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Abstract. We investigate the connections between the complexity of a c.e.

set, as calibrated by its strength as an oracle for Turing computations of func-
tions in the Ershov hierarchy, and how strong reducibilities allows us to com-

pute such sets. For example, we prove that a c.e. degree is totally ω-c.e. iff

every set in it is weak truth-table reducible to a hypersimple, or ranked, set.
We also show that a c.e. degree is array computable iff every left-c.e. real of

that degree is reducible in a computable Lipschitz way to a random left-c.e.

real (an Ω-number).

1. Introduction

Whilst this paper is underpinned by a number of technical results, its prin-
cipal goal is to bring into focus a new and potentially important programme in
computability theory; and, in particular, computability theory applied to algorith-
mic randomness and computable model theory. As we will see, this paper will
demonstrate interactions between a number of distinct areas of computability the-
ory, including strong reducibilities, Turing degrees on the computably enumerable
sets, dynamic and static properties of computably enumerable sets, various natural
classes of degrees, algorithmic randomness, Π0

1 classes and their ranked points, and
computable model theory. We mention that the classes of degrees discussed include
the totally ω-c.e. degrees and the array computable degrees1, classes which have
had significant recent interest and have deep connections with algorithmic random-
ness as witnessed by, for example, Kummer [29], Downey and Greenberg [14], and
several other articles (see Downey and Hirschfeldt [16]).

Traditionally, one classifies classes of Turing degrees by investigating their com-
putational power as oracles, as is reflected by the structure of the Turing degrees
below the degree in question. There are very well known classical examples of this
phenomenon. For example, a c.e. set A is high if it is indistinguishable from the
halting problem as measured by the jump operator, in that A′ ≡T ∅′′. Used as
oracles, we would expect that high sets should have computational power similar
to that of ∅′ and this intuition is justified by results such as the coincidence of the
high degrees with the degrees which contain maximal c.e. sets2. Thus, high sets
have enough computational power to enable us to carry out the construction of a
maximal set. Another illustration comes from lowness properties, where L is low
if L′ ≡T ∅′. Now in terms of the jump operator, low sets are indistinguishable

We wish to thank Frank Stephan for his permission to include Theorem 1.12 and its proof. All
authors were supported by the Marsden fund of New Zealand.

1Precise definitions will soon follow.
2Recall that a co-infinite set M is maximal if for all c.e. W ⊃ M either W −M is finite or

ω −W is finite.
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from the computable sets. Tying this to our example above, no low c.e. set can be
maximal.

The focus of this paper is not on what can be performed below some degree, but
the dual question: how complicated is it to compute a set outside a given class,
and so how do degrees in these classes behave with respect to degrees above them?
A nice example in algorithmic randomness comes from the work on algorithmic
lowness, where it has been shown that the only sets D so computationally feeble
that there is an R >T D which is random relative to D, are precisely the class
of “K-trivial” reals. The precise definitions here are not important to our task at
hand, but it suffices to say that this class is an important subclass of the low sets,
whose members are low in terms of their initial segment complexity (more details
can be found in Nies [32]).

For our paper, we begin with the following examples of totally ω-c.e. degrees
and their uniform analogue, the array computable degrees. To make the definitions
precise, recall that Shoenfield’s limit lemma states that a function f : ω → ω is
computable from the degree 0′ of the halting problem if and only if it has a com-
putable approximation: there is a uniformly computable sequence of functions 〈fs〉
which converge pointwise to f (under the discrete topology on ω). That is, for all
n, the mind-change set

{s : fs(n) 6= fs+1(n)}
is finite, and fs(n) = f(n) for almost all s. Every computable approximation 〈fs〉
gives rise to the mind-change function:

mf (n) = #{s : fs(n) 6= fs+1(n)}.

Following Ershov, we classify the complexity of a ∆0
2 function by how quickly a com-

putable approximation for f can settle; that is, what kind of functions dominate the
mind-change function of some approximation for f . An order is a non-decreasing
and unbounded function; we say that a function f is h-c.e. if it has some computable
approximation such that h bounds the mind-change function of that approxima-
tion. Finally, we say that a function f is ω-c.e. if it is h-c.e. for some computable
order h.

Array computability and total ω-c.e.ness are defined as notions of oracular weak-
ness, in the sense that the definitions say that all functions that can be computed by
the degree are simple in the sense that they have reasonable approximations. A c.e.
degree d is array computable if there is some computable order h such that every
f 6T d is h-c.e. This notion was defined and investigated by Downey, Jockusch and
Stob [19], who showed that the array computable c.e. degrees are exactly the c.e.
degrees for which a certain notion of permitting (called “multiple permitting”) fails,
with immediate consequences for the computational power of d. For example, they
showed that a c.e. degree is array non-computable iff it computes a Martin-Pour-El
theory. Since it is again not important to our results, we will simply mention that a
Martin-Pour-El theory is a special type of an essentially undecidable axiomatizable
theory with very few axiomatizable extensions, and is an analog of a maximal set
for theories. Thus we see that the array non-computable degrees have precisely the
power to compute these objects.

Later, this notion of array non-computability was expanded in [21] to the de-
grees in general by replacing approximations with domination; a Turing degree d
is array computable if there is some ω-c.e. function which dominates all functions
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computable in d. It was shown in [21] that every array non-computable degree is
the join of a minimal pair, and a degree is array non-computable iff it bounds a
pb-generic real, which is defined as a real which is Cohen generic for dense sets
which can be accessed by primitive recursive functions.

The class of totally ω-c.e. degrees was defined and investigated by Downey,
Greenberg and Weber in [15] and later in [12]. These are the c.e. degrees d such that
every function f 6T d is ω-c.e. In [15], methods of permitting and anti-permitting
arguments were developed for the class of totally ω-c.e. degrees and it was shown
that a c.e. degree is not totally ω-c.e. iff it bounds a critical triple (in the c.e.
degrees). Here a critical triple is a configuration in the c.e. degrees representing a
certain blockage for embeddings. To wit, a,b, c form a critical triple iff b∪a = b∪c
and for all d 6 a, c, d 6 b. Notice that this gives a natural definition of the totally
ω-c.e. degrees in the c.e. degrees. A generalisation of the notion of totally ω-c.e.
degree to the degrees has not yet been investigated, but we mention that it is true
that a c.e. degree d is totally ω-c.e. iff every f 6T d is dominated by some ω-c.e.
function.

Both classes are defined in terms of strength as an oracle for computations, and
so was the flavour of the results we mentioned about highness and lowness. Focusing
on the dual question for these classes: how do these classes behave with respect to
degrees above them? A result of this type is that array non-computable degrees
join to every degree above them (Downey, Jockusch and Stob [21]) and so cannot
have strong minimal covers; Ishmukhametov [24] improved this to show that the
c.e. degrees which have strong minimal covers are exactly the array computable
ones.

In this paper we continue this line of investigation. We tie these classes with
another theme that has been central in the investigation of the array computable
and totally ω-c.e. degrees: the interplay between Turing and stronger reducibilities,
such as weak truth-table reducibility. Recall that a wtt-functional is a Turing
functional Γ which is accompanied by a computable function γ which bounds the
use of Γ-computations; in other words, for all (σ, τ) ∈ Γ (which express that if
σ is an initial segment of an oracle X, then τ is an initial segment of ΓX) we
have |σ| 6 γ(|τ |). For two sets A,B of natural numbers, A 6wtt B if there is a
wtt-functional Γ such that ΓB = A.

The fact that a function is ω-c.e. iff it is wtt-reducible to the halting problem
signaled an interesting relationship between the weakness notions in the Turing
degrees and weak truth-table reducibility. For example, a c.e. degree is not totally ω-
c.e. iff it computes a wtt-triple: sets A0, A1 andB such that A0 ≡T A1, Ai 
T B but
if C 6wtt A0, A1 then C 6wtt B. There are similar results for array computability.

As we mentioned, in this paper we combine weakness notions for Turing degrees,
question the effect of weakness for being the result of a computation, rather than
its oracle, and put strong reducibilities in the mix. Thus, the main question we ask
is: how hard is it for reals in certain classes to strongly compute strong or weak
reals? Our results express that particular strong reducibilities help understand and
characterise our two lowness notions. Thus total ω-c.e.-ness is intimately related
with weak truth-table reducibility, and array computability is similarly related to
the stronger computable Lipschitz reducibility.

In the first part of the paper, we concern ourselves with weak truth-table reduc-
tions and totally ω-c.e. degrees. The first result here was obtained by Chisholm,
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Chubb, Harizanov, Hirschfeldt, Jockusch, McNicholl and Pingrey [8], who showed
that every c.e. degree which is not totally ω-c.e. contains a c.e. set which is not
wtt-reducible to any ranked set. Independently, Afshari, Barmpalias, Cooper and
Stephan [1] showed that if d is totally ω-c.e. then every A 6T d is wtt-reducible to a
hypersimple set; but Barmpalias [2, 3] showed that not every c.e. set is wtt-reducible
to a hypersimple set. We prove:

Theorem 1.1. The following are equivalent for a c.e. degree d:
(1) Every set in d is wtt-reducible to a ranked set.
(2) Every set in d is wtt-reducible to a hypersimple set.
(3) Every set in d is wtt-reducible to a proper initial segment of a computable,

scattered linear ordering.
(4) d is totally ω-c.e.

Moreover, the equivalence still holds if in any of (1), (2) or (3), “set” is replaced
by “c.e. set”.

We recall the definitions. A set is ranked if it is an element of some countable
Π0

1 class (and so it has a Cantor-Bendixson rank). A linear ordering is scattered if
it doesn’t contain a copy of the rationals (and so repeating the Hausdorff derivative
leaves an empty kernel at the end). A set A ⊂ ω is hyperimmune if it is infinite,
and whenever 〈Fn〉 is a computable sequence of pairwise disjoint finite sets, there
is some n such that Fn ∩ A is empty. Equivalently, the function which maps n to
the nth element of A (by magnitude) is not dominated by any computable function.
Finally, a c.e. set is hypersimple if its complement is hyperimmune.

We remark that weak truth-table reducibility is exactly the right kind of re-
ducibility which gives non-trivial results in this context. This is because every non-
zero c.e. degree contains a hypersimple set and every c.e. set is Turing reducible to
a ranked set; but if A 6tt B and B is ranked then so is A.

Some connections between the notions are known:

Lemma 1.2 (Chisholm et. al. [8]). Any initial segment of a scattered, computable
linear ordering is ranked.

Lemma 1.3. If A is c.e. and non-computable, and is the ω-part of a computable
linear ordering of order-type ω + ω∗, then A is hypersimple.

Proof. We note that if there is a computable function f such that for all n,

|(ω \A) ∩ f(n)| > n,
then we can enumerate ω\A by listing, for all n, the n rightmost points of L � f(n).

�

Theorem 1.1 follows from the following two propositions, which in fact prove a
little more.

Proposition 1.4. If d is a c.e. degree which is not totally ω-c.e., then there is
some c.e. set B 6T d which is not wtt-reducible to any hypersimple set.

Proposition 1.5. If d is a c.e. degree which is totally ω-c.e., then every B 6T d
is wtt-reducible to a c.e. set which is the ω-part of a computable linear ordering of
order-type ω + ω∗.

These propositions are proved in section 2.
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Proof of Theorem 1.1. Let d > 0 be a c.e. degree. If d is totally ω-c.e., then by
Proposition 1.5, every C ∈ d is wtt-reducible to a c.e. set A which is a proper,
non-empty initial segment of a computable linear ordering of order-type ω+ω∗. Of
course A is not computable, and so A is both ranked and hypersimple.

If d is not totally ω-c.e., then by Chisholm et. al., there is some c.e. A ∈ d
which is not wtt-reducible to any ranked set, and hence not to an initial segment
of a scattered, computable linear ordering. By Proposition 1.4, there is some c.e.
B 6T d which is not wtt-reducible to any hypersimple set; if D ∈ d is any c.e. set
then B ⊕D is in d and again not wtt-reducible to any hypersimple set. �

We mention that Proposition 1.4 does not simply follow from the result of
Chisholm et. al.; this is because there are hypersimple sets which are not wtt-
reducible to any ranked sets. We prove that fact in section 3. On the other hand,
Proposition 1.4 does not imply the result of Chisholm et. al.; in the same section, we
show that there is a ranked c.e. set which is not wtt-reducible to any hypersimple
set.

