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Abstract. Recent investigations in algorithmic randomness have lead to the
discovery and analysis of the fundamental class K of reals called the K-trivial
reals, defined as those whose initial segment complexity is identical with that
of the sequence of all 1’s. There remain many important open questions con-
cerning this class, such as whether there is a combinatorial characterization
of the class and whether it coincides with possibly smaller subclasses, such as
the class of reals which are not sufficiently powerful as oracles to cup a Turing
incomplete Martin-Löf random real to the halting problem. Hidden here is the
question of whether there exist proper natural subclasses of K. We show that
the combinatorial class of computably enumerable, strongly jump-traceable re-
als, defined via the jump operator by Figueira, Nies and Stephan [10], is such
a class, and show that like K, it is an ideal in the computably enumerable
degrees. This is the first example of a class of reals defined by a “cost func-
tion” construction which forms a proper subclass of K. Further, we show that
every c.e., strongly jump-traceable set is not Martin-Löf cuppable, thus giving
a combinatorial property which implies non ML-cuppability.

1. Introduction

The relationship between randomness and computational complexity has been
the aim of a longstanding programme of research. Fundamental issues, for example,
are the connections between the degree of algorithmic randomness of a real and its
power as an oracle for computations; and the investigation of relative randomness
using computability-theoretic tools. For example, random reals ought to have initial
segments which are hard to compute/compress. We can ask: are they useful as
oracles? The answer has been emerging in recent years. Independently Kučera
and Gács proved that every real is computable from a random one, but work of
Stephan, Miller and others has demonstrated that such computationally clever reals
are really atypical and with probability 1, a random real has informations arranged
in a computationally useless manner. (We refer the reader to the paper Downey,
Hirschfeldt, Nies and Terwijn [8] for a general review of this program and for more
details of the above results.)

This paper is concerned with reals whose initial segment complexity is very
simple indeed. We would expect that such reals should have very low computational
power. How low? In the present paper we will attempt to clarify the relationship
between reals with low computational power as measured by the halting problem
relative to the real, and reals with low initial segment complexity as measured by
Kolmogorov complexity.

The first author’s research was supported by the National Science Foundation under grant
no. DMS 02-45167. The second and third authors were supported by the Marsden Fund of New
Zealand, the third by a postdoctoral fellowship.
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The first result here is the information theoretical characterization of computabil-
ity due to Loveland. Loveland [15] proved that a real α is computable if and only
if the sequence C(α ↾ n|n) is bounded (here C denotes plain Kolmogorov complex-
ity.) Thus we can characterize the complexity notion of being computable using the
information theoretical notion of having initial segments of low relative algorithmic
information. Loveland’s result was later extended by Chaitin [2], who proved that
a real α is computable iff the sequence C(α ↾ n) − C(n) is bounded.

After the introduction of prefix-free Kolmogorov complexity K by Levin [14] and
then Schnorr [27] and Chaitin [2], to capture the intensional meaning of informa-
tion content, people wondered if boundedness of the sequence K(α ↾ n) − K(n)
implied that α was computable. Chaitin proved that any such real must be ∆0

2, i.e.
computable from the halting problem. Solovay [30] gave us a surprise: there exist
non-computable reals α with this property. Reals α such that K(α ↾ n) − K(n) is
bounded have very surprising properties and are now called K-trivial reals (Downey,
Hirschfeldt, Nies and Stephan [7]).

The class of K-trivial reals has turned out to be a remarkable class. As is
now well-known they can easily be constructed by the prototypical “cost function”
construction (which is simpler than Solovay’s original construction.) To wit, define
the cost, or weight of x at stage s as

c(x, s) =
∑

x<n<s

2−Ks(n).

Now define a computably enumerable set A = ∪sAs by putting xցAs+1 − As if
We,s ∩ As = ∅, x > 2e, x ∈ We,s and c(x, s) < 2−(e+1). (That is, we will put x
into A at s if it diagonalizes, and does not cost us too much.) Then this set A is a
simple set which is K-trivial ([7]).

It is known that for each c there are only O(2c) many reals with constant of
triviality c (Zambella [33]).1 In [7], Downey, Hirschfeldt, Nies and Stephan intro-
duced the construction above and showed the K-trivial reals are solutions to Post’s
problem in that they are Turing incomplete.

After the [7] construction appeared, it was noted that there was a distinct simi-
larity to the construction of Martin-Löf low reals first found in Kučera and Terwijn
[13]. Here we say that a real A is Martin-Löf low if the collection of A-random reals
were exactly the 1-random reals. That is, A is so weak as an oracle that no random
reals are destroyed by A. Such reals were also constructed by a cost function con-
struction identical to the above, except that the cost this time was related to the
possible effect of enumerating x into As+1 = As on µ(UA[s]), the universal Martin-
Löf test relative to A at stage s. There was also a similar construction of a real
A low for K, meaning that for all σ, KA(σ) = K(σ) + O(1), given in unpublished
work of An. A. Muchnik. Here A is so feeble as an oracle that even Kolmogorov
complexity itself remains unchanged relative to A. The general feature of all of
these constructions was the existence of a computably enumerable “cost function”
where for each x, c(x, s + 1) > c(x, s) and limx lims c(x, s) → 0.

