f and a benign cost function c such

that if A obeys c and X is a random set which traces f , then A ≤T X. Let h be
an order function. We can then fix a universal oracle trace for h: a uniformly c.e.
sequence 〈Vn〉 of operators, such that for every oracle X ∈ 2ω,

〈
V X

n

〉
is an X-c.e.

trace bounded by h, such that every function f which has an X-c.e. trace bounded
by

√
h is almost traced by

〈
V X

n

〉
.

Given h, and consequently 〈Vn〉, we are interested in functions f such that for
all n, the measure of {

Y : f(n) ∈ V Y
n

}
is at most 2−n. For the rest of this section, we will call such functions f rarely
traced for h. Namely, for few oracles Y is

〈
V Y

n

〉
a trace for f .

Lemma 4.3. Suppose h is an order function and f ≤T ∅′ is rarely traced for h.
Then there is a cost function c such that A ≤T Y for every set A which obeys c,
and every random set Y such that

〈
V Y

n

〉
almost traces f . If f is also ω-c.e. then c

is benign.

Lemma 4.4. For every order function h, there is an ω-c.e. function f which is
rarely traced for h.

Proof of Theorem 1.4, given Lemmas 4.3 and 4.4. Let A be a strongly jump-trace-
able c.e. set, and let Y be an LR-hard random set. By Proposition 4.2, Y is ∅′-
tracing. Let h̃ be an order function such that every ∆0

2 function has a Y -c.e. trace
bounded by h̃. Let h = h̃2. Then letting 〈Vn〉 be the universal oracle trace for h,
we know that

〈
V Y

n

〉
almost traces every ∆0

2 function.
By Lemma 4.4, there is an ω-c.e. function f which is rarely traced for h. By

Lemma 4.3, there is a benign cost function c such that if A is a c.e. set which obeys
c, then A ≤T Y . By the main Theorem 1.2, A obeys c. �

Before we continue, we show the following:

Proposition 4.5. The ideal LRH♦ properly contains SJTc.e..

We do not know if LRH♦ coincides with the ideal of K-trivial sets.

Proof. The proof above of Theorem 1.4 shows that SJTc.e. ⊆ (∅′-tracing)♦. By
Proposition 4.2 we have (∅′-tracing)♦ ⊆ LRH♦. It now suffices to show that the
inclusion of SJTc.e. in (∅′-tracing)♦ is proper.

For definiteness let h(n) = n. Choose an ω-c.e. function f as in Lemma 4.4
that is rarely traced for h. Obtain a benign cost function c as in Lemma 4.3.
By Theorem 1.3 there is some c.e. set A which obeys c but is not strongly jump-
traceable. If A obeys c then A ≤T Y for any random Y such that

〈
V Y

n

〉
traces f .

Hence A ∈ (∅′-tracing)♦. �

We turn to prove Lemmas 4.3 and 4.4. The proof of 4.4 uses ideas of Hirschfeldt
involving the following measure theoretic analog of the pigeonhole principle.
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Fact 4.6. Let ε > 0 and k < ω. Let B be a collection of measurable subsets of 2ω

which has size greater than k/ε, such that every B ∈ B has measure at least ε.
Then there is some C ⊆ B of size k + 1 such that⋂

C

is non empty (indeed, is not null).

Proof. [17, Ex. 1.9.15] Suppose that the intersection of any k + 1 sets in B is null.
Let

f =
∑
B∈B

1B ,

where 1B is the indicator function of B. The assumption implies that on a co-null
set, f(x) ≤ k, so

∫
f(x) dx ≤ k. On the other hand, for every B ∈ B,

∫
1B(x) dx ≥ ε

and so ∫
f(x) dx =

∑
B∈B

∫
1B(x) dx >

k

ε
ε = k,

which is a contradiction. �

Proof of Lemma 4.4. Let h be an order function and let 〈Vn〉 be the associated
universal oracle trace. We define an increasing approximation 〈fs〉 for the function
f , starting with f0(n) = 0 for all n.

The idea is to keep, for each n, the measure of

(1)
{
Y : fs(n) ∈ V Y

n,s

}
not greater than 2−n. So if we see at stage s that the measure of{

Y : fs−1(n) ∈ V Y
n,s

}
is exceeding 2−n, then we redefine fs(n) = s, to keep the measure of the set (1)
bounded by 2−n at stage s.