In the second part of the paper, we turn to algorithmic randomness and in
particular some natural notions of relative randomness. Recall that a Martin-Löf
test is a method of coding all effective statistical tests. To wit, a computable
collection of c.e. open sets T = {Un : n ∈ ω} is a Martin-Löf test iff the Lebesgue
measure of Un, µ(Un) is bounded by 2−n for all n. Then a real A passes the test T
iff A 6∈ ∩nUn. We say that a real is Martin-Löf random iff it passes all Martin-Löf
tests3. A universal Martin-Löf test (Vn) is a Martin-Löf test with the property
that ∩nVn contains (and so, coincides with the set of) all non-random reals. The
existence of a universal Martin-Löf test was an early result of Martin-Löf (see e.g.
[32]). Martin-Löf randomness is a natural and robust notion of randomness in that
it coincides with other methods of defining algorithmic randomness. For example
a real should be random iff all its initial segments are incompressible, so that (like
white noise) they have no patterns allowing compression. This intuition is proven
correct by Schnorr’s theorem, which says that A is Martin-Löf random if and only
if for all n, K(A � n) = n+O(1), where A � n denotes the first n bits of A and K
denotes prefix free Kolmogorov complexity4.

Schnorr’s theorem suggests a natural method of calibrating randomness of reals:
A 6K B iff for all n, K(A � n) 6 K(B � n) + O(1). Many measures of relative
randomness implying this measure have been analysed. Of interest to us here is
one inspired by strong reducibilities. In [17, 18] a strengthening of weak truth-
table reducibility, namely computations where the use on the oracle on argument
n is n + c for some constant c, was suggested as a possible measure of relative
randomness. This reducibility has appeared in the literature with various names,
e.g. strong weak truth table [17, 18], computable Lipschitz (due to a characterization

3in the following, we sometimes say ‘random’ meaning ‘Martin-Löf random’.
4Prefix-free Kolmogorov complexity is a modification of plain complexity C which captures

the intentional meaning of Kolmogorov complexity. Recall that for a machine M the Kolmogorov
complexity CM (σ) of a string σ is the length of the shortest τ with M(τ) = σ. Up to a constant,

there is a universal machine U with CU (σ) ≤ CM (σ) + O(1), for all σ, allowing us to define the

(plain) Kolmogorov complexity. Prefix-free complexity solves certain deficiencies in this definition,
and simply asks that the domains of the machines have the property that if U(τ) ↓ then for all

strings ρ comparable with τ , U(ρ) ↑. We refer the reader to Li-Vitanyi [30], Downey-Hirschfeldt

[16] for more details.
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of it in terms of effective Lipschitz functions) [4] and linear [6]. We will adopt the
terminology in [4] and note it as 6cl. It is nearly obvious that 6cl is a measure of
relative randomness since a programme computing n+ c bits of B will compute n
bits of A.

In [35], Yu and Ding proved that there are two left-c.e. reals (i.e. limits of com-
putable increasing sequences of rationals) which had no common upper bound in
the cl-degrees. In [7], Barmpalias and Lewis showed that there is a left-c.e. real
which is not cl-reducible to any Martin-Löf random left-c.e. real.

The Yu-Ding Theorem and the Barmpalias-Lewis Theorem should be viewed in
the context of the Kučera-Slaman Theorem [28] which shows that that all random
left-c.e. reals have the same Solovay degree (which is the greatest Solovay degree
of left-c.e. reals). Here α is Solovay reducible to β iff there is a constant c and
a partial computable ϕ such that for all rationals q < β, ϕ(q) ↓ and c|β − q| >
α − ϕ(q). Thus, the Kučera-Slaman Theorem says that a computable sequence of
rationals converging to some version of Ω can be efficiently converted into a sequence
converging to any other version of Ω at more or less the same rate. The Yu-Ding-
Barmpalias-Lewis material shows that there is no way to efficiently convert the bits
of one version of Ω to some arbitrary left-c.e. real.

Both the Yu-Ding theorem and the Barmpalias-Lewis theorem characterise array
computability.

Theorem 1.6. The following are equivalent for a c.e. degree d:

(1) There are left-c.e. reals α0, α1 ∈ d which have no common upper bound in
the cl-degrees of left-c.e. reals.

(2) There is a left-c.e. real α ∈ d which is not cl-reducible to any random
left-c.e. real.

(3) There is a set A ∈ d which is not cl-reducible to any random left-c.e. real.
(4) d is array non-computable.

To make the technical details of the proofs slightly simpler, we often work with
an even more restrictive reducibility than computable Lipschitz: identity bounded
Turing reducibility (ibT or 6ibT for short) is a computable Lipschitz reduction for
which the constant c is 0. This reducibility was introduced by Soare in connection
with applications of computability theory to differential geometry (see [10, 5]).
Even though the degree structures are different, for our purposes, we may work
with either:

Lemma 1.7.

(1) Left-c.e. reals α0 and α1 have a common upper bound in the cl-degrees of
left-c.e. reals iff they have a common upper bound in the ibT-degrees of the
left-c.e. reals.

(2) A set A is cl-reducible to a random left-c.e. real iff it is ibT-reducible to a
random left-c.e. real.

Proof. If α 6cl β with constant c then α 6ibT β � [c,∞). If β is random then so is
β � [c,∞). �

Theorem 1.6 follows from the following four Propositions, which will be proved
in section 4. Again we prove slightly more.
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Proposition 1.8. If d is c.e. and array non-computable, then there are left-c.e.
reals α0, α1 ∈ d which have no common upper bound in the ibT degrees of left-c.e.
reals.

For the proof of this proposition, we give a significantly simplified account of the
verifications of the construction of Yu and Ding, which appeared in [35] and [4].

Proposition 1.9. If A0 and A1 are sets, both of which have c.e., array computable
degree, then there is a left-c.e. real β such that A0, A1 6ibT β.

The fact that we don’t need A0 ⊕ A1 to have array computable degree may be
somehow related to the fact [19] that the wtt degrees of c.e. sets which do not
contain array non-computable sets are closed under join.

Proposition 1.10. If d is c.e. and array non-computable, then there is some left-
c.e. real α ∈ d which is not ibT-reducible to any random left-c.e. real.

Here we give a construction which is significantly simpler than that which appeared
in [7].

Proposition 1.11. If d is c.e. and array computable, and A 6T d, then A is
ibT-reducible to some random left-c.e. real.

To clarify the situation regarding the cl-degrees of random left-c.e. reals, Frank
Stephan has proved the following fact:

Theorem 1.12. There are two random left-c.e. reals which are not cl-equivalent.

We give Stephan’s proof in section 6.

Finally, we somewhat extend Proposition 1.10 beyond the c.e. degrees. We re-
mark that Hirschfeldt (see [16]) has constructed a real (not left-c.e.) which is not
ibT-reducible to any random real, indeed to any complex real. Recall that a set A
is called complex (by Kjos-Hanssen, Merkle and Stephan, [25]) if there is a nonde-
creasing unbounded computable function f such that K(A � n) > f(n) for all n;
thus this is a weakening of the notion of randomness. Using Hirschfeldt’s technique
and sufficient genericity which is available from non-GL2 permitting (recall that a
degree d is called generalised low2 if d′′ 6 (d∨0′)′; equivalently, every f 6T (d∨0′)
is not dominated by some g 6T d), we prove the following in section 5:

Theorem 1.13. If d is not generalised low2 then there is some A 6T d which is
not ibT-reducible to any complex real.

This result complements a line of recent knowledge about using strong reducibil-
ities with random oracles. Early on, Gács [23] and Kučera [26, 27] showed that
every real is wtt-reducible to a random one. In fact, Gács proved that the use of
the reduction can be n + o(n), that is, asymptotically close to an ibT reduction
(see [31]). Recently, Doty [11] showed that for every A ∈ 2ω there is some random
R >T A such that the limit superior of the use of computing A � n from R, divided
by n, is exactly the effective packing dimension Dim(A) of A. Thus if Dim(A) < 1
then there is some random R >ibT A. For example, if d is c.e. traceable5 then every

5i.e. there is an order function h such that every function f which is computable from d has a
c.e. trace with bound h. A c.e. trace with bound h is a uniformly c.e. sequence of sets 〈Tn〉 such

that |Tn| ≤ h(n) for all n. We say that 〈Tn〉 is a trace for f if f(n) ∈ Tn for each n.
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A ∈ d has effective packing dimension zero [14] and so every A ∈ d is ibT-reducible
to a random, hence to a complex, real. The space between the c.e. traceable degrees
and the non-GL2 degrees remains a mystery. So we ask:

Question 1.14. Which Turing degrees contain sets which are not ibT-reducible to
random (or complex) reals?

The first step, we suspect, would be to analyse the array non-computable degrees.

2. Weak truth-table reductions and totally ω-c.e. degrees

2.1. Non-totally ω-c.e. permitting. Here we prove Proposition 1.4: if d is c.e.
and not totally ω-c.e. then there is some c.e. A 6T d which is not weak-truth-table
reducible to any hypersimple set. To do so, we apply non-totally ω-c.e. permitting
to the construction of a c.e. set which is not weak-truth-table reducible to any
hypersimple set. To make the argument clear, we first review that construction,
which appeared in [2, 3].

Let 〈Φe〉 be an effective enumeration of all truth-table functionals: Φe is a Turing
functional whose use function is bounded by the computable function ϕe (of course,
some of the use functions may be partial, in which case we assume the corresponding
computations do not converge). In enumerating the desired set A, the requirements
we need to meet are

Re,i: If ΦWi
e = A then Wi is not hypersimple.

The strategy for a single requirement Re,i is the following. We inductively define
sets of followers X0, X1, . . . such that maxXn < minXn+1 which will be used for
diagonalisation against ΦWi

e = A. If the wtt reduction ΦWi
e is total, then we can

compute an increasing sequence u0 < u1 < u2 < · · · such that for all n, for all
x ∈ Xn, the use of the computation ΦWi

e (x) is smaller than un. The key is that
the size of the sets of followers Xn grows fast: we ensure that |Xn| > un−1. Then
if Wi is indeed hypersimple then at some stage of the construction we will discover
some n such that the entire interval [un−1, un) is a subset of Wi. The size of Xn

then allows us to keep diagonalising against any future configuration of Wi � un,
since there are at most un of those.

The sets of followers for different requirements can be kept disjoint, and so
there is no interaction between distinct requirements, which act completely inde-
pendently. Thus we have no need for the priority mechanism.

We now add the permitting component and describe the proof. It is quite
straightforward. Say we are given a c.e. set D and some g = Γ(D) which has
no ω-c.e. approximation. Each requirement proceeds as before, setting up sets of
followers Xn and computing the sequence of un’s. When we want to start enumer-
ating followers from some Xn into A (upon discovery that [un−1, un) ⊆ Wi) we
know that we need at most |Xn| many permissions from D to successfully meet
the requirement. Now we know that if Wi is hypersimple then in fact there are
infinitely many n such that [un−1, un) ⊆Wi. So if we tie the D-use for permitting
x ∈ Xn to the D-use of computing g � an (via Γ) then failure to obtain permission
on each of these n’s will yield an ω-c.e. approximation for g.

Construction. We now give the formal details. We give the instructions for a single
requirement Re,i, because again, there is no interaction between distinct require-
ments, even though they implicitly collaborate in building the reduction from A to
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D. Let, for a < ω, γ(a) (at a stage s) be the current use of computing g � a via
Γ(D). [Whenever the construction asks for a value γ(a) we run the enumeration of
D forward until we get |dom Γ(D)| > a.]

Setting up Xn:

Let Xn consist of un−1 +1 large numbers which have not been used
before. Also choose a large number an.

Attacking with Xn at stage s:

Pick any x ∈ Xn \ A and let v = γ(an) (at stage s). Wait for the
least stage t > s such that Ds � v 6= Dt � v. If such a stage appears,
enumerate x into A at that stage.

The instructions for Re,i consist of two parts, which are performed in parallel.

(1) Let u−1 = 0. Set up X0. After setting up Xn, wait for a stage at which
ΦWi
e agrees with A � maxXn + 1. Let un = ϕe(maxXn + 1) be the use of

that computation, and use that value to set up Xn+1.
(2) For any n, if [un−1, un) ⊆ Wi and ΦWi

e agrees with A � maxXn + 1 (and
we are not currently attacking with Xn), then attack with Xn.