Finally, Nies [20] and Hirschfeldt and Nies (see [7]) showed that “all is one” by
proving that A is K-trivial iff A is Martin-Löf low iff A is low for K. Subsequently,
it was realized that the class K of K-trivial reals also coincides with the class of
bases of Martin-Löf randomness: reals A such that there is an A-random real B

1This implies Chaitin’s result that they are all ∆0
2 (Chaitin [2]).
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with A 6T B (Hirschfeldt, Nies and Stephan [11]). All of these results together
imply that K has a very nice structure: it is a Σ0

3 ideal, contained in the low degrees,
bounded by a low2 degree, and generated by its c.e. members.

After these results, there arose a number of other cost function constructions
from the literature which seemed to be different from the K-trivial one. They
include the construction of a real A which is not cuppable >T ∅′ by any incomplete
Martin-Löf random real (Nies [22]) and the construction of a real A which was
low for weakly 2-random tests by Downey, Nies, Weber and Yu [9]2. In each of
these constructions it seemed that the the cost function went to zero much more
slowly than cost functions associated with K. It remains an open question whether
the Martin-Löf cuppable reals are exactly the K-trivials. Perhaps surprisingly, it
has been shown that the reals low for weak 2-randomness (and weak 2-randomness
tests) coincide with K ([9] and [23, 16]). Again all is one!

Related to all of this is the fundamental notion of traceability. We say that a
function h : ω → ω\{0} is an order (Schnorr [28]) if h is computable, nondecreasing
and lims h(s) = ∞. We say that a function f : ω → ω is computably traceable with
respect to the order h if there is a computable sequence 〈Fx〉x<ω of finite sets
such that for all x, |Fx| 6 h(x) and f(x) ∈ Fx. We will say that a degree a is
computably traceable iff there is some order h such that every f of degree a or less
can be computably traced with respect to h. Finally, we will say that a is strongly
computably traceable iff it is computably traceable with respect to any order. Here
the idea is that the real is computationally feeble, in the sense that we have very
good approximations to computations using A as an oracle. Such reals are highly
non-random.

Terwijn and Zambella [32] showed that a real A is low for Schnorr randomness
tests iff deg(A) is computably traceable iff deg(A) is strongly computably traceable.
This was extended to the randomness notions by Kjos-Hanssen, Stephan, Nies and
others [12, 20], and finally to the low-for-computable-machines by Downey, Green-
berg, Mihailovich and Nies [5]. Thus lowness related to Schnorr randomness has a
“combinatorial” characterization (meaning one that does not mention Kolmogorov
complexity).

It is a fundamental question (see e.g. Miller and Nies [17]) whether there is a
similar combinatorial characterization of K-triviality.

Zambella (see Terwijn [31]) showed that if A is K-trivial then deg(A) is c.e.
traceable. Here we define a (c.e.) trace to be a uniformly c.e. sequence 〈Tx〉 of
finite sets;3 a trace traces a function f if for all x, f(x) ∈ Tx; and the tracing obeys
an order h if for all x, |Tx| 6 h(x). Finally, a degree a is c.e. traceable if there is
an order h such that every f 6T a can be traced by some trace obeying h. Thus,
Zambella showed that K-triviality also implies at least some combinatorial property.
Nies [21, 20] showed that K-triviality also implies a stronger combinatorial property.
He showed that all K-trivial reals were jump-traceable by computably enumerable
sets. Here we will denote that jump {e}X(e) by JX(e),4 and say that A is jump-
traceable if there is some order h and a c.e. trace 〈Tx〉 which respects (obeys) h
and which traces JA, where the requirement for tracing the partial function is that
JA(e) ∈ Te if e ∈ domJA.

2Recall that B is weakly 2-random means that B is a member of every Σ0
2 class of measure 1.

3That is, there is a computable function g such that for all x, Tx = Wg(x).
4In other words, for all X, JX is the universal function which is partial computable in X.
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This result motivated Figueira, Nies and Stephan [21, 10] to study the notions
of jump-traceability, and the related one of strong jump-traceability. We say that
A is strongly jump-traceable iff JA can be traced obeying any order. Nies showed
([21]) that jump-traceability coincides on the computably enumerable sets with the
notion of superlowness (that is, A′ ≡tt ∅′) introduced by Bickford and Mills [1]
and Mohrherr [19], but the notions differed outside of the computably enumerable
sets. In [10], Nies, Figueira and Stephan constructed a non-computable, strongly
jump-traceable, computably enumerable real, using a construction resembling one
using a cost function. They then showed that jump-traceability and strong jump-
traceability differ on the computably enumerable reals.

All of this, and the quest for a combinatorial characterization of the K lead Miller
and Nies [17] to ask if K was exactly the class of strongly jump traceable reals. At
the time, they did suggest that this is unlikely.

In this paper, we will clarify the situation for computably enumerable reals.

Theorem 1.1. Every c.e. strongly jump-traceable set is K-trivial.