To show that f is ω-c.e. (and well-defined), we see that for each n, the value
fs(n) changes at most 2nh(n) many times. For if p = fs−1(n) and fs(n) = s, then
the set

Bn
p =

{
Y : p ∈ V Y

n

}
has measure at least 2−n. The intersection of Bn

p for more than h(n) many such
p’s is empty, because

∣∣V Y
n

∣∣ ≤ h(n) for every Y . Fact 4.6 implies that there can be
no more than h(n)/2−n many m’s which are discarded as values for fs(n). �

For an alternative shorter write-up of the following proof of Lemma 4.3 see [17,
Lemma 8.5.19]; the present write-up gives more intuition on how to obtain the
Turing reduction from A to Y . An argument similar to the present one recurs in
the somewhat simpler setting of Proposition 5.1 below.

Proof of Lemma 4.3. Let h be an order function, 〈Vn〉 the associated universal or-
acle trace, and let 〈fs(n)〉 be a computable approximation of a function f which is
rarely traced for h. By speeding up the approximation of f , we may assume that
at every stage s, the measure of{

Y : fs(n) ∈ V Y
n,s

}
is bounded by 2−n.
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We first explain the main ideas behind the proof. Suppose that Y is a ran-
dom set and that

〈
V Y

n

〉
almost traces f , and that A is a set with a computable

approximation 〈As〉 obeying the cost function c that we will define. We want to
show that Y computes A; suppose that at stage s, for every n, we have commit-
ted that Y � u(n) computes As � k(n), where u(n) is a use marker and k(n) is a
target marker. The main challenge, of course, is to ensure the correctness of the
computation once A� k(n) changes. The mechanism for doing that is enumerating
a sequence of c.e. open classes 〈Un〉, where Y ∈ Un will roughly imply that Y � u(n)
has committed to compute a wrong initial segment of A. We will ensure that the
sets 〈Un〉 together add up to a Solovay test, in the sense that

∑
n µ(Un) is finite;

we would then know that Y can be in at most finitely many Un’s, and so (from
some point) must compute A correctly.

The challenge then moves to make the sum
∑

n µ(Un) finite. This is where we
utilise the assumption that

〈
V Y

n

〉
almost traces f . A näıve strategy for limiting the

damage is setting k(n) = n, waiting for fs(n) ∈ V Y
n,s, with some use u(n) and then

mapping Y � u(n) to As � n. Since the measure of the set of Z’s which trace fs(n)
in V Z

n is at most 2−n, it would seem that this ensures that the measure of Un too
is bounded by 2−n. This, however, does not take into account the fact that ft(n)
may change after stage t; following the näıve strategy would have us enumerate
a weight of 2−n for each possible value of ft(n), and this does not have a finite
total. The problem becomes acute when the following sequence of events occurs:
we have three approximations for f(n), at stage s1, s2 and s3. At stages t1 and
t3 (s1 < t1 < s2 < s3 < t3), the current value of f(n) is traced in V Y

n and so Y
computes both At1 � n and At3 � n. However, a number below n enters A between
stages s2 and s3, so At1 � n 6= At3 � n. However, fs2(n) does not appear in V Y

n , so
the change in A between stage s2 and s3 does not allow us to enumerate Y into Un.

The solution is to share the responsibility down the ladder. First, instead of just
waiting for fs(n) to appear in V Y

n,s, we wait for fs(m), for all m ≤ n, to appear in
V Y

m,s (or, if
〈
V Y

n

〉
only traces f from some m∗ onwards, all m ∈ [m∗, n]). Then, at

any stage at which ft(m) changes, we let Y � u(m) be responsible for computing
A � n; that is, we set k(m) ≥ n. This will correspond to setting c(n, t) ≥ 2−m.
Then, if A� n changes, we look at the least m such that k(m) ≥ n. This is the least
m such that the approximation for f(m) has changed since stage s. It follows that
the approximation for f(m− 1) has not changed since stage s, and so the current
value of f(m − 1) is in V Y

m−1,s. This allows us to enumerate Y into Um, and thus
record the change in A� n.

We can now give the formal details. First, we define the cost function c. For all
x < ω, let c(x, 0) = 2−x. For any stage t > 0, let y be the least number such that
ft(y) 6= ft−1(y). We let, for all x < t,

c(x, t) = max{c(x, t− 1), 2−y},

(and leave c(x, t) unchanged for all x ≥ t). A short examination will reveal that
c is monotone and satisfies the limit condition. If 〈fs〉 is an ω-c.e. approximation
– say the mind-change function is bounded by a computable function g – then c
is benign: suppose that I is a set of pairwise disjoint intervals of natural numbers
such that for all [x, s) ∈ I we have c(x, t) ≥ 2−n. If [x, t) ∈ I and x > n, then
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fr(m) 6= fr−1(m) for some m ≤ n and r ∈ [x, t). Hence

|I| ≤ (n+ 1) +
∑
m≤n

g(m),

which is a computable bound.
Let 〈At〉 be a computable approximation of a set A which obeys c. We introduce

some notation: for any stage t ≥ n, let sn(t) be the least stage s ≤ t such that for
all r ∈ [s, t], fr(n) = fs(n). By changing fn(n), we may assume that for all t,

fsn(t)(n) 6= fsn(t)−1(n),

so sn(t) ≥ n for all t ≥ n.
At stage t, let n be the least such that

At � sn(t) 6= At−1 � sn(t).