Again note that setting up new Xn’s proceeds while possible attacks are made
with older Xm’s. Also several attacks (with distinct Xm’s) may be performed
simultaneously.

Verification.

Lemma 2.1. A 6T D.

Proof. Let x < ω. To find whether x ∈ A, first go to stage x and see if there is some
requirement Re,i which has chosen x to be an element of a follower set Xn belonging
to this requirement. If not, then x /∈ A. Otherwise, let an be the parameter chosen
when Xn was set up. Wait for a stage s at which g � an ⊂ Γ(D) via a D-correct
computation. Then x ∈ A iff x ∈ As. �

Lemma 2.2. A is not wtt-reducible to any hypersimple set.

Proof. Suppose for contradiction that Wi is hypersimple and ΦWi
e = A (with com-

putable bound ϕe on the use). Since ΦWi
e is total, the requirement Re,i sets up

follower sets Xn for every n < ω and computes the associated sequence 〈un〉. By
assumption, the set

B = {n < ω : [un−1, un) ⊂Wi}

is infinite. For each n ∈ B, an attack with Xn commences at some stage. Since ΦWi
e

computes A correctly, for no n ∈ B do we get to enumerate all of Xn into A; we
cannot get stuck waiting for another agreement between ΦWi

e and A � maxXn+1, so
it must be that for each n ∈ B, an attack with Xn gets stuck waiting for permission
from D.

This means that if we approximate, for n ∈ B, g � an to be its value at a stage
at which an attack with Xn is started, then for each n ∈ B there are at most |Xn|
many mind-changes about g � an. Since the sequence 〈an〉n∈B is computable, this
gives us an ω-c.e. approximation for g, and a contradiction. �
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2.2. Totally ω-c.e. anti-permitting. We prove Proposition 1.5 under the simpli-
fying hypothesis that the set B is c.e. Since the totally ω-c.e. degrees are downward
closed, we simply let B = D be a c.e. set of totally ω-c.e. degree, and show that
there is some computable linear ordering L of order-type ω + ω∗ such that the ω-
part of L is c.e. and wtt-computes D. The reader may be interested to note how
the proof behaves like a mirror image of the proof of the previous section.

The proof follows the style of the “anti-permitting” arguments of [15, 12, 13].
The general idea is that we globally construct some function Γ(D). If we knew
some ω-c.e. approximation to Γ(D) then we could use that approximation to limit
changes in D (as we would not be able to change Γ(D) too many times). In the
present case we would use this to correctly compute D from a set A we are building.
There is a small inconvenience in that although we know that Γ(D) is ω-c.e., we
cannot effectively get an ω-c.e. approximation to Γ(D). That is why we opt for
a non-uniform construction: for every guess at such an approximation, we build
a separate set A and a reduction from D to A. The correct guess will build a
successful reduction and a set with the desired property (here, being the ω-part of
a computable linear ordering of type ω + ω∗). The only interaction between the
different guesses is that together they need to construct Γ(D); thus even if a guess
is incorrect, we need to ensure that on the inputs under this guess’ responsibility,
Γ(D) is defined.

The heart of the proof is the strategy, given an approximation for Γ(D). Suppose
that we are given a correct approximation gs(x) to Γ(D) where the value of gs(x)
changes at most h(x) many times (with h computable). To begin, we choose a large
number a0, and set up h(a0) + 2 many points in the computable linear ordering
<L we are building. We call the collection of points we set up the first layer L0 of
<L. To begin, we declare that A (which will be the ω-part of <L) contains only
the leftmost point of L0. We define Γ(D, a0) with large use γ(a0). When we get
confirmation that the current version of D � γ(a0) is correct by obtaining a stage s
at which gs(a0) = Γ(D, a0), then we declare that A � L0 (that is, the information
that from the points in L0, only the leftmost one is in A) computes D � γ(a0).
[If D changes before we get such confirmation, then we start again with the new
value of D � γ(a0). Note that if gs is not a correct approximation for Γ(D), then
D � γ(a0) could be correct yet we would never receive confirmation for this fact.
The construction for this incorrect guess at an approximation is then stuck. But
note that Γ(D, a0) is nevertheless well-defined and so this eventuality doesn’t spoil
the totality of Γ(D).]

We then proceed to choose the next “unpermitting number” a1 and lay the next
layer L1 of h(a1) + 2 points of <L which will be put in the cut between A and its
complement: namely, between the leftmost point of L0 and the next point of L0.
We now repeat the process by enumerating the leftmost point of L1 into A, defining
Γ(D, a1) with large use γ(a1) and upon confirmation by gs(a1), we stipulate that
A � (L0 ∪ L1) computes D � γ(a1).

Of course, the main issue is what happens if D does change, making the reduction
to A incorrect. We then need to change A to react to the D-change. Suppose,
for example, that D � γ(a0) changed from its original value. We then decide
to enumerate the second leftmost point of L0 into A. This means that all the
subsequent layers we put down have to be abandoned (and enumerated into A).
This does not affect the order-type of <L because it means just adding finitely many
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points to the ω-part A. But it does invalidate all the computations we commited to,
of D � γ(a0) from A � L0, D � γ(a1) from A � (L0∪L1), etc., and allows us to define
new ones. The fact that we only make such commitments when a confirmation of
D is obtained, and the fact that gs is indeed an h-c.e. approximation for Γ(D), tells
us that the process will halt before we run out of points in the layer.

There is one last delicate matter we need to address. We need to build a weak
truth-table reduction of D to A. When we set up a layer such as L1, we commit to
using only L0 ∪ L1 for computing D � γ(a1). If later we abandon that version of
L1, we cannot lift the use to compute D � γ(a1) from the new L1. The only thing
that we can do is require that D � γ(a1) (for the old value of γ(a1)) be computable
by A � L0, because we enumerated the old L1 in its entirety into A. How can
we ensure that D � γ(a1) doesn’t change more than h(a0) many times? This we
do by updating the value of γ(a0) to be larger than the old γ(a1), and we can do
this exactly because D � γ(a0) has just changed. We note that this is necessary:
without this feature, we wouldn’t need to ever change γ(an), and then we’d have
Γ(D) 6wtt D and we’d be able to prove the lemma for all c.e. sets D, which is of
course false.

Construction. Let 〈ge, he〉 be an effective enumeration of all pairs of partial ω-
c.e. approximations: so ge(x, s) is a total computable function, he is a partial
computable function, and for each x, the number of s such that ge(x, s) 6= ge(x, s+1)
is bounded by he(x) (and is 0 if he(x) ↑ ). We are given a c.e. set D; we define a
Turing functional Γ. For each e we also define a computable linear ordering <e
and other auxiliary sets. As discussed, apart from building Γ, the construction for
each e is completely independent, so we describe the instructions for e and drop the
subscript e everywhere. So fix e, let gs(x) = ge(x, s) and h(x) = he(x). We build
the linear ordering <L=<e and approximate finite sets Ln = Le,n and enumerate
a set A = Ae.

The main module for e is:
(1) Let n be the least such that Ln is currently undefined. Let an be the least

number not picked as an unpermitting number by any e′ (including e itself).
Define Γ(D, an) be the stage number s with use γ(an) = s. Wait for h(an)
to converge and for gt(an) = s. If, while waiting, D � s changes, redefine
Γ(D, an) = s with use s (note, this is the original s, not the new stage
number).

(2) Let Ln be a collection of h(an)+2 many points not currently in the domain
of <L. Extend the definition of <L to linearly order Ln (say to agree with
the natural ordering on N) and place Ln between max<LA and its successor
in <L. Enumerate minLn into A. Return to (1).

There is one interrupt procedure for e. The n-interrupt condition at a stage t is:
s < t is the last stage before t at which Ln is defined (step (2) of
the main module) or a single number is enumerated into A ∩ Ln
(step (2) of an n-interrupt), Ln is not cancelled between stages s
and t, and

D � γ(an)[s] 6= D � γ(an)[t].
The instructions for the n-interrupt are:

(1) For all n′ > n, enumerate Ln′ into A and declare Ln′ undefined. Also, set
Γ(D, an′) = 0 with use 0 and declare an′ undefined. Redefine Γ(D, an) = t
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with new use γ(an) = t. Wait for gr(an) = t. In the meanwhile, if D � t
changes, redefine Γ(D, an) = t with use t.

(2) Enumerate min(Ln \A) into A. Return to the main module.

Verification. First, we note that the instructions are consistent. Namely, that step
(2) of the interrupt process can be always carried out.

Lemma 2.3. For every e, at every stage s, for every n such that Ln = Ln,e is
defined, Ln 6⊆ A (where A = Ae).

Proof. As long as Ln is not cancelled, the size of A ∩Ln is 1+the number of times
(since the current version of Ln was set up) an n-interrupt arrived at step (2). For
each such step we have a new guess for the value of gs(an) and so

|A ∩ Ln| 6 1 + h(an) < |Ln|. �

Lemma 2.4. Γ(D) is total.

Proof. Let a < ω. By induction assume that every b < a is in the domain of Γ(D).
Then there is some e, some stage s and some n such that e picks a as an at stage
s. If e ever cancels Ln then we define Γ(D, a) with use 0 and so Γ(D,n) ↓ . If e
ever gets stuck at step (1) of the main module (when setting up Ln) or at step (1)
of an n-interrupt, then we keep defining Γ(D, a) = t with use t for some stage t;
eventually, D � t stabilizes and so this definition becomes permanent.

Otherwise, we first define Γ(D, a) = s with use s when setting up Ln, and at
every n-interrupt after that, we redefine Γ(D, a) = t with use t for some t. As
we’ve seen before, this happens finitely many times. After each time, if D � t
changes, then we call an n-interrupt again. Thus eventually one of these definitions
is permanent. �

By our assumption that degT (D) is totally ω-c.e., we can fix an e such that
(ge, he) is an ω-c.e. approximation for Γ(D). From now, drop all subscripts e. Note
that neither the main module for e nor any interrupt for e ever get stuck waiting
at step (1).

Lemma 2.5. <L is a computable linear ordering of order-type ω + ω∗, and A is
the ω-part of <L.

Proof. By induction on n we see that for every n, there is some version of Ln which
is never cancelled. For suppose that a version of Ln−1 is set up at stage s and is not
later cancelled. Then there is a stage t > s at which the last element of A ∩ Ln−1

gets enumerated into A. Immediately after that stage, a new Ln is set up. This Ln
will never be cancelled, because an n − 1 interrupt does not get stuck at step (1)
and so necessarily enumerates another point into A ∩ Ln−1.

For every version of Ln, including the final one, A ∩ Ln is non-empty, and so
A is infinite. On the other hand, if a point x is enumerated into A at stage s,
then no points are later placed in <L to the left of x, so the initial segment of <L
determined by x is finite. Thus the order type of A is ω. It is also easy to see that
the instructions ensure that A is an initial segment of <L.

For every permanent version of any Ln, maxLn never gets enumerated into A
and so the complement of A is infinite. In fact, the complement of A is the union
of Ln \ A for all permanent Ln’s. For each point in that complement, after it is
added to <L (when the permanent Ln is set up), no new points to the right are
ever added. Thus the order-type of the complement of A is ω∗. �
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Lemma 2.6. D 6wtt A.

Proof. Suppose that at stage s, a (not necessarily permanent) Ln is set up and an
is chosen. Then s = γs(an). We show how to compute D � s from A �

⋃
m6n Lm,

where the Lm’s are their versions at stage s.
Let m 6 n be the greatest such that after stage s, Lm is never cancelled (such an

m exists, because L0 is never cancelled, and can be calculated from A �
⋃
m6n Lm

by looking at the last element of each Lm). Let t be the last stage at which we
go through step (2) of the main module (setting up Lm) or an m-interrupt, and
let r < t be the stage at which the corresponding step (1) is started. A � Lm can
calculate these stages. The main point is that r = γr(am) = γ(am) is not smaller
than s. For if Ln is never cancelled, then m = n and then r > s; or m < n, in
which case Ln is cancelled at stage r and so r > s.

Since there is no m-interrupt after stage t, we know that D � r = Dt � r. So
D � s doesn’t change after stage t. �

2.3. What if B is not c.e.? We now explain how to change the proof above in
the case that the given set B 6T d is not c.e., and thus indicate how to prove the
full version of Proposition 1.5. Let D ∈ d be c.e., and let Θ be a Turing functional
such that Θ(D) = B. The construction now is almost identical to the construction
above, building Γ(D), etc., except that we tie the use of Θ computations to that
of Γ computations. Namely, we require that if an is chosen as an unpermitting
number for some guess (ge, he), then at all stages s, the use γs(an) is greater than
the use of computing Θ(D) � s at that stage. [Because Θ(D) is total, by speeding
up the enumeration of D, we may assume that for all s, Θ(D) � s↓ at stage s.] So
instead of computing D � s, A �

⋃
m6n Lm is responsible for computing Θ(D) � s.