Thus for the first time, we have an example of a combinatorial property (by
which we mean here a property whose definition does not involve randomness or
Kolmogorov complexity) that at least implies K-triviality. The proof of this result
relies on a new combinatorial technique using a kind of amplification of the trace-
ability along the lines of the decanter or golden run method. It is beyond known
technology; we believe that it could have other applications within computability
theory and randomness.

On the other hand we also prove the following.

Theorem 1.2. There is a K-trivial c.e. set that is not strongly jump-traceable.
Indeed it is not jump traceable with a bound of size roughly log log n.

This is the first example of a class defined by cost functions which we know
does not coincide with K. Again the proof technique is novel, since it is the first
time a cost function has been used which still allows for the defeat of one involving
Kolmogorov complexity.

This work leads to certain speculations. We know that if A is K-trivial, then by
[10], A is jump traceable with respect to an order roughly h(n) = n logn. On the
other hand, the proof of Theorem 1.1 shows that if a c.e. set A is jump-traceable
with respect to about

√
log n then it is K-trivial. It seems reasonable to suggest

that there might well be a combinatorial characterization of the c.e. K-trivial reals
as those which are jump-traceable with respect to an order (or orders) at some
critical growth value between these two extremes. It may well be that a finer
analysis of the two theorems here, and of the work in [10], might allow for such a
characterization. Thus our results suggest the following problem: Is A K-trivial iff
for all orders h with

∑

n∈N
1/h(n) < ∞, A is jump traceable with order h?

The reader might wonder if the class of strongly jump traceable reals coincides
with the class of Martin-Löf non-cuppable reals.

Theorem 1.3. No c.e. strongly jump-traceable set cups over 0′ with a Martin-Löf
random set.

Thus also for the first time, we have a combinatorial property which implies
non-ML cuppability.
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As mentioned above, early on, Nies [20] proved that the K-trivial reals form
an ideal in the Turing degrees. For our last result we will demonstrate that the
computably enumerable strongly jump traceable degrees also form a proper sub-
ideal of the K-trivial reals.

Theorem 1.4. If A and B are strongly jump traceable and c.e., then so is A⊕B.

Again, we prove something stronger. We prove that if A and B are c.e. and
traceble via sufficiently slowly growing functions hA and hB, then A⊕B is traceable
via a trace computably related to hA and hB. Aside from its intrinsic interest, this
should be compared with the result of Bickford and Mills [1] that there are two
superlow c.e. sets X and Y with X ⊕ Y Turing complete.

The method of proof for this last result is again novel, and uses this kind of
decanter method of “infinite depth.”

In a subsequent paper [4], the last two authors investigate the case where the
sets are not computably enumerable. Here the situation is less clear. Using a
very difficult argument, Downey and Greenberg showed that if A is any strongly
jump traceable set then A is ∆0

2, with arbitrarily slow enumerations (it seems that
such sets should be K-trivial, but this is still under investigation.) Again this
raises a question regarding the rate of growth. Nies showed [21] that for some
level (h(n) ∼ 22n

), there are uncountably many sets which are jump-traceable with
respect to h. For h(n) about log log n, however, every set which is jump-traceable
with respect to h is ∆0

2 and hence there are only countably many such sets.

1.1. Notation and basic facts and definitions. This paper is concerned with
prefix-free Kolmogorov complexity, which we will denote by K; U is the universal
prefix-free machine, and UX is the universal oracle prefix-free machine. We will
refer to “reals” which will be identified with Cantor space 2ω. The initial segment
of length n of a real A will be denoted by A ↾ n. For every X ∈ 26ω we let
ΩX = µ

(
domUX

)
. Notation will be standard in the sense that we will follow [8,

6, 17, 20]. Notation for the computability used follows Soare [29] unless specifically
noted otherwise.

Recall again that an order function is a computable, non-decreasing and un-
bounded function h : ω → ω \ {0}.

Let 〈Ψc〉c<ω be an enumeration of all Turing functionals which compute partial
functions from an oracle. There is a uniformly computable sequence 〈αc〉 of order
functions such that for all X ∈ 2ω, each αc reduces ΨX

c to JX , that is,

ΨX
c = JX ◦ αc.

We may assume that 〈αc(0)〉c<ω is strictly increasing.

Lemma 1.5. Let 〈hc〉 be a uniformly computable sequence of order functions, such
that 〈hc(0)〉c<ω is non-decreasing and unbounded. Then there is an order function

h̃ such that for all x and c,

h̃(αc(x)) 6 hc(x).

Proof. For all y and c, let l(y, c) be the least x such that αc(x) > y; and let

h̃(y) = minc<ω hc(l(c, y)). This is computable because for large enough c we have
l(c, y) = 0 and 〈hc(0)〉 is non-decreasing. �
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Again recall that a trace is a uniformly c.e. array of finite sets. A trace 〈Tx〉x<ω

traces a partial function p if for all x ∈ dom p, p(x) ∈ Tx. A trace obeys an order
h if for all x < ω, |Tx| 6 h(x). A set A ⊂ ω is strongly jump-traceable if for every
order h, there is a trace for JA which obeys h.