For that n, enumerate all the sets Y such that

ft(n− 1) ∈ V Y
n−1,t

into Un.
We note that by our assumption that the approximation for f is a “rarely traced”

one, the measure of the collection of sets which are enumerated into Un at a given
stage is at most 2−(n−1). Let nt be the unique number n such that sets are enu-
merated into Un at stage t (let nt = ∞ is there is no such n). So∑

n

µ(Un) ≤ 2
∑

t

2−nt .

Secondly, if sets are enumerated into Un at a stage t, then there is some x < sn(t)
such that At(x) 6= At−1(x), and such that c(x, t) ≥ 2−n. Let mt = − log2 c(x, s),
where x is least such that At(x) 6= At−1(x). Then mt ≤ nt for all t, so∑

t

2−nt ≤
∑

t

2−mt .

The assumption that 〈As〉 obeys c means that the sum on the right is finite. Hence∑
n µ(Un) is finite as well.
By standard randomness arguments (for example, thinking of the union of the

Un’s as a Solovay test), if Y is random, then Y /∈ Un for almost all n. Let Y be
a random set, and suppose that

〈
V Y

n

〉
almost traces f . To complete the proof, we

need to show that A ≤T Y . Let n∗ be large enough so that:

• Y /∈ Un for all n > n∗, and
• f(n) ∈ V Y

n for all n ≥ n∗.

Let s∗ be a stage late enough so that

fs � n∗ + 1 = f � n∗ + 1

for all s ≥ s∗, and such that no sets are enumerated into any Um for m ≤ n∗ after
stage s∗.

Let n > n∗. We claim that:

If t > s∗ and for all k ∈ [n∗, n) we have ft(k) ∈ V Y
k,t,

then At � sn(t) = A� sn(t).



20 NOAM GREENBERG AND ANDRÉ NIES

For suppose, for contradiction, that there is a stage u > t such thatAu � s 6= Au−1 � s,
where s = sn(t). Let m be the least such that Au � sm(u) 6= Au−1 � sm(u). Since
u > s∗, we have m > n∗; but also m ≤ n because sn(u) ≥ sn(t) = s.

Now we claim that fu(m−1) ∈ V Y
m−1,u. For by assumption, ft(m−1) ∈ V Y

m−1,t,
the latter set is a subset of V Y

m−1,u, and if fu(m− 1) 6= ft(m− 1) then sm−1(u) >
t ≥ s, which would contradict the minimality of u. Hence Y gets enumerated into
Um at stage u, which is a contradiction.

Now as sn(t) ≥ n for all n, we certainly have A ≤T Y . �

5. The classes (ω-c.e.)♦ and Superlow♦

We show that SJTc.e. ⊆ (ω-c.e.)♦ (Theorem 1.5) and that Superlow♦ is properly
contained in the K-trivial degrees (Theorem 5.3). Of course, Superlow ⊆ ω-c.e. and
so (ω-c.e.)♦ ⊆ Superlow♦.

Theorem 1.5 is an immediate consequence of the main Theorem 1.2 and the
following proposition. For an alternative write-up of the proof see [17, Fact 5.3.13].

Proposition 5.1. Let Y be a ∆0
2 random set. Then there is a cost function c with

the limit condition such that every set which obeys c is computable from Y . If,
further, Y is ω-c.e., then c is benign.

Proof. This is similar to the proof of Lemma 4.3. Let 〈Ys〉 be a computable ap-
proximation for Y . The idea is to let Y � n− 1 compute A � s if Ys � n 6= Ys−1 � n.
Let c(x, 0) = 2−x. For t > 0, if n = nt is the least such that Yt � n 6= Yt−1 � n, then
we let, for all x < t,

c(x, t) = max{c(x, t− 1), 2−n}.
Again it is easy to verify that c is monotone, and satisfies the limit condition.
Suppose now that the number of stages s such that Ys(m) 6= Ys−1(m) is bounded
by g(m), where g is a computable function. If I is a set of pairwise disjoint intervals
of natural numbers such that for all [x, s) ∈ I we have c(x, s) ≥ 2−n, then for all
[x, s) ∈ I such that x > n, there is some t ∈ (x, s] such that Yt � n 6= Yt−1 � n.
Hence

|I| ≤ (n+ 1) +
∑
m<n

g(m).