Before confirmation, if D changes below this γ(an), then we may need to update
γ(an) because of an increase in the use of θ(s). But this doesn’t spin out of control
because Θ(D) is total, so θ(s) reaches a limit.

When D changes after confirmation, and an interrupt is called, then we need
to shift responsibilities as above: some smaller m is handed with the burden of
computing Θ(D) � s. The general geometry of the construction is not changed
much.

Construction. Again we are given 〈ge, he〉 and D; and this time, also a Turing func-
tional Θ such that Θ(D) is total. We define a Turing functional Γ, and computable
linear orderings <e, and other auxiliary sets. Apart from the use markers γs(a), we
also need to define placement markers δ(n) = δe(n); the idea is that A �

⋃
m6n Lm

computes Θ(D) � δ(n).
The main module for e is:
(1) Let n be the least such that Ln is currently undefined. Let an be the least

number not picked as an unpermitting number by any e′ (including e itself).
Define δ(n) = s (the current stage number), and define Γ(D, an) = s with
use θs(δ(n)). Wait for gt(an) = s.

If, while waiting, D � γs(an) changes, redefine Γ(D, an) = s with use
θt(δ(n)) (for the current stage t).

(2) Let Ln be a collection of h(an)+2 many points not currently in the domain
of <L. Extend the definition of <L to linearly order Ln (say to agree with
the natural ordering on N) and place Ln between max<LA and its successor
in <L. Enumerate minLn into A. Return to (1).
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The n-interrupt condition for e at a stage t is:
s < t is the last stage before t at which Ln is defined (step (2) of
the main module) or a single number is enumerated into A ∩ Ln
(step (2) of an n-interrupt), Ln is not cancelled between stages s
and t, and

D � γ(an)[s] 6= D � γ(an)[t].

The instructions for the n-interrupt are:
(1) For all n′ > n, enumerate Ln′ into A and declare Ln′ undefined. Also, set

Γ(D, an′) = 0 with use 0 and declare an′ and δ(n′) undefined.
Redefine δ(n) = t and Γ(D, an) = t with new use γ(an) = θt(δ(n)). Wait

for gr(an) = t. In the meanwhile, if D � t changes, redefine Γ(D, an) = t
with use the current θ(δ(n)).

(2) Enumerate min(Ln \A) into A. Return to the main module.

Verification. Again, the instructions are consistent:

Lemma 2.7. For every e, at every stage s, for every n such that Ln = Ln,e is
defined, Ln 6⊆ A (where A = Ae).

The proof is identical to that of Lemma 2.3.

Lemma 2.8. Γ(D) is total.

Proof. Identical to the proof of Lemma 2.4, except that if the guess is wrong and
we get stuck, after defining δ(n) = s and Γ(D, an) = s with use θ(δ(n)), waiting
for gt(an) = s, then δ(n) (for this e) is not redefined after stage s, and so θ(δ(n))
eventually reaches a limit u; after that, we keep redefining Γ(D, an) = s with use
u, and this process halts once D � u stabilizes. �

Again we pick a correct guess (g, h) and get that the ordering built for the correct
guess is of type ω + ω∗, with A being the ω-part.

Lemma 2.9. Θ(D) 6wtt A.

Proof. Suppose that at stage s, a (not necessarily permanent) Ln is set up and an
is chosen. Then s = δs(n). We show how to compute Θ(D) � s from A �

⋃
m6n Lm,

where the Lm’s are their versions at stage s.
Let m 6 n be the greatest such that after stage s, Lm is never cancelled. Let t

be the last stage at which we go through step (2) of the main module (setting up
Lm) or an m-interrupt, and let r < t be the stage at which the corresponding step
(1) is started. Then r = δ(n) (as is set at stage r and is not altered later) is not
smaller than s; the proof is the same as in Lemma 2.6 for γ(an).

Let u = θt(r). Since there is no m-interrupt after stage t, we know that D � u =
Dt � u. So Θ(D) � s doesn’t change after stage t. �

3. Hypersimplicity and ranked sets in the wtt degrees

3.1. A hypersimple set which is not wtt-reducible to a ranked set. Here
we prove the following fact:

Proposition 3.1. There is a hypersimple set which is not wtt-reducible to any
ranked set.
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To prove this proposition, we would like to closely follow the construction (from
[8]) of a c.e. set which is not wtt-reducible to any ranked set. If the set we enumerate
is A, the diagonalisation requirements to meet are:

Re: If X ∈ Pe and ΦXe = A then Pe is uncountable.
Here (Pe,Φe) is a list of all pairs of Π0

1 classes and wtt-functionals (as usual, ϕe
denotes a computable bound on the use of Φe). The general plan from [8] is to
devote a column of ω to each requirement, and then diagonalise on finitely many
elements of the column against a finite clopen covering of Pe whose elements are
small enough (that is, the strings are longer than the use of Φe); a combinatorial
lemma says that if Pe is countable then such a covering must show up eventually.

In our case, we also want to make A hypersimple. So we want to meet the
following requirements:

Pe: If ge is total and 〈Dge(n)〉n<ω consists of pairwise disjoint sets, then there
is some n such that Dge(n) ⊂ A.

Here (ge) is an enumeration of all partial computable functions, and Dx is an
enumeration of all finite sets of natural numbers.

The hypersimplicity requirements do not interact well with the general plan; a
requirement Re cannot keep a whole column to itself and expect even lower priority
requirements to never enumerate elements of the column into A. It can, however,
using finitely much restraint, ensure that infinitely much of ω is available for diag-
onalisation. Of course the part of ω, namely ω \A, which is left for diagonalisation
is not computable; this makes the combinatorial lemma useless. Using incomplete-
ness, in particular Arslanov’s criterion and DNR functions, we salvage enough of
the lemma and push through the construction. Recall that a function g is DNR
(diagonally non-recursive) if g(e) 6= ϕe(e) for all e such that ϕe(e) is defined.

Relativised complexity. We start with the combinatorial lemma. For any function
g : ω → ω, let Qg be the collection of sets X ∈ 2ω such that for all n, C(X � g(n)) >
n. The class Qg is a Π0

1(g)-class.

Lemma 3.2. For all X ∈ Qg, X ⊕ g computes a DNR function.

Proof. This is implicit in [25, Proposition 6]; the function n 7→ X � g(n) differs
from ϕn(n) for almost all n because the plain complexity of ϕn(n) is at most C(n)
which is smaller than n. �

The following is analogous to [8, Theorem 4.7].

Lemma 3.3. If P is a countable Π0
1-class and g does not compute a DNR function,

then P ∩Qg = ∅.

Proof. The point is that no X ∈ Qg is computable in g, and so any Π0
1(g)-subclass

of Qg, such as P ∩Qg, must be either empty or perfect. �

Definition 3.4. Let A ⊆ ω be a set and let f : ω → ω be a function. Let P be a
Π0

1-class. An A, f-covering of P is a map x 7→ σx from some finite subset D of A
such that for all x ∈ D, |σx| > f(x), and such that

P ⊂
⋃
x∈D

[σx].

(Compare with [8, Definition 5.1].)
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Lemma 3.5. Suppose that f is a computable function and that A is an infinite set
which does not compute a DNR function. Then every countable Π0

1 class has an
A, f-covering.

Proof. We follow the proof of [8, Theorem 5.2]. We split A into disjoint sets 〈Ik〉
with each Ik of size 2k (and for simplicity, max Ik < min Ik+1); we let g(k) =
maxx∈Ik

f(x). Inductively, for each x ∈ A we pick a string σx of length g(k) (if
x ∈ Ik) of minimal plain complexity (which has not been chosen so far). Again,
if σ ∈ 2g(k) and C(σ) < k then σ = σx for some x ∈ Ik, so Qg is disjoint from⋃
x∈A[σx].
Now g 6T A so g does not compute a DNR function. So if P is countable then

P ∩ Qg = ∅ and so
⋃
x∈A[σx] covers P; so by compactness, some finite sub-cover

covers P and is an A, f -covering. �

Remark 3.6. We could have used the notion of h-complex sets, which is equivalent
to being in Qg (for some g of the same Turing degree as h) if h has K-trivial degree.
We could have proceeded with the proof of Proposition 3.1 because the construction
of a hypersimple set is consistent with making it K-trivial, that is, we could obey
the standard cost function. Instead, we use the blunter instruments of lowness (and
Arslanov’s completeness criterion).

Construction. We enumerate a set A and attempt to meet the requirements Re and
Pe above. In addition, we make A incomplete by ensuring that it is low; let Ne
be the eth lowness requirement, i.e. the requirement which tries to ensure that the
halting or not of ΦAe (e) can be decided given the (unrelativised) halting problem
∅′. The strategy for Ne is to build a computable approximation with final value 1 if
ΦAe (e) is defined, and 0 otherwise. Intuitively, Ne will be trying to preserve ΦAe (e)
if such a computation is discovered.

We impose finitary restraint between requirements using initialisation. Gener-
ally, whenever a requirement receives attention, we initialise all weaker require-
ments. We also ensure that A is co-infinite by imposing restraint when certain
markers move: at stage s, let 〈ak,s〉 be an increasing enumeration of ω \ As; if
ak,s 6= ak,s+1 then all requirements Qk (for Q ∈ {R,P,N}) are initialised. For any
requirement Qe, we let rs(Qe) be the last stage before s at which Qe was initialised;
this is the restraint imposed on Qe at stage s.

We now describe the instructions for all requirements. We describe when a
requirement requires attention, and what it does if it receives it. As usual, at every
stage, the strongest requirement which requires attention, receives it.

At stage s:
Ne: A requirement Ne requires attention if it has not received attention since

stage rs(Ne), and A′(e) ↓ [s]. When it receives attention, it does nothing
(except for initialising all weaker requirements).

Pe: A requirement Pe requires attention if there is no n ∈ dom ge,s such that
Dge(n) ⊂ As, and there is some n ∈ dom ge,s such that minDge(n) > rs(Pe).
If it receives attention, then one such n is chosen and the contents of Dge(n)

are enumerated into A.
Re: A requirement Re first searches for a suitable covering. So if, at stage
s, Re has no covering, then it searches for a covering 〈σx〉x∈D which is
currently suitable:
• The covering appears by stage s: for all x ∈ D, x < s and |σx| < s.
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• D is available for diagonalisation: D ∩As = ∅;
• D is unrestrained: minD > rs(Re).
• This is an ω \ As, ϕe-covering: D ⊂ domϕe,s and for all x ∈ D,
|σx| > ϕe(x).

• It currently covers Pe: Pe,s ⊆
⋃
x∈D[σx].

If such a covering appears, then Re requires attention. If it receives at-
tention, then it picks the covering to work with (and initialises weaker
requirements). Note that if later, Re is initialised, then the covering is no
longer permitted, it is abandoned, and Re needs to resume the search for a
new one.

If a covering 〈σx〉x∈D is already appointed, then Re requires attention if
there is some x ∈ D such that Φσx

e (x) ↓ [s] = 0 and x /∈ As. If it receives
attention, Re enumerates x into A.

Verification.

Lemma 3.7. The construction is fair: for every requirement Qe there is a stage
after which it is never initialised; it requires attention only finitely many times.
Also, A is co-infinite.

Proof. The usual proof, by induction on the priority ordering. Suppose that s∗ is
the last stage at which any requirement which is stronger than a requirement Qe
ever receives attention (and so no such requirements ask for attention after stage
s∗) and by s∗ all ai,s, i < e have reached a limit. Suppose that there is some stage
s > s∗ such that ae,s 6= ae,s+1. By induction hypothesis e is the least number with
this property, hence ae,s+1 < s. Then at stage s all of Pe, Re and Ne are initialised,
so we have rt(Qe′) > ae,s+1 for all t > s and all requirements Qe′ which are not
stronger than Qe. Thus ae,s+1 (and any smaller number) is never enumerated into
A after stage s, so after stage s, Qe is never initialised.