Lemma 1.6. A set A is strongly jump-traceable iff for every function p which is
partial computable in A and for every order h, there is a trace for p which obeys h.

This Lemma (which is implicit in [10]) shows that the collection of strongly
jump-traceable sets is downwards closed under Turing reduction (and in particular
is degree invariant.)

Proof. Suppose that p = ΨA
c , and let h be an order. By a simplified Lemma 1.5,

there is an order h̃ such that for all x, (h̃ ◦ αc)(x) 6 h(x). From a trace for JA

which obeys h̃ we can get a trace for p which obeys h. �

2. A K-trivial set which is not strongly jump-traceable

The construction of a K-trivial set which is not strongly jump-traceable came
out of a direct construction of a K-trivial set which is not n-c.e. for any n. As
mentioned in the introduction, the collection of K-trivial sets is closed downwards
under Turing reduction, and so it must contain sets that are not n-c.e. for any n.
But how would a direct construction of such a set go?

By [20] we know that any construction will essentially be a cost-function con-
struction, such as the by now classic construction of a promptly simple, c.e. K-trivial
set mentioned in the introduction. That construction can be redescribed as follows.
The eth requirement Re wishes to show that the set A we construct is not co-c.e.
via the eth co-c.e. approximation, namely W̄e. The requirement is given the sum of
2−e which is the capital it is allowed to spend. It appoints a follower x0, and waits
for its realisation, that is, for x0 /∈ W̄e. If, upon realisation, the cost of changing
A(x0) is greater than 2−e, the follower is abandoned, a new one x1 is picked, and
the process repeats itself.

Suppose now that we want to ensure that the constructed set A is not 2-c.e. The
eth requirement wants to ensure that A is not 2-c.e. via the eth 2-c.e. approximation
Xe = We0

\ We1
. Again the requirement is provided with 2−e much capital to

spend. It may appoint a follower x0 and wait for first realisation, namely x enters
Xe. Provided the price is not too high, the requirement would then extract x0 from
A (we start with A = ω) and wait for second realisation, i.e. x leaving Xe. It would
then wish to re-enumerate x0 into A and thus confirm a win on the requirement.
The point here is that the follower needs two “permissions” from the cost-function,
and the danger is that we spend some capital on the first action (the extraction),
but the second action would be too expensive and the follower would have to be
abandoned. The amount we spent on extraction is non-refundable, though, and so
this strategy would soon run into trouble.

A better strategy is the following. From the initial sum 2−e, set aside a part (say
2−(e+1)) which is kept for the second re-enumeration of a follower and will not be
used otherwise (for extraction). Of the remaining 2−(e+1), we apportion some (say
2−(e+2)) for the sake of extraction of the first follower x0. If the cost of extraction
of x0 is higher, then we abandon x0 (at no cost to us) and allot the same amount
2−(e+2) for the extraction of the next follower x1. Suppose, for example, that we did
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indeed extract x1, but when it is realised again and we are ready to re-enumerate it
into A, its cost has risen beyond the sum 2−(e+1) which we set aside for this task.
We have to abandon x1, appoint a new follower x2, and start from the beginning.
We did lose an uncompensated 2−(e+2); so we reduce the sum that we may spend
on extracting x2 to 2−(e+3), and keep going.

Between extractions, the sum we may spend on the next extraction is kept con-
stant, and so the usual argument shows that some future follower will get extracted
(all this assuming that all followers are realised, of course.) On top of this, abandon-
ing followers upon re-enumeration may happen only finitely many times, because
each such abandoned follower x carries a cost of 2−(e+1) which comes from descrip-
tions of numbers below the stage at which that follower is abandoned. The next
follower x′ is appointed only after the previous one is cancelled, and is chosen to be
large; the cost associated with x will not be counted toward changing A(x′), and so
if x′ is abandoned upon re-enumeration, this is due to a completely different part
of the universal machine which has weight of at least 2−(e+1) (see figure 1). We can
thus see that the process cannot happen more than 2e+1 many times.

N

2−K(n)

s s′x x′

Figure 1. The cost of enumerating x into A at stage s is
∑

x<n<s 2−Ks(n) and the cost of enumerating x′ into A at stage

s′ is
∑

x′<n<s′ 2−Ks′(n); the weights are “disjoint”.

In fact, we note that the same reasoning may be applied to the extraction steps;
new followers are chosen large after we abandon a previous follower upon extraction,
and since between extractions the acceptable price is fixed at some 2−m, this kind
of abandonment will not happen (between extractions) more than 2m times. In-
ductively, we can determine in advance a bound on the number of possible failures,
and if we wish, we can distribute the permissible costs evenly, as we do below.

Finally, for n > 2, we apply this strategy with n layers of apportioning pieces of
capital to various attempts at changing A(x) on some follower x, n many times. To
make A not be strongly jump-traceable rather than not n-c.e., what we need to do
is to change JA(x) on some input x more than h(x) many times, where h is some
order we will specify in advance (and x is a “slot” in the jump that we control.)
To change JA(x) we need to put the use of this computation into A; keeping A
c.e., this means that we change the use, but the principle that the same x receives
attention h(x) many times remains and so the same strategy works.