Thus, if Y is ω-c.e. via the computable approximation 〈Ys〉, then c is benign.
Now suppose that 〈As〉 is a computable approximation of a set A which obeys

c. For all n and t ≥ n, let sn(t) be the least stage s ≤ t such that for all r ∈ [s, t],
Yr � n = Yt � n. Again, without loss of generality, sn(t) ≥ n for all t ≥ n. At
a stage t, if n is least such that At � sn(t) 6= At−1 � sn(t), then we enumerate
Yt � n− 1 into a Solovay test G. The fact that 〈As〉 obeys c implies that indeed,
the sum

∑
σ∈G 2−|σ| is finite, with an argument which mirrors the one in the proof

of Lemma 4.3.
Since Y is random, only finitely many initial segments of Y are enumerated

into G; suppose that the last one is enumerated at some stage s∗. We now claim
that if t > s∗ and

Y � n− 1 = Yt � n− 1,
then

A� sn(t) = At � sn(t).
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Indeed, we show that the approximation As � sn(t) cannot change after stage t.
Assume otherwise. Let u > t be a stage at which Au � sn(t) 6= Au−1 � sn(t).
let m be the least number such that Au � sm(u) 6= Au−1 � sm(u). Since sn is
non-decreasing, we have sn(u) ≥ sn(t), so Au � sn(u) 6= Au−1 � sn(u); so by the
minimality of m, we have m ≤ n.

At stage u, we enumerate the string Yu � m− 1 into G. Since u > t > s∗,
Yu � m− 1 cannot be an initial segment of Y . The minimality of m implies that
Au � sm−1(u) = Au−1 � sm−1(u), so by the assumption on u, we have sm−1(u) <
sn(t) ≤ t; so

Yu � m− 1 = Yt � m− 1 ⊆ Yt � n− 1.
But the assumption is that Yt � n − 1 is an initial segment of Y . This is a contra-
diction. �

In fact, we can improve Proposition 5.1 to show that the use of the reduction
of A to Y can grow as slowly as we like. Already we see that the proof gives us
A ≤wtt Y , indeed A ≤ibT Y : A is reducible to Y with the use of the reduction
bounded by the identity function. In fact, we can have the use grow as slowly as
we like.

Proposition 5.2. If A is a strongly jump-traceable c.e. set and Y is an ω-c.e.
random set, then for every order function h there is a Turing reduction of A to Y
whose associated use function is bounded by h.

In the terminology of [8], A ≤T (tu) Y : A is reducible to Y with tiny use.

Proof. We prove the following equivalent statement: if p is a strictly increasing
recursive function, then there is a Turing functional Φ such that Φ(Y ) = A and
such that for all n and all i < p(n), the computation Φ(Y � n; i) is defined.

We modify the proof of Proposition 5.1. Define, for all x,

c(x, 0) = max
{
2−n : p(n) ≤ x

}
and for s > 0, if n is the least such that Ys � n 6= Ys−1 � n, let, for all x < p(s),

c(x, s) = max
{
c(x, s− 1), 2−n

}
.

The argument in the proof of Proposition 5.1 shows that if the number of stages s
such that Ys(m) 6= Ys−1(m) is bounded by a computable function g, and I is a set
of pairwise disjoint intervals of numbers such that for all [x, s) ∈ I, c(x, s) ≥ 2−n,
then

|I| ≤ p(n) + 1 +
∑
m≤n

g(m),

so c is benign.
Say that 〈As〉 obeys c. Again we let, for all n and t ≥ p(n), sn(t) be the least

stage s ≤ t such that for all r ∈ [s, t] we have Yr � n = Yt � n; by manipulating the
approximation 〈Ys〉, we may assume that for all n, for all t ≥ p(n), we have sn(t) ≥
p(n). The rest of the proof now follows the proof of Proposition 5.1 verbatim, to
show that for almost all t, if Y � n− 1 = Yt � n− 1, then A � sn(t) = At � sn(t).
This gives us a Turing functional Φ such that Φ(Y ) = A and such that for all n all
i < p(n), the computation Φ(Y � n; i) is defined, as required. �

We turn to prove:

Theorem 5.3. There is a K-trivial degree which is not in Superlow♦.
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Theorem 5.3 follows from Proposition 5.4, applied to any Π0
1 class which only

contains random sets.