Now depending on the nature of Qe, it is easy to check that after it is last
initialised, Qe only receives attention finitely often; in the case of Ne and Pe, it is
at most once, and in the case of Re, it is once for picking a covering 〈σx〉x∈D and
then at most once for every x ∈ D. �

Lemma 3.8. A is low and hypersimple.

Proof. The requirement Pe is met: if ge is total and 〈Dge(n)〉 are pairwise disjoint
then there is some n such that minDge(n) is greater than the last stage at which
Pe is initialised; then at some stage, Pe acts.

The requirement Ne is met: if s∗ is the last stage at which Ne is initialised,
and there is some s > s∗ at which A′s(e) converges, then by initialisation, this
computation is preserved. �

Lemma 3.9. A is not wtt-reducible to any ranked set.

Proof. We show that every requirement Re is met. Suppose that Pe is countable
and that ϕe is total. Since A is low, it is incomplete (and has c.e. degree), so by
Arslanov’s completeness criterion (see, e.g. [34]), A computes no DNR function. Let
s∗ be the last stage at which Re is initialised, and let B = ω \ (A ∪ {n‖ n ≤ s∗}),
which is of course Turing equivalent to A.

So there is some B,ϕe-covering 〈σx〉x∈D of P. Such a covering will be discovered
by some stage s > s∗ (and will be permitted), and so we know that Re picks some
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covering at some stage s > s∗. Later, Re may diagonalise whenever it needs to, so
it is met. �

3.2. A ranked set which is not wtt-reducible to a hypersimple set. Here
we prove:

Proposition 3.10. There is a c.e. ranked set (indeed of rank 1) which is not wtt-
reducible to any hypersimple set.

We call the set we enumerate A. To make A ranked, we make it an initial segment
of a scattered, computable linear ordering; it will be the ω-part of an ordering of
type ω+(ω2)∗. This is the “shortest” possible example, because Lemma 1.3 implies
that if γ < ω2 and A is a c.e. and non-computable initial segment of a computable
ordering of type ω + γ∗ then A is computably isomorphic to a hypersimple set.

The strategy of making A not wtt-reducible to any hypersimple set is similar to
that from Section 2.1. Let us remind the reader of the requirements we need to
satisfy:

Re: If ΦWe
e = A then We is not hypersimple.

(Here 〈We,Φe〉 is a list of all pairs consisting of a c.e. set and a weak truth-table
functional with use function ϕe.) We combine the strategy from Section 2.1 with
a priority argument to get the present construction. Again, a requirement Re will
choose finite sets of followers Xe

0 , X
e
1 , X

e
2 , . . . such that |Xe

n+1| > uen, where for all
x ∈ Xe

n we have ϕe(x) < uen. The sets Xe
n are placed in the eth copy of ω∗ in the

linear ordering we are building, until we decide to attack with some Xe
n; we then

move the weaker requirements to build between the elements of Xe
n.

Construction. Each requirement Re defines an increasing sequence 〈uen〉 of natural
numbers and finite sets of followers 〈Xe

n〉. When Re is initialised, we abandon its
current sequences and start rebuilding from n = 0. A requirement Re can be in
waiting mode or in attack mode. (If Re is initialised, then it is returned to waiting
mode.)

At stage s, if Re is in waiting mode, then it requires attention if one of the
following holds:

(1) no Xe
n is currently defined.

(2) Xe
0 , . . . , X

e
n are currently defined and for all x ∈ Xe

n, ϕe(x)↓ .
(3) There is some n such that uen is defined and [uen−1, u

e
n) ⊂We.

If Re is in attack mode (with Xe
n), then it requires attention if ΦWe

e currently
agrees with A � maxXe

n + 1.
We let the strongest requirement which requires attention receive it. Suppose

that Re receives attention. If Re is in waiting mode, we act according to the cases
above.

(1) Let Xe
0 be some finite set of fresh numbers. In the linear ordering <∗ that

we are building, place the elements of Xe
0 immediately to the right of As.

(2) Let un = 1 + max{ϕe(x) : x ∈ Xe
n}. Let Xe

n+1 consist of un + 1 many
fresh numbers. In the linear ordering <∗ that we are building, place the
elements of Xe

n+1 immediately to the left of the elements of Xe
n.

(3) Move Re to attack mode with Xe
n.

If Re is attacking with Xe
n, we enumerate the <∗-leftmost element of Xe

n \ As
into A and initialise all weaker requirements. Maintain A as an initial segment of
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<∗ by enumerating into A any numbers which lie to the left of the number just
enumerated into A (these are the elements of Xe′

m for e′ > e).

Verification. It is clear that <∗ that we built is a computable linear ordering, since
we placed any newly chosen followers into <∗ immediately. It is also clear that
the order-type of A in <∗ is ω, because once an element is enumerated into A, no
new element is ever placed to its left. Further, it is also clear that the construction
is fair, in that every requirement is initialised only finitely many times; because
a requirement Re only initialises weaker requirements if it is in attack mode, and
then it acts only |Xe

n| many times (if it is not later initialised).

Lemma 3.11. The order-type of <∗ is ω + (ω2)∗.

Proof. Every requirement Re has three possible eventual outcomes (after it is last
initialised):

• Re defines only finitely many sets of followers Xe
n (because ϕe is not total),

and does not attack. In that case, Re adds only finitely many points to <∗

and does not change its order-type.
• Re defines infinitely many Xe

n but never attacks. In that case, it adds to
<∗ an interval of order-type ω∗. This happens, for example, whenever ϕe
is total but We is empty.
• Re eventually attacks with some Xe

n. In this case again Re adds only finitely
many points to <∗.

Whenever a requirement Re attacks and initialises weaker requirements, finitely
many points are added to A but the picture for stronger portions of <∗ doesn’t
change. �

Lemma 3.12. A is not wtt-reducible to any hypersimple set.

Proof. Suppose for contradiction that We is hypersimple and that ΦWe
e = A. Let s0

be the last stage at which Re is initialised. Since ϕe is total, Re can always define
new sets of followers Xe

n, and since We is hypersimple, we eventually discover some
n such that [un−1, un) ⊂ We; so eventually, at some stage s1 > s0, Re attacks
with some Xe

n. We are then later allowed to change A � maxXe
n + 1 more times

than the possible future configurations for We � un which leads to the desired
contradiction. �

4. Computable Lipschitz reductions and array computable degrees

4.1. Multiple permitting I: common upper bounds. Here we prove Proposi-
tion 1.8: If d is c.e. and array non-computable, then there are left-c.e. reals α0 and
α1 in d which do not have a common upper bound in the ibT-degrees of left-c.e. re-
als. This is obtained by adding coding and multiple permitting to the construction
of two left-c.e. reals with no common upper bound in the cl-degrees from [35, 5],
which we now rephrase for our purposes.

The main idea of the Yu-Ding construction is that if β is a left-c.e. real which
ibT-computes both α0 and α1 then alternatingly adding little bits to α0 and α1

(drip-feeding them) is sufficient to drive β to be too large. Furthermore, we can
computably reserve, for each requirement, an interval of its own, which is sufficient
for its purposes. Here are the details.

Suppose that Γ0 and Γ1 are ibT reductions and that β is a left-c.e. real. For all
such triples, we need to meet the requirement
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RΓ0,Γ1,β: Either Γβ0 6= α0 or Γβ1 6= α1.
We view left-c.e. reals as both infinite binary sequences and as the corresponding

elements in the Euclidean interval [0, 1] (via binary expansion). Addition means
addition in the real field R.

To meet requirement R = RΓ0,Γ1,β , we describe a family of modules, each indexed
by an interval of natural numbers. Let a 6 b < ω. A stage s is expansionary for the
[a, b)-module (for R) if for both i = 0, 1 we have Γβs

i ⊃ αi,s � b. The instructions
for the module are:

Repeat the following 2b−a − 1 times:
(1) At the next expansionary stage, add 2−b to α0.
(2) At the next expansionary stage, add 2−b to α1.

At the end, wait for the next expansionary stage and then return.
To meet the requirement R, we run the [k, k+ 2k)-module for R for some k. We

will shortly argue that this module cannot return, and so it must get stuck waiting
for some expansionary stage, and so R is met. It is easy to see that assuming that
we start with αi � [a, b) = 0b−a, the [a, b)-module for any requirement only makes
changes in αi � [a, b) (for both i = 0, 1) and so if for distinct requirements we run
modules on disjoint intervals, there is no interaction between the requirements and
so we can meet them all.

The verification relies on the following lemma. For this lemma, we also think of
a finite binary string as a natural number (via binary expansion6).

Lemma 4.1. Suppose that α0,t0 � [a, b) = α1,t0 � [a, b) = 0b−a. Suppose that at
stage t0, an [a, b)-module for R begins and returns at a stage t1. Then

βt1 � a− βt0 � a > b− a.

Proof. By induction on b−a. If b = a there is nothing to prove. Assume the lemma
holds for n, and let a < b < ω such that b− a = n+ 1. The key observation is that
the [a, b)-module consists of three parts:

• Running the [a+ 1, b)-module;
• Running one iteration of adding 2−b to α0 and then α1 (and waiting for

expansionary stages).
• Running the [a+ 1, b)-module again.

We also note that both times that we run the [a + 1, b)-module, we start with
αi � [a + 1, b) = 0n: at the first time, by assumption of the lemma, and by the
second, because when the first [a+ 1, b)-module halts we have αi � [a, b) = 01n for
both i; we then add 2−b which makes αi � [a, b) = 10n.

Let s0 be the stage at which the first [a + 1, b)-module returns, and s1 be the
stage at which the second one begins. By induction, therefore, we have

βs0 � a+ 1− βt0 � a+ 1 > n

and
βt1 � a+ 1− βs1 � a+ 1 > n.

Between s0 and s1 we have a change in α0(a), which forces a change in β � a + 1
by the next expansionary stage, and then a change in α1(n), which forces another

6with the understanding that a prefix of 0s may occur in the binary digits of a number; so the
correspondence is not 1-1.
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change in β � a + 1. Each of these changes adds at least 1 to β � a + 1. Thus in
total,

βt1 � a+ 1− βt0 � a+ 1 > 2(n+ 1)

which implies that
βt1 � a− βt0 � a > n+ 1

as required. �

This concludes the verification: the [k, k+ 2k)-module can never return because
that would force β � k > 2k which is impossible.

Now to add multiple permitting, we use the original definition of array com-
putability from [19]: A c.e. degree d is array non-computable iff for all (or some)
computable partitions 〈Fn〉 of ω of increasing size, there is a c.e. set D ∈ d such
that for all c.e. sets W there are infinitely many n such that W � Fn = D � Fn.
Later, we will calculate the desired size of Fn. Assuming this has been done, fix
some D ∈ d which satisfies the definition for this 〈Fn〉. To get sufficiently many
permissions, a requirement R = RΓ0,Γ1,β as above enumerates an auxiliary c.e. set
WR and ties its actions to permissions from Fn.

Again, a module for requirement R will operate on some interval [a, b); the notion
of an expansionary stage for a module for R on an interval [a, b) is defined as before.
For such a module, we will assign some n so that |Fn| > 2(2b−a − 1). Note that
we choose distinct n’s for each module for R. To request permission, the module
picks some x ∈ Fn which is not yet in WR and enumerates it into WR. Permission
is received when at a later stage, x enters D. The standard modus operandi for
multiple permitting is used: if some x ∈ Fn enters D before it is enumerated into
WR, then Fn can be made incorrect for permitting by withholding x from ever
entering WR, so we assume this never happens.

The new module follows the following instructions:
Repeat the following 2b−a − 1 times:
(1) Wait for an expansionary stage; then request permission. When

permission is received, add 2−b to α0.
(2) Wait for another expansionary stage; then request permission.

When permission is received, add 2−b to α1.
At the end, wait for the next expansionary stage and then return.

Note that the choice of n ensures that we can always request new permission, as
the module above requests at most 2(2b−a − 1) permissions and so we never get
Fn ⊆WR.

The overall construction is as expected. For every R we now pick an infinite set
of intervals of the form [k, k+ 2k) and run modules on each interval separately (all
of these modules together enumerate WR though). We ensure that these intervals
are pairwise disjoint and further that the intervals used by different requirements
are also pairwise disjoint. Also, to code in D, we fix a computable set C which is
disjoint from every interval used by any requirement. Let cn be the nth element of
C; we declare that for both i = 0, 1, αi(cn) = 1 iff n ∈ D. Since D is a c.e. set and
all modules only change αi on their intervals, we still see that both αi are left-c.e.
reals.