2.1. The formal construction and proof of Theorem 1.2. We enumerate a set

A and a function p, partial computable in A. The requirement Re is that 〈W [x]
e 〉x<ω
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is not a trace for p which obeys an order function h, which we soon define. By
Lemma 1.6, this will suffice to show that A is not strongly jump-traceable.

For e < ω, let Te consist of all sequences 〈k0, k1, . . . , ki〉 where i < e and for each

j 6 i we have kj < 2e2j

. Note that indeed Te is a tree, i.e., is closed under taking
initial segments. A node σ ∈ Te is a leaf of Te iff it has length e. If σ ∈ Te is not a

leaf, then we let ǫσ = ǫe
σ = 2−e2|σ|

.
The idea here is that each leaf on the tree corresponds to a particular attempt

at meeting Re, and if σ ∈ Te is a leaf, and i < e, then ǫσ↾i is the amount that we
would be willing to spend on the (e − i)th attack with the follower corresponding
to σ. The tree Te and the rationals ǫσ were chosen so that:

(1) ǫ〈〉 = 2−e;
(2) if σ ∈ Te is not a leaf, then it has exactly 1/ǫσ many immediate successors

on Te; and further,
(3) if |σ| < e − 1 then the sum of ǫτ , as τ ranges over immediate successors of

σ on Te, is ǫσ.

These facts let us, by reverse induction on |σ|, show that for σ ∈ Te which is
not a leaf, the sum of ǫτ , as τ ranges over all extensions of σ on Te which are not
leaves, is (e − |σ|)ǫσ. Thus the sum of ǫτ , as τ ranges over all nodes on Te which
are non-leaves, is e2−e. This will be the total amount we let Re spend; and so the
construction will obey the cost-function, as

∑

e<ω e2−e is finite.
We can now define h. Partition ω into intervals 〈Ie〉 (so max Ie + 1 = min Ie+1),

letting the size of Ie be the number of leaves of Te; we index the elements of Ie as
xσ for leaves σ of Te. We define h(x) = e − 1 for all x ∈ Ie.

Note that the size of Te is of the order of 22e

, which means that h grows roughly
like log log x.

The requirements Re act independently. If not yet satisfied at stage s, the
requirement Re will have a pointer σ = σe [s] pointing at some leaf of Te; the
requirement will be conducting an attack with xσ at some level i < e (the level will
be decreasing with time, until the attack is abandoned, or fully succeeds when we
get to the root.)

In the beginning, we let σ[0] = 0e, the leftmost leaf of Te (we order the nodes of
Te lexicographically); and we begin an attack with xσ[0] on level e − 1.

The following are the instructions for an attack on level i < e (at a stage s). Let
σ = σ[s]. Recall that the cost of enumerating a number x into A at stage s is

c(x)[s] =
∑

n∈(x,s)

2−K(n)[s].

(1) Define pA(xσ) = s with use s + 1. Wait for s ∈ W
[xσ]
e . [While waiting, if

some other requirement puts a number y 6 s into A and so makes p(xσ)
undefined, redefine p(xσ), again with value s and use s + 1.]

(2) At stage t > s, s enters W
[xσ]
e . Compare the cost c(s)[t] of putting s into

A at this stage with the permissible waste ǫσ↾i.
• If c(s)[t] 6 ǫσ↾i, then enumerate s into A (making p(xσ) undefined.)

Leave σ unchanged and attack with it on level i − 1. If already i = 0
then declare victory and cease all action.
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• If c(s)[t] > ǫσ↾i then we abandon xσ. Move one step to the right of
σ ↾ i + 1. That is, if σ = (k0, . . . , ke−1) then let

σ[t + 1] = (k0, . . . , ki−1, ki + 1, 0, . . . , 0).

Attack with the new σ on level e − 1.

Justification. We must argue that the above algorithm is consistent: in this case,
that if at some stage t we want to abandon an attack with xσ on level i < e and
redefine σ[t+1], then the string we defined above is actually on Te, which will hold
iff ki + 1 < 1/ǫσ↾i.

Fix such an i and σ. Let σ∗ = σ ↾ i and let m = σ(i). We know that for all
k 6 m, some attack was made with some string extending σ∗ak (for example with
σ∗aka(0, . . . , 0);) let τk be the rightmost string extending σ∗ak which was ever
used for an attack (so τm = σ); so we know that we attacked with τk on level i and
that this attack is abandoned. Let sk be the stage at which the attack with τk on
level i began, and let tk > sk be the stage at which this attack was abandoned (so
tm = t).

The key point, as discussed above, is that tk−1 6 sk, so the intervals (sk, tk) are
disjoint. At stage tk, the attack with τk is abandoned because c(sk)[tk] > ǫσ∗ . Now

1 > µ (domU) >
∑

k6m

∑

n∈(sk,tk)

2−K(n) >
∑

k6m

∑

n∈(sk,tk)

2−K(n)[tk] =

=
∑

k6m

c(sk)[tk] > (m + 1)ǫσ∗ .