Proposition 5.4. If P is a non-empty Π0
1 class, then there is some superlow Y ∈ P

and a K-trivial c.e. set D such that D is not computable from Y .

Proof. This is an elaboration on the (super)low basis theorem which states that P

has a superlow member. At stage s, we define a sequence 〈P0,s,P1,s, . . . ,P2s,s〉 as
follows.

• Let P0,s = P.
• Given P2e,s, if we see at stage s that JX(e)↓ for all X ∈ P2e,s, then we let

P2e+1,s = P2e,s; otherwise, we let

P2e+1,s = {X ∈ P2e,s : JX(e)↑}.

• Given P2e+1,s, we try to meet the requirementRe which states that Φe(Y ) 6=
D. Each such requirement will choose a witness xe. If we see, at stage s,
that for all X ∈ P2e+1,s we have Φe(X,xe)↓= 0, then we let P2e+2,s =
P2e+1,s (and enumerate xe into D if not done so already). Otherwise, we
let

P2e+2,s = {X ∈ P2e+1,s : Φe(X,xe)↑ ∨ Φe(X,xe)↓= 1}.

At the beginning of the next stage, witnesses for the requirements Re are updated:
if P2e+1,s 6= P2e+1,s−1, then we pick a fresh witness for Re. At stage s, let is(e) be
the number of stages s at which P2e+1,s 6= P2e+1,s−1. If cK(xe, s+ 1) > 2−(e+is(e)),
then we pick a new, fresh witness for Re. Here again cK is the standard cost
function for K-triviality.

Now by induction, we can show that the Π0
1 classes Pk reach a limit, and indeed

there is a computable bound on the number of changes of each Pk. As usual, after
P2e,s has stabilised, P2e+1,s changes at most once. So if there are at most n2e

versions of P2e,s, then there are at most n2e+1 = 2n2e versions of P2e+1,s.
As long as P2e+1,s does not change, xe can change at most 2e+is(e) many times

(as cK is benign with bound 2n). Beyond those changes, P2e+2,s can change at
most once before it is injured by a change in P2e+1,s. So there are at most

n2e+2 =
∑

i≤n2e+1

(
2e+i + 1

)
changes in P2e+2,s. The map k 7→ nk is computable.

It follows that
⋂

Pk is a singleton {Y }, that Y is superlow, and that Y does not
compute D. Since D obeys cK, it is K-trivial. �

We finish with an application to c.e. degree theory already discussed in the
introduction. We first need a partial relativisation of the superlow basis theorem.

Proposition 5.5. Let P be a non-empty Π0
1 class, and let B ∈ 2ω. Then there is

some Y ∈ P such that
(Y ⊕B)′ ≤tt B

′.
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Proof. For a string τ , let

Qτ =
{
Y ∈ P : ∀ e < |τ |

[
τ(e) = 0 → JY⊕B(e)↑

] }
.

Note that Qτ is a Π0
1(B) class, uniformly in τ . Emptiness of such a class is a Σ0

1(B)
condition, so there is a computable function g such that

Qτ = ∅ ↔ g(τ) ∈ B′.
Thus, there is a Turing functional Ψ such that ΨX is total for each oracle X, and
Ψ(B′, e) = τe, where τe is the leftmost string τ of length e + 1 such that Qτ is
non-empty. Let Y ∈

⋂
eQτe . Then

e ∈ (Y ⊕B)′ ↔ τe(e) = 1,

so (Y ⊕B)′ ≤tt B
′. �

In the following we strengthen the result of Ng [15] that there is a non-computable
almost superdeep degree.

Corollary 5.6. Let the c.e. degree a be strongly jump-traceable. Then for every
superlow degree b, the degree a ∨ b is also superlow.

Proof. Let A be a strongly jump-traceable c.e. set, and let B be a superlow set. By
Proposition 5.5 applied to a Π0

1 class of random sets, there is a random set Y such
that

Y ′ ≤tt (Y ⊕B)′ ≤tt B
′ ≤tt ∅′,

so Y is superlow. By Theorem 1.5, we have A ≤T Y , so

(A⊕B)′ ≤tt (Y ⊕B)′ ≤tt ∅′,
hence A⊕B is superlow as well. �

Corollary 5.7 (Diamondstone [5]). There is a promptly simple c.e. degree which
does not join to ∅′ with any superlow c.e. set.

Proof. In [7], the authors show that there is a strongly jump-traceable c.e. set which
is promptly simple. By Corollary 5.6, such a set is almost superdeep. Certainly, a
degree that is almost superdeep does not join to ∅′ with any superlow c.e. set. �
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