To conclude the construction, we need to specify the required size of Fn so that
we can assign, for every requirement R, almost every n as a permitting number
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for some module working for R. So after we specify the coding location set C and
assign the intervals for every requirement, we define |Fn| to be large enough so that
for every m 6 n, for each of the first m requirements, if [a, b) is the nth interval
assigned to R, then |Fn| > 2(2b−a − 1), so Fn can be assigned as a permitting set
for the [a, b)-module for R.

For the verification, we note that Lemma 4.1 holds for the new construction,
with the same proof. Thus, for any requirement R, no [k, k + 2k)-module for R
ever returns. The standard permitting argument now shows that it cannot be that
every module for some requirement R gets stuck waiting for permission; since for
almost all n, Fn is assigned as a permitting set for some module for R, there is some
such n such that WR � Fn = D � Fn and so the module for which Fn is assigned
is never stuck waiting for permission. As a result, it must get stuck waiting for an
expansionary stage, and so the requirement R is met.

It is clear by coding that D 6T α0, α1. The next lemma concludes the verifica-
tion.

Lemma 4.2. α0, α1 6T D.

Proof. Fix i < 2. Let x < ω. To decide αi(x) with oracle D, it depends in which
part of ω x lies. If x ∈ C then we can easily calculate the n such that x = cn
and then consult D for the value of αi(x). Otherwise, x belongs to some interval
[a, b) on which a module for some requirement R is working. This requirement is
assigned some permitting set Fn. Wait for a stage s at which Ds � Fn = D � Fn.
Then after stage s, αi � [a, b) is fixed and so αi,s(x) = αi(x). �

4.2. Failure of multiple permitting I: common upper bounds. Here we
prove Proposition 1.9: if α0 and α1 are left-c.e. reals which have array computable
(Turing) degrees, then α0 and α1 have a common upper bound in the cl-degrees.
The idea is that we can approximate α0 and α1 with the mind-changes bound grow-
ing as slowly as we like. This follows from the characterisation of array computabil-
ity as uniform total ω-c.e.-ness (from [19]): A c.e. degree d is array computable iff
for every computable order h, every f 6T d has an h-c.e. approximation. We can
then use this slow bound to build a left-c.e. real β which changes somewhere on its
first n digits whenever either α0 or α1 do so.

Again we think of these reals as elements of the interval [0, 1]. A request that
β � n change is ensured by adding a quantity of 2−n to β. If the number of requests
for a β � n change does not exceed a number g(n), and

(4.1)
∑
n>1

g(n)2−n < 1,

then we can construct a left-c.e. real that changes appropriately whenever we ask
it to. In our case, a request to change β � n is made whenever we believe a new
value for α0 � n or α1 � n, so if the number of initial segments of length n which
we believe for αi is at most g(n)/2 then the plan will work. So all we need to do is
to fix some computable order g which grows sufficiently slowly – say one bounded
by a polynomial – so that (4.1) holds, and approximate the functions n 7→ αi � n
in a g(n)/2-c.e. way, which is possible by assumption.

There is not much to add to give a formal construction. Fix a computable order
g that satisfies (4.1). For i = 0, 1, fix computable functions fi,s(n) = fi(s, n) such



WORKING WITH STRING REDUCIBILITIES ABOVE C.E. DEGREES 23

that for all n, fi,s(n) is a binary string of length n,

#{s : fi,s+1(n) 6= fi,s(n)} 6 g(n)/2,

(if g(n) < 2 then fi,s(n) has to be constant in s), and

lim
s
fi,s(n) = αi � n.

We define a left-c.e. real β: start with β0 = 0; and let

βs+1 = βs +
∑
{2−n : fi,s+1(n) 6= fi,s(n)}.

The fact that g satisfies (4.1) and the restriction on the number of mind-changes
for the fi imply that β = lims βs < 1, so β is well-defined.

Lemma 4.3. αi 6ibT β.

Proof. If s is a stage such that βs � n = β � n then we never, after stage s, add
a quantity of 2−n to β. This implies that for all t > s, fi,t(n) = fi,s(n). Thus
fi,t(n) = αi � n. �

Remark 4.4. We didn’t use the fact that the αi are left-c.e. reals; the proof works
for any sets which have array computable c.e. degrees because approximations such
as the fi are available for all sets in those degrees.

4.3. Multiple permitting II: random reals. In this section we prove Proposi-
tion 1.10: if d is c.e. and array non-computable, then there is some left-c.e. real
α ∈ d which is not ibT-reducible to any random left-c.e. real.

As before, we only add multiple permitting and coding to a construction of a
left-c.e. real which is not ibT-reducible to any random left-c.e. real. We give a
simpler construction than the one presented in [7], which we now describe.

We build a left-c.e. real α and try to meet the requirements
RΓ,β: If Γβ = α then β is not random.

Here Γ ranges over all ibT functionals and β ranges over all left-c.e. reals. To meet
R, we will run infinitely many modules, where the nth module enumerates a finite
set of strings Un of measure at most 2−n, such that if Γβ = α then β ∈ Un. Thus
together, all modules for R enumerate a Martin-Löf test which covers β, and so β
is not random.

In the previous construction, we used the leeway we had in the play between
two left-c.e. reals to drive a potential common upper bound to be too large. Here
we only have one real (α) to play with, and the role of the second real is taken by
the element of the Martin-Löf test being enumerated. This is much more limited
because the restriction on the size of the enumerated set of strings is much stricter
than that on the enumeration of the left-c.e. real.

The modules are built by recursion from smaller and smaller building blocks.
Consider, for example, the following module, which only changes α from the ath

digit, and makes β � a+ 1 > 2.7 As in the Yu-Ding and Barmpalias-Lewis papers,
assume (for now) that β is playing its optimal strategy, which is adding the minimal
amount which is necessary to match α’s movements.

7as before, we also think of finite binary strings as natural numbers via their binary expansion,
with the understanding that a prefix of 0s may occur in the binary digits of a number.
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(1)



0 1 0 0 · · · · · · 0 0 0
0 1 0 0 · · · · · · 0 0 0 (i)

0 1 1 0 · · · · · · 0 0 0
0 1 1 0 · · · · · · 0 0 0 (ii)

...
... ...

0 1 1 1 · · · · · · 1 1 0
0 1 1 1 · · · · · · 1 1 0 (mcmlxxiii)

0 1 1 1 · · · · · · 1 1 1
0 1 1 1 · · · · · · 1 1 1�

into test

(mcmlxxiv)

(2)
0 1 1 1 · · · · · · 1 1 1
1 0 0 0 · · · · · · 0 0 0

(3)
1 0 0 0 · · · · · · 0 0 0

1 0 0 0 0 · · · · · · 0 0 0

Figure 1. The 2-module

(1)

(i) Set α(a+ 1) = 1; wait for β(a+ 1) = 1.
(ii) Set α(a+ 2) = 1; wait for β(a+ 2) = 1.
...

(mcmlxxiv) Set α(a+ 1974) = 1; wait for β(a+ 1974) = 1.
(2) Enumerate 0a+111974 into the test element; wait for β = 0a10ω.
(3) Add 2−a−1975 to α, thus setting α = 0a10ω. Wait for β = 0a−110ω.

The cost, in terms of the measure of strings enumerated into the test element,
is 2−a−1975; as 1975 approaches infinity, we can make the cost as low as we like.
Figure 1 shows the state of α and β at the end of every stage of the 2-module. The
first digit to the right of the horizontal line is the ath. At the end of the first step,
we indicate the initial segment of β which is enumerated into the test element at
the second step of the module; and at the end we indicate the amount (2, which is
10 in binary) added to β � a+ 1.

Now this module can be iterated to make β � a+ 1 > 3:
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(1)



0 1 0 0 · · · · · · 0 0 0
1 0 0 0 · · · · · · 0 0 0 (i)

0 1 1 0 · · · · · · 0 0 0
1 1 0 0 · · · · · · 0 0 0 (ii)

...
... ...

0 1 1 1 · · · · · · 1 1 1
1 1 1 1 · · · · · · 1 1 0�

into test

(mcmlxxix)

(2)
0 1 1 1 · · · · · · 1 1 1

1 0 0 0 0 · · · · · · 0 0 0

(3)
1 0 0 0 · · · · · · 0 0 0

1 1 0 0 0 · · · · · · 0 0 0

Figure 2. The 3-module

(1)

(i)
Run the 2-module from point a+ 1,

to get α(a+ 1) = 1 and β(a) = 1.

(ii)
Run the 2-module from point a+ 2,

to get α(a+ 2) = 1 and β(a+ 1) = 1.
...

(mcmlxxx)
Run the 2-module from point a+ 1979,

to get α(a+ 1979) = 1 and β(a+ 1978) = 1.
(2) Enumerate 0a11979 into the test element; wait for β = 0a−110ω.
(3) Set α = 0a10ω. Wait for β = 0a−1110ω.

Again the cost can be kept down by making the number 1980 large, and then
keeping the cost of every recursive call of the 2-module low as well. Figure 2 follows
the 3-module.

For the 4-module (Figure 3), note the growing distance between the last point
of change in α and the end of the string of 1’s in β which goes into the test. This
distance, according to our calculations below, is bounded by n, the level of the
module.

We turn to formally describe the modules and investigate their properties, with-
out assuming anything about the behaviour of the opponent.

The module MR(a, n, ε) is indexed by: a, the bit of α where it begins acting; n,
the level of the module; and ε, the bound on the measure of the c.e. open set UM
which the module enumerates.
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(1)



0 1 0 0 0 0 · · · · · · 0 0 0
1 1 0 0 0 0 · · · · · · 0 0 0 (i)

0 1 1 0 0 0 · · · · · · 0 0 0
1 0 0 1 0 0 0 · · · · · · 0 0 0 (ii)

1 1 1 0 0 0 · · · · · · 0 0 0
1 0 1 0 1 0 0 · · · · · · 0 0 0 (iii)

0 1 1 1 1 0 · · · · · · 0 0 0
1 0 1 1 0 1 0 · · · · · · 0 0 0 (iv)

...
... ...

0 1 1 1 1 1 · · · · · · 1 1 1
1 0 1 1 1 1 1 · · · · · · 1 0 1�

into test

(mcmlvii)

(2)
0 1 1 1 1 1 · · · · · · 1 1 1

1 0 0 0 0 0 0 · · · · · · 0 0 0

(3)
1 0 0 0 0 0 · · · · · · 0 0 0

1 0 0 0 0 0 0 0 · · · · · · 0 0 0

Figure 3. The 4-module

By induction on stages, define the notion of an expansionary stage for require-
ment R = RΓ,β : 0 is expansionary, and if s is an expansionary stage for R, and x
is the largest number mentioned at stage s (or before), then the next expansionary
stage is the least stage t at which Γβt ⊇ αt � x.

The module MR(a, 1, ε) is:

Wait for an expansionary stage, then add 2−a−1 to α; wait for
another expansionary stage, and return with UM = ∅.

For n > 1, the module MR(a, n, ε) is:

Let b be the least b > a such that 2−b < ε/2; let ε′ = ε/2(b+n−a).
(1) For k = a + 1, a + 2, . . . , b + n, call MR(k, n − 1, ε′), and add

the returned set into UM .
(2) Add the current version of β � b into UM , and wait for a stage

at which β � b changes.
(3) Wait for an expansionary stage, then add 2−b−n−1 to α. Wait

for another expansionary stage, and return UM .
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We verify some properties of these modules, which will lead to the full construc-
tion.

Lemma 4.5. A module MR(a, n, ε) does not change α � a. Indeed, there is a
computable function c(a, n, ε) such that for all R, a, n and ε, if c = c(a, n, ε),
and a module M = MR(a, n, ε) starts at stage s with αs � [a, c) = 0c−a, then
throughout its run, M changes only α � [a, c), and if it returns at a stage t, then
αt � [a, c) = 10c−a−1.

Proof. By induction on n. The module MR(a, 1, ε) only changes α(a) from 0 to 1
so we can let c = a+1. For n > 2, we can calculate b (and ε′) as in the instructions
for the module, and let

c(a, n, ε) = max
{
b+ n, c(k, n− 1, ε′) : k ∈ [a+ 1, . . . , b+ n]

}
.