It follows that m + 1 < 1/ǫσ∗ as required.

Verification. First, note that by the instructions given, for each e < ω, for each
τ ∈ Te which is not a leaf, there is at most one s < ω which is enumerated into
A because of a successful attack with some σ ⊃ τ on level |σ|. Thus Re did not
spend more than e2−e and so the construction obeys the cost function, making A
K-trivial.

Fix e < ω. There are two possible outcomes for Re.

(1) There is some stage s at which we begin an attack with xσ[s] at some level,

but s never turns up in W
[xσ]
e . The attack is never concluded. But in this

case, no further modifications are made for p(xσ) and it has a final value
s, which is not traced.

(2) Some attack with some xσ on level 0 succeeds. This means that
∣
∣
∣W [xσ]

e

∣
∣
∣ > e > h(xσ)

and so the trace does not obey the order h.

In either case, we see that Re is met, and so A is not strongly jump-traceable.

3. The computably enumerable, strongly jump-traceable degrees

form a non-principal ideal

As we mentioned above, Figueira, Nies and Stephan [10] showed that the strongly
jump-traceable sets are downward closed under Turing reduction. In this section
we show that the join of two c.e., strongly jump-traceable sets is also strongly jump-
traceable, and so in the c.e. degrees, the strongly jump-traceable degrees form an
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ideal. In fact, we show that for every order function g there is another order function
f such that if sets A0 and A1 are c.e. and jump-traceable via f , then A0 ⊕ A1 is
jump-traceable via g.

The construction is the simplest known example of the box amplification (or
promotion) method, and so we wish to describe the motivation for its discovery.
For this, we need to examine the construction of a non-computable, strongly jump-
traceable real.

For simplicity, suppose that h is a slow-growing order, and that we wish to
construct a non-computable c.e. set A which is jump-traceable with respect to h.
Let Pe be the eth non-computability requirement (which says that A 6= W̄e) and
let Ne be the requirement which is responsible for enumerating that part Te of the
trace we build which is supposed to trace JA(e).

We order the requirements thus:

(3.1) N0 N1 N2 · · · Ne · · ·
︸ ︷︷ ︸

h(e)=1

P0 · · · Ne · · ·
︸ ︷︷ ︸

h(e)=2

P1 · · · Ne · · ·
︸ ︷︷ ︸

h(e)=3

P2 · · ·

The construction is now straightforward: each Pe is appointed a follower x. If at
stage s, Pe is not yet satisfied, and x appears in We, then it is enumerated into
A, and Pe becomes satisfied. If a new computation JA(s) appears at stage s, then
Ne traces its value in Te and initialises all weaker positive requirements, which will
need to be appointed new, large followers.

The key to the success of this construction is that each requirement Pe acts
at most once, and does not need to act again even if it is initialised. It may be
instructive to think of the priority ordering as dynamic; when Pe acts, then it is
removed from the list of requirements and is never troubled (nor does it influence
other requirements) again.

To make A jump-traceable via all orders h, a further dynamic element is intro-
duced to the priority ordering. The property of a partial computable function being
an order function is Π0

2, and we approximate it in this fashion. Say that a stage
s is e-expansionary if at this stage we have further evidence that the eth partial
computable function ϕe is an order function. If the stage is indeed e-expansionary
then the positive requirements are pushed down the ordering so that for every x
such that ϕe(x)↓ [s], there are at most ϕe(x) many positive requirements stronger
than Ne,x, the requirement that traces JA(e) with at most ϕe(x) many values. To
protect the positive requirements from being moved down infinitely often, we insist
that a positive requirement Pe′ cannot be moved by ϕe if e′ < e; these positive
requirement are ignored when we count the number of positive requirements which
appear before some Ne,x. If Pe′ acts then we initialise every Ne,x and start a new
trace.

All this still allows us to use Robinson’s trick. We can prove:

Theorem 3.1. If B is a low, c.e. set, then there is some strongly jump-traceable
c.e. set A which is not computable in B.

This would show that the ideal of c.e., strongly jump-traceable degrees, is not
principal (as they are all low.)

Sketch of proof. For simplicity, we fix a slow-growing order h and sketch the enu-
meration of some c.e. set A, not computable from B, which is jump-traceable obey-
ing h; for a strongly jump-traceable set, we complicate the current construction as
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before. Let Pe now stipulate that A 6= Φe(B). The requirement appoints a follower
x, and tries to enumerate it into A at a stage at which it seems like Φe(B, x)↓= 0.
By the recursion theorem, we have, at stage s, an approximation for the answer
to the question “does the requirement Pe ever ask about a follower x which is re-
alised by a B-correct computation?”; the requirement only enumerates x into A if
it believes that the answer to the question is “yes”.