Let c = c(a, n, ε). Since c > c(k, n − 1, ε′) for all k ∈ [a + 1, . . . , b + n], if we
start with αs � [a, c) = 0c−a then by induction, after m iterations of part (1) of
the module MR(a, n, ε), we have α � [a, c) = 01m0c−a−m−1 and so at the end of
part (1) we get α � [a, c) = 01b+n−a0c−b−n−1. At part (2) of the module, α � [a, c)
doesn’t change, and at part (3), we set α � [a, c) = 10c−a−1 as is promised. �

Lemma 4.6. The measure of the set of strings UM enumerated by a module
MR(a, n, ε) is at most ε.

Proof. By a pretty easy induction on n. �

Again for the next lemma, we also think of finite binary strings as natural num-
bers.

Lemma 4.7. Suppose that a module MR(a, n, ε) starts running at stage s (with
αs � [a, c) = 0c−a, c as above), and returns at stage t. Then

βt � a+ 1− βs � a+ 1 > n.

Proof. This goes by induction on n. The base case n = 1 is easy: if MR(a, 1, ε)
starts running at stage s and αs(a) = 0, then the module changes αs(a) to 1, and
so by the next expansionary stage we get a change in β � a+ 1, which implies that
βt � a+ 1− βs � a+ 1 > 1.

Now assume that the lemma is proved for some n > 1. Assume that we start
running MR(a, n+1, ε) at stage sa with αs0 � [a, c) = 0c−a (where c = c(a, n+1, ε)).
Calculate the associated b and ε′. For k = a+ 1, . . . , b+ n+ 1, let sk be the stage
at which the recursive call of MR(k, n, ε′) returns. By induction, we have, for all
such k,

βsk
� k + 1− βsk−1 � k + 1 > n.

For any m < ω, let Qm = {z2−m : z ∈ Z} (see figure 4). For γ ∈ (−∞,∞), let
xγym be the greatest element of Qm which is not greater than γ. Then for γ ∈ 2ω,
again identified with an element of [0, 1], we have γ � m = 2mxγym. Also, for γ < δ,
let

dm(γ, δ) = 2m (xδym − xγym) = # (Qm ∩ (γ, δ]) .
The induction hypothesis thus says that

(4.2) dk+1

(
βsk−1 , βsk

)
> n.
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•
βsa

•
βsa + n2−(a+1)

•
β∗

•
βsa+1

•
βsa+2

•
βsa+3 · · ·

Figure 4. The longest lines represent elements of Qa+1, the next
longest lines elements of Qa+2, etc. In this example, n = 6.

Let β∗ = xβsaya+1 + n2−a−1. So β∗ ∈ Qa+1.
By induction on k = a, . . . , b+ n+ 1, we show that

(4.3) dk+1 (βsk
, β∗) 6 n.

For k = a this is immediate. If k > a and (4.3) is true for k− 1, then because β∗ is
in Qk, for every x ∈ (Qk+1 \Qk)∩(βsk−1 , β

∗] there is some y > x in Qk∩(βsk−1 , β
∗]

and so
dk+1

(
βsk−1 , β

∗) 6 2n.
Together with (4.2) we get (4.3) for k: see Figure 5.

•
βsk−1

•
βsk

•
β∗︸ ︷︷ ︸

>n
︸ ︷︷ ︸

6n

62n︷ ︸︸ ︷

Figure 5. The longer lines represent elements of Qk while the
shorter lines represent elements of Qk+1 \Qk. Again in this exam-
ple, n = 6.

At the end, we get da+b+2(βsb+n+1 , β
∗) 6 n, so β∗ − βsb+n+1 6 (n + 1)2−b−n−2.

By Cantor’s theorem, 2n > n+1, so β∗−βsb+n+1 6 2−b−2 (see Figure 6). It follows
that β∗ � b = βsb+n+1 � b.

•
βsb+n+1

•
β∗

Figure 6. Even though db+n+2(βsb+n+1 , β
∗) may be n (in this

example, n > 17), we see that β∗ is the only element of Qb+2

between βsb+n+1 and β∗ itself. Again the shortest lines represent
elements of Qb+n+2, the next shortest ones elements of Qb+n+1,
etc.
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So at the end of step (2) of the module MR(a, n + 1, ε), say at a stage t0, we
have βt0 > β∗, so da+1(βsa , βt0) > n, in other words, βt0 � a+ 1− βsa � a+ 1 > n.
At step (3) of the module, we change α(a) and by the next expansionary stage, we
have a change in β � a + 1, which adds at least 1 to β � a + 1. So if the module
returns at stage t1, we have

βt1 � a+ 1− βsa � a+ 1 > n+ 1

as required. �

The construction is now clear: we partition ω into disjoint intervals, all of the
form [a, c(a, 2a+1, 2−n)). A requirement R will be assigned infinitely many such
intervals and run MR(a, 2a+1, 2−n) on the nth interval assigned to R. By Lemma
4.7, none of these modules can return, because we cannot have β � a+ 1 > 2a+1. If
the hypothesis Γβ = α of R holds, then the module cannot ever be stuck waiting
for an expansionary stage, and so it must get stuck waiting for β to avoid the
set of intervals UM which it enumerates. In other words, if the nth module for R
enumerates Un, and Γβ = α, then β ∈ Un as required; so β is not random.

Finally, we can add multiple permitting to this construction to get the proof
of Proposition 1.10. This is done exactly as in section 4.1, so we describe the
proof swiftly. Let d be a c.e., array non-computable degree. Partition ω into
an infinite computable coding set C and pairwise disjoint intervals of the form
[a, c(a, 2a+1, 2−n)) (all disjoint from C). Assign to every requirement R infinitely
many intervals, where the nth interval assigned to n is of the form [a, c(a, 2a+1, 2−n)).
For every module MR(a, n, ε), calculate the total number p(a, n, ε) of stages at
which the module changes α. Now partition ω into a very strong array8 〈Fn〉,
where for every requirement, for almost every n, |Fn| > p(a, 2a+1, 2−n) (where the
nth interval for R is [a, c)). Let D ∈ d be a c.e. 〈Fn〉-a.n.c.9

Every requirement R enumerates an auxiliary c.e. set WR. To request permission,
a module M = MR(a, 2a+1, 2−n) enumerates some new x ∈ Fn into WR. Permission
is later received when x appears in D. The new instructions for the modules are as
for the original ones, except that every change in α requires permission:

The new module MR(a, 1, ε) is:
Wait for an expansionary stage, then request permission. When
permission is received, add 2−a−1 to α; wait for another expansion-
ary stage, and return with UM = ∅.

For n > 1, the new module MR(a, n, ε) is:
Let b be the least b > a such that 2−b < ε/2; let ε′ = ε/2(b+n−a).
(1) For k = a + 1, a + 2, . . . , b + n, call MR(k, n − 1, ε′), and add

the returned set into UM .
(2) Add the current version of β � b into UM , and wait for a stage

at which β � b changes.

8recall from [19] that a very strong array is a computable sequence (In) of disjoint finite sets
of natural numbers such that |In| < |In+1| for all n ∈ N.

9recall from [19] that a c.e. set D is 〈Fn〉-a.n.c. (〈Fn〉 array non-computable) if for each c.e.
set W there is some k such that W ∩ Fk = D ∩ Fk.
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(3) Wait for an expansionary stage, then request permission. When
permission is received, add 2−b−n−1 to α. Wait for another ex-
pansionary stage, and return UM .

For every R and n, we run MR(a, 2a+1, 2−n) on the nth interval [a, c) assigned
for R. We also let α(cn) = 1 iff n ∈ D, where cn is the nth element of C. That’s
the construction.

The Lemmas 4.5, 4.6, and 4.7 hold for the new modules as well, so there is
no interaction between the requirements. If Γβ = α, then the R-modules do not
get stuck waiting for expansionary stages. For such R and every n such that
WR � Fn = D � Fn, every request for permission by the nth module for R is
granted, so the nth module for R gets stuck waiting for β to leave Un (the open set
enumerated by R). Thus for infinitely many n we have β ∈ Un. By adjusting the
set (letting U ′m =

⋃
n>m Un) we build a Martin-Löf test which covers β, so β is not

random.

4.4. Failure of multiple permitting II: random reals. Here we show Propo-
sition 1.11: If α has array computable Turing degree, then there is some random
left-c.e. real β >ibT α.

Again the idea is to use an approximation to α which doesn’t change too much,
and build β by requesting that it change by at least 2−n whenever α � n changes.
On top of this, we need to ensure that β is random. To accomplish this task, let U
be the first element of the universal Martin-Löf test. If we ensure that β /∈ U then
we will have ensured that β is random.

We can think of U as a c.e. antichain of strings (the set of reals is the set of all
infinite extensions of strings in U). So

∑
σ∈U 2−|σ| 6 1/2. To ensure that β is not

in U , whenever we discover that there is some σ ∈ U which is an initial segment of
the current version of β, we request that this change by adding 2−|σ| to β. Thus
if the approximation to α is sufficiently tight so that the total amount of quantity
added to β on behalf of following α is less than half, this strategy will succeed.

So fix a computable order which satisfies∑
n>1

g(n)2−n < 1/2

(we allow the value 0 for g for some finitely many inputs; we assume that if g(n) = 0
then α � n is simply given to us as a parameter in the construction).

Get a computable approximation fs(n) for the function n 7→ α � n such that for
all n,

#{s : fs+1(n) 6= fs(n)} 6 g(n).
The left-c.e. real β is defined by recursion: we start with β0 = 0; and let

βs+1 = βs +
∑
{2−n : fs+1(n) 6= fs(n)}+

∑
{2−|σ| : σ ∈ Us & σ ⊂ βs}.

Lemma 4.8. β < 1 (and so is well-defined as an element of 2ω).

Proof. There are two kinds of contributions to β: following α and avoiding U . Now
g satisfies

∑
n g(n)2−n < 1/2 and for all n we have #{s : fs+1(n) 6= fs(n)} 6 g(n),

so the total added to β by the clause
∑
{2−n : fs+1(n) 6= fs(n)} is less than
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one half. Because β is a left-c.e. real, for every σ ∈ U , there is at most one
stage s at which we have σ ∈ Us and σ ⊂ βs, so the contribution of the clause∑
{2−|σ| : σ ∈ Us & σ ⊂ βs} is at most

∑
σ∈U 2−|σ| 6 1/2. �

Lemma 4.9. β /∈ U .

Proof. First note that β is not computable, because otherwise α would be com-
putable. So β is irrational, it has a unique infinite binary expansion and the digits
of (βs) converge pointwise to the digits of β. If β ∈ U then there is some σ ∈ U
such that σ ⊂ β. Then at a late enough stage s we have σ ∈ Us and σ ⊂ βs, so at
stage s we add 2−|σ| to β and force σ 6⊂ β for ever. �

Finally, the first clause in the definition of β shows that β >ibT α (see Lemma
4.3).

5. cl reductions outside the c.e. degrees

Here we prove Theorem 1.13: every Turing degree d which is not generalised
low2 computes a real which is not cl-reducible to a random real. As discussed in
the introduction, this is an application of non GL2-permitting to a construction of
Hirschfeldt’s. The basic Lemma of Hirschfeldt (which can be found in [16]) is:

Lemma 5.1. If h is a computable order and Γ is an ibT-functional then the set of
strings τ ∈ 2<ω such that for all η ∈ 2|τ |, if Γη = τ then K(η) < h(|η|), is dense.

Iterating Lemma 5.1 over all computable orders (since there is a 0′-listing of
those) and ibT-functionals, Hirschfeldt gets a real below 0′ which is not cl-reducible
to a complex real. An immediate consequence of Hirschfeldt’s lemma is that every
2-generic real is also not cl-reducible to a complex real. To get our result, we use
the technical Lemma 5.2 to show that non-GL2 degrees provide sufficient genericity
(compare with the fact that every non-GL2 degree bounds a 1-generic real).

Lemma 5.2. Suppose that 〈De〉 is a sequence of subsets of 2<ω, uniformly com-
putable from 0′. Also suppose that {e : De is dense} is Π0

2-definable. Then every
non-GL2 degree bounds a real which meets every set De which is dense.

To obtain Theorem 1.13 from Lemma 5.2, let 〈Γe〉 be an effective listing of all
ibT-functionals and let 〈hi〉 be an effective listing of all non-decreasing, partial
computable functions (whose domain is an initial segment of ω) such that for all i,
if hi is total then it is unbounded, and so an order (such a listing can be obtained
by not recognising following convergences until a larger value is obtained). For
e, i < ω, let De,i be the set of strings τ such that hi(m) ↓ for all m 6 |τ | and for
all η ∈ 2|τ |, if Γηe = τ then K(η) < hi(|τ |). These sets are uniformly computable in
0′. If hi is total then it is an order and so by Hirschfeldt’s 5.1, De,i is dense. If hi
is not total then De,i is finite. It follows that the set of pairs (e, i) such that De,i

is dense is Π0
2-definable. By Lemma 5.2, if d is non-GL2, there is some A 6T d

such that for all e and i such that hi is an order, there is some τ ⊂ A which is in
De,i. Then if B >ibT A and h is an order, then there is some τ ⊂ A such that
K(B � |τ |) < h(|τ |) and so B is not complex via h; so B is not complex.

We turn to prove Lemma 5.2. We define two fast-growing functions, both com-
putable in 0′:
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• Let De,s be a computable approximation for De (uniformly in e). Let me

be a modulus for De,s, uniformly computable from 0′. Let f0 be a function
such that for all n, for all e 6 n and all σ ∈ 26n, f0(n) > me(σ).
• The set of indices e such that De is dense is co-c.e. in 0′. Using an enu-

meration of the set of e’s such that De is not dense, we can, with oracle
0′, compute a function which takes a string σ to an extension in De, or
discovers that De is not dense. So computably from 0′ we can compute a
function f1 such that for all n, for all e 6 n and all σ ∈ 26n, if De is dense,
then f1(n) bounds the length of some extension of σ in De.

We may further assume that if De is not dense then it is finite; because as
mentioned, 0′ can enumerate those e’s such that De is not dense, and once e is
enumerated, 0′ can declare that no more strings are ever accepted as elements of
De. Indeed, we may assume that if De is not dense then there is a stage s such
that De,s is finite and for all t > s, De,t = De,s; because we can approximate these
e’s in a Σ0

2 fashion and refuse to accept changes to De,t until an “expansionary”
stage is discovered. [In detail: say that De is dense iff ∀x∃y C(e, x, y), where C is a
computable predicate. Inductively define e-expansionary stages to be 0, and if s is
e-expansionary, then the next e-expansionary stage is the next stage t such that for
all x < s there is some y < t such that C(e, x, y) holds. Redefine the approximation
to De by letting D̂e,t = De,s for the greatest e-expansionary stage s 6 t.]

The functions f0 and f1 defined above have a property which is somewhat
stronger than simply being ∆0

2: by possibly increasing their values, they each have
a computable approximation which is non-decreasing in s (this doesn’t change their
desired properties). It follows that the function f , defined recursively by letting
f(0) = 0 and f(s+ 1) = f0(f1(f(s)), also has such an approximation.

Lemma 5.3. There is some g 6T d such that for all n, g(n) 6 f(n) and for
infinitely many n, g(n) = f(n).

Proof. Let mf be a modulus for fs, the non-decreasing (in s) computable approx-
imation for f . Since d is non-GL2, there is some h 6T d which is not dominated
by mf . For all n, let g(n) = fh(n)(n). �

We use g to bound the searches in our imitation of the 0′ construction: we
recursively define an increasing sequence of strings σs, starting with σ0 = 〈〉, aiming
to define A =

⋃
s σs and try to meet the requirements

Re: There is some σ ⊂ A in De.
At stage s, we say that requirement Re is currently satisfied if there is some

τ ⊆ σs such that τ ∈ De,g(s+1). A requirement Re requires attention at stage s if it
is not currently satisfied and there is some τ ⊃ σs of length at most g(s+ 1) which
is in De,g(s+1). At stage s we act for the strongest requirement which wishes to
act. To act for Re, we choose the shortest extension τ of σs which is in De,g(s+1)

and set σs+1 = τ . If no requirement wishes to act, we set σs+1 = σs. That’s the
construction.

Lemma 5.4. For all s, |σs| 6 g(s), and so for all s, |σs| 6 f(s).

A stage s is called true if f(s+ 1) = g(s+ 1).

Lemma 5.5. Suppose that a requirement Re feels satisfied at a true stage s > e.
Then it is met (and feels satisfied at every stage t > s).
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Proof. At stage s we identify some τ ⊆ σs which is in De,g(s+1) = De,f(s+1). Since
f(s+ 1) > f0(f(s)) and f(s) > |τ |, e, we have f(s+ 1) > me(τ) and so τ ∈ De. For
every t > s, since we may assume that g(t + 1) > g(s + 1), we have τ ∈ De,g(t+1)

and so Re feels satisfied at stage t. �

Lemma 5.6. Suppose that De is dense and that requirement Re acts at a true stage
s > e. Then Re is met and feels satisfied at every stage t > s.

Proof. At stage s we define σs+1 = τ where τ is the shortest extension of σs in
De,g(s+1) = De,f(s+1). Since De is dense and |σs| 6 f(s), we know that there
is an extension τ ′ of σs in De of length at most f1(f(s)), and that f(s + 1) =
f0(f1(f(s)) > me(τ ′), so τ ′ ∈ De,f(s+1). So |τ | 6 |τ ′| 6 f1(f(s)) and so f(s+ 1) >
me(τ). So τ ∈ De and for all t > s we have τ ∈ De,g(t+1) (again we assume that
g(t+ 1) > g(s+ 1) so Re feels satisfied at stage t. �

Lemma 5.7. If De is dense, s > e is a true stage, and Re does not feel satisfied
at stage s, then Re requires attention at stage s.

Proof. Since De is dense, there is some extension of σs in De. In fact, since |σs| 6
f(s), there is such an extension τ of length at most f1(f(s)), and so g(s + 1) =
f(s + 1) = f0(f1(f(s)) > me(τ) so τ ∈ De,g(s+1) so Re requires attention at stage
s. �

Lemma 5.8. If De is not dense then there is a stage after which Re never requires
attention.

Proof. If n is the greatest length of a string which appears in any De,s then after
stage n, Re never finds an extension of σn in De,g(n+1) and so does not require
attention. �

Overall we see that every requirement eventually stops requiring attention and
so the finite-injury priority argument works and for all e such that De is dense, Re
is met. This concludes the proof of Lemma 5.2.

Remark 5.9. Lemma 5.2 holds if the set of dense sets is only Σ0
3-definable. This

can be seen by a modification of the proof, but also directly using the lemma for Π0
2

and changing the enumeration of the sets: change 〈De〉 to 〈De,t〉 where De,t = De

if t is a Σ0
3-witness for the fact that De is dense, and otherwise make De,t finite.

Remark 5.10. Another way to show lemma 5.2 was pointed out by the anonymous
referee. Let De be as in lemma 5.2 and let h(e, n) be a computable 0-1 function
such that De is dense iff f(e, n) = 1 for infinitely many n. The sets

Ce = De ∪ {σ | |σ| > n and f(e,m) = 0 for all m > n}

are uniformly ∅′-computable and dense. Also, if De is dense then Ce = De, so
meeting every Ce is the same as meeting all dense De.

Thus lemma 5.2 reduces to showing that for every uniformly ∅′-computable se-
quence of dense sets of binary strings, every non-GL2 degree bounds a real meeting
every set in the sequence. This is a consequence of a combination of results in
computable model theory and genericity arguments with GL2 from [20, 9].
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6. Proof of a theorem of Frank Stephan’s

We give a proof of Theorem 1.12 (due to Frank Stephan) that the left-c.e. random
reals inhabit more than one cl-degree. First we give some immunity properties of
random sequences.

Definition 6.1 (Fenner and Schaefer [22]). A set A is called k-immune (k ∈ N) if
there is no computable sequence 〈Fn〉 of pairwise disjoint sets such that for all n,
|Fn| 6 k and Fn ∩A 6= ∅.

Note that every set is 0-immune and that the 1-immune sets are exactly the
immune sets; also, hyperimmune sets are k-immune for all k < ω. Fenner and
Schaefer [22] showed that the classes of k-immune sets form a proper hierarchy.

Theorem 6.2 (Folklore).
(1) For all k < ω, every random set is k-immune (indeed, every Kurtz-random10

set is k-immune).
(2) No random set is hyperimmune.

Proof. For (1) we need the following

Lemma 6.3. Suppose that |B| = m and B ⊆ P(B) is a collection of n pairwise
disjoint subsets of B, each of size k. Then there are exactly 2m−kn(2k−1)n subsets
of B which have non-empty intersection with every set in B.

Proof. Each B′ ∈ B has 2k − 1 non-empty subsets; so there are (2k − 1)n many
subsets of

⋃
B with non-empty intersection with every B′ ∈ B. The size of B−

⋃
B

is m−kn; each subset of B of the desired property is determined by its intersection
with

⋃
B and with B −

⋃
B, which can be chosen independently. �

For (1), let 〈Fn〉 be a computable collection of pairwise disjoint sets, each of size
k, and let Q be the class of sets which have non-empty intersection with every Fn.
Then Q is Π0

1. By weeding, we may assume that for all n, maxFn < minFn+1. By
Lemma 6.3, for every n, The number of subsets of 1+maxFn which intersect every
Fm (for m = 1, . . . , n) is 21+maxFn−kn(2k − 1)n and so the measure of the class Qn
of infinite sets which intersect every Fm for m = 1, . . . , n is

µ (Qn) =
21+maxFn−kn(2k − 1)n

21+maxFn
=
(

1− 1
2k

)n
which approaches 0 as 1 − 2−k < 1. Since Q =

⋂
Qn, Q is a null class. So if A is

Kurtz-random then A /∈ Q so A doesn’t fail to be k-immune because of 〈Fn〉.

For (2), let 〈Fn〉 be a computable sequence of pairwise disjoint sets such that
|Fn| = 2n. This time let Qn be the class of sets A such that Fn ∩ A is empty. So
µ(Qn) = 2−n. So if we let Un =

⋃
m>nQn then 〈Un〉 is a Martin-Löf test, and⋂

n Un is the collection of sets A such that there are infinitely many n such that
Fn ∩A is empty, and so contains every hyperimmune set. �

Proof of Theorem 1.12. Let α be a random left-c.e. real. Note that ω \α (where α
is viewed as a subset of ω) is also random. By Theorem 6.2(2), there is a strictly

10recall from e.g. [32] that a set is Kurtz-random iff it is not a member of a null Π0
1 class. This

is a very weak notion of randomness.
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increasing computable sequence 〈tn〉 such that for every n, α � (tn, tn+1] contains
a 0 digit.

Let β(x) = 1 iff x = tn for some n > 0 (so β =
∑
n>0 2−tn−1). For every n > 0,

(6.1) α � (tn + 1) + β � (tn + 1) = (α+ β) � (tn + 1);

this is because for m < n, α � (tm, tm+1] is not a string of 1’s and so adding 2−tm−1

doesn’t carry before the tmth digit. It follows that

K((α+ β) � tn + 1) =+ K(α � tn + 1) =+ tn

(here =+ denotes equality modulo a constant) and so α+β is random (and left-c.e.).
We claim that α does not cl-compute α+ β. For otherwise there would be some

constant c < ω and a partial computable function ψ such that for all n,

ψ(α � (n+ c)) = (α+ β)(n).

By Theorem 6.2(1), there are infinitely many n such that α � [tn − c, tn) = 1c.
For each such n, by Equation 6.1, we have

ψ(α � tn) = (α+ β)(tn − c) = 1− α(tn).

But this gives rise to a c.e. martingale11 which succeeds on α: let M(σi) split M(σ)
evenly between both outcomes, except when |σ| = tn for some n > 0 and σ ends
with a string of c 1’s; then wait for ψ(σ) to converge, in which case all the capital
is spent guessing the next bit is 1−ψ(σ). This, of course, contradicts the fact that
α is random. �
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[23] Peter Gács, Every sequence is reducible to a random one, Information and Control 70 (1986),
186–192.

[24] Shamil Ishmukhametov, Weak recursive degrees and a problem of Spector, in Recursion

Theory and Complexity (M. Arslanov and S. Lempp, eds.), de Gruyter, Berlin, 1999, 81–88
[25] Bjørn Kjos-Hanssen, Wolfgang Merkle and Frank Stephan, Kolmogorov complexity and the

recursion theorem, in STACS 2006: Twenty-Third Annual Symposium on Theoretical Aspects

of Computer Science, Marseille, France, February 23-25, 2006. Proceedings. Springer LNCS
3884 149–161, 2006.

[26] Antonin Kučera, Measure, Π0
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