Again, after acting, the requirement Pe is removed from the list. If, though, at
a later stage t, we see that the computation realising the follower x and which was
believed at stage s, is actually incorrect, then Pe needs to be resuscitated. It is
brought back from the dead and is placed in the place of some weaker requirement
(pushing the rest further down, to maintain having just one positive requirement
between blocks of negative requirements.) As the guesses eventually stabilise, this
cannot happen infinitely often. �

We return to the join theorem. Suppose that we wanted to prove the theorem
wrong, that is, to construct c.e. sets A0 and A1 which are strongly jump-traceable
but such that A0 ⊕ A1 is not. We would presumably attempt to use the strategy
of section 2 and try to diagonalise against possible traces for ΦA0⊕A1 by changing
its values sufficiently many times, this time by enumerating the current use into
either A0 or A1. In the priority ordering of the requirements we place both these
diagonalisation requirements, and the requirements which try to trace JA0 and JA1

as in the construction of a strongly jump-traceable c.e. set.
Again recall that in this construction, after some requirement Pe acts, it gets

removed from the list, and the blocks of Nx requirements to its left and to its right
are merged; in a sense, this increases the priority of those to the right, because they
suffered an injury – which means that the number of times they can be injured has
just decreased by one. They have been promoted.

In our false construction, suppose we start with the same ordering (except that
there are two kinds of negative requirements, one for A0 and one for A1.) Each time
a positive requirement Pe acts, and say enumerates a number into A0, it needs to
be demoted down the list and placed after all the negative requirements it has just
injured; since these requirements may later impose new restraint, a new follower
for Pe may be needed each time one such requirement decides to impose restraint.
Since some of the negative requirements are also promoted by positive requirements
weaker than Pe, we cannot put any computable bound, in advance, on the last place
of Pe on the list, and hence, on the number of followers it will need. Thus we cannot
state the computable bound which we mean to beat, and the construction fails.

This failure is turned around into our proof. Now we are given two c.e., strongly
jump-traceable sets A0 and A1, and an order function g, and we wish to trace
JA0⊕A1 , obeying g. Fix an input e (the requirements that trace JA0⊕A1 act com-
pletely independently.) When at some stage of the construction we discover that
JA0⊕A1(e) converges, before we trace the value, we want to receive some confirma-
tion that this value is genuine. Say that the computation has use σ0 ⊕ σ1, where
σi ⊂ Ai[s]. What we do is define functionals Φ0 and Φ1, and define Φσi

i (x) = σi.

If indeed σi ⊂ Ai then σi would appear as a value in a trace T i
x for ΦAi

i which we
receive (using the universality of JAi and the recursion theorem.) Thus we can wait
until both strings σi appear in the relevant “box” T i

x, and only then believe the
computation JA0⊕A1(e)[s]. Of course, it is possible that both σi appear in T i

x but
that neither σi is really an initial segment of Ai; in which case we will have traced
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the wrong value. In this case, however, both boxes T i
x have been promoted, in the

sense that they contain an element (σi) which we know is not the real value of

ΦAi

i (x), and ΦAi

i (x) becomes undefined (when we notice that Ai moved to the right
of σi) and is therefore useful for us for testing another potential value of JA0⊕A1(e)
which may appear later. If the bound on the size of T i

x (which we prescribe in
advance, but has to eventually increase with x) is k, then we originally think of T i

x

as a “k-box”, a box which may contain up to k values; after σi appears in T i
x and is

shown to be wrong, we can think of the promoted box as a k − 1-box. Eventually,
if T i

x is promoted k − 1 many times, then we have a 1-box; if a string σi appears
in a 1-box then we know it must be a true initial segment of Ai. In this way we
can limit the number of false JA0⊕A1(e) computations that we trace. Since all
requirements act independently, this allows us to trace JA0⊕A1 to any computable
degree of precision we may like.

That is the main idea of all “box-promotion” constructions. Each construction
is infused with combinatorial aspects which counter difficulties that arise during
the construction (difficulties which we think of as possible plays of an opponent,
out to foil us.) The combinatorics determine how slowly we want the size of the
given trace to grow, and which boxes should be used in every test we make. In this
construction, the difficulty is the following: in the previous scenario, it is possible,
say, that σ0 is indeed a true initial segment of A0, but σ1 is not an initial segment of
A1. And to make matters worse, the latter fact is discovered even before σ1 turns
up in T 1

x . However, we already defined ΦA0

0 (x) = σ0 with A0-correct use, which
means that the input x will not be available later for a new definition. The box
T 0

x has to be discarded, and further, we got no compensation – no other box has
been promoted. As detailed below, the mechanics of the construction instruct us
which boxes to pick so that this problem can in fact be countered. The main idea
(which again appears in all box-promotion constructions) is to use clusters of boxes
(or “meta-boxes”) rather than individual boxes. Instead of testing σi on a single
T i

x, we bunch together a finite collection Mi of inputs x, and define Φσi

i (x) = σi

for all x ∈ Mi. We only believe the computation JA0⊕A1(e) if σi has appeared in
T i

x for all x ∈ Mi. If this is believed and then later discovered to be false, then all
of the boxes included in Mi have been promoted; we can then break Mi up into
smaller meta-boxes and use each separately; thus we magnify the promotion, to
compensate for any losses we may occur on the other side.

3.1. The formal construction and proof of Theorem 1.4. In what follows, we
fix a number e and show how to trace JA0⊕A1(e) limiting the errors to a prescribed
number m. To do this, given the number m, the requirement will ask for an
infinite collection of boxes, and describe precisely how many k-boxes, for each k,
it requires for its use (for A0 and A1). As m grows, the least k for which k-boxes
are required will grow as well (we denote that number by k∗(m).) For m and
k > k∗(m), let r(k, m) be the number of k-boxes which is required to limit the
size of the trace for JA0⊕A1(e) by m. (In fact, if k > k∗(m), k∗(m′) then we’ll
actually have r(k, m) = r(k, m′), but this is not important.) Again, this means
that the requirement will define functionals Φe,i (for i < 2) and expect to get traces

〈T e,i
x 〉x<ω for ΦAi

e,i which obey a bound he, such that for all k > k∗(m), the collection

of x such that he(x) = k has size at least r(k, m).
Then, given an order function g, we define an order function f = fg, such that

if c.e. sets A0 and A1 are jump-traceable via f , then A0 ⊕A1 is jump-traceable via
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g. This is done in the following way. For each c < ω, we partition ω into intervals
〈Ic

k〉k>c
(so min Ic

k+1 = max Ic
k + 1), such that

|Ic
k| =

∑

{e : k∗(g(e))6k}

r(k, g(e))

and define a function f c by letting f c(x) = k if x ∈ Ic
k. Note that since

lime g(e) = ∞, for any k, for large enough e we have k∗(g(e)) > k and so the
prescribed size of Ic

k is indeed finite. It is easy to see that f c is an order function.
We also note that f c(0) = c. By Lemma 1.5, there is an order function f such

that for all x and c, f(αc(x)) 6 f c(x). This is the required function.
Now given A0 and A1 which are jump-traceable via f , we get traces S0, S1 for

JA0 , JA1 which obey f . This allows us, uniformly in c, to get traces Sc,0, Sc,1 for
ΨA0

c , ΨA1

c , which obey f c.
For each c and k > c, let

〈N c
k,e〉{e : k∗(g(e))6k}

be a partition of Ic
k, such that |N c

k,e| = r(k, g(e)). For each c < ω, we run the

construction for all the e such that k∗(g(e)) > c simultaneously, with the eth re-
quirement defining Φe,0 and Φe,1 with domain contained in

⋃

k>k∗(g(e)) N c
k,e and

using Sc,0 and Sc,1 as traces. Using Posner’s trick, we can effectively get an index
c′ such that for both i = 0, 1, ΦAi

i =
⋃

{e : k∗(g(e))>c} ΦAi

e,i = ΨAi

c′ . By the recursion

theorem, there is some c such that Ψc = Ψc′ and so indeed T i = Sc,i is a trace
for ΦAi

i , and so for large enough e (those e such that k∗(g(e)) > c) we can get a

trace T e,i for ΦAi

e,i which obeys he. For large enough e, this construction will trace

JA0⊕A1(e) with bound g(e). Here end the global considerations; what is left to do
is to fix e and m, define k∗(m) and r(k, m) (and so he), and describe how, given

traces for both ΦAi

e,i which we define, we can trace JA0⊕A1(e) with fewer than m
mistakes.

The local strategy. So indeed, fix an e and an m. We define functionals Φe,i and get
traces 〈T e,i

x 〉 for them, as described above, with bound he (which we soon define.)
Let k∗(e) = xm/2y. For any n, define a metan

0 -box to be any singleton {x}
and define a metan

k+1-box to be a collection of n + 2 many metan
k -boxes. We often

ignore the distinction between a metan
k -box M and ∪(k)M , that is, the collection

of numbers (inputs) which appear in metan
0 -sub-boxes of M . In this sense, the size

of a metan
k -box is (n + 2)k. At the beginning, a meta-box M is an l-box (for either

A0 or A1) if for all x ∈ M , he(x) 6 l. At a later stage s, a meta-box M is an l-box
for Ai if for all x ∈ M , we have he(x) − |T e,i

x [s]| 6 l.
At the beginning, for all k > k∗(e) we wish to have two metak

k+1-boxes which

are k-boxes. We thus let r(k, m) = 2(k + 2)k+1. Denote these two meta-boxes by
Nk and N ′

k. From now we drop all e subscripts, so Φi = Φe,i, T i
x = T e,i

x , h = he,
etc.

At the beginning of a stage s, we have two numbers k∗
0 [s] and k∗

1 [s] (we start with
k∗

i [0] = k∗(e)). For i < 2, every k ∈ [k∗
i [s], s) has some priority pi(k)[s] ∈ 1

2N. For

such k we have finitely many meta
xpi(k)[s]y
k -boxes M i

1(k), . . . , M i
di(k)(k) [s], each of

which is free in the sense that for all x in any of these boxes, we have ΦAi

i (x)↑ [s].
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First at stage s > k∗(e), for both i = 0, 1 we let M i
1(s)[s], . . . , M

i
s+2(s)[s] be

the metas
s-sub-boxes of Ns (recall that these are all s-boxes.) We let the priority

pi(s) = s.

Suppose now that we are given a computation JA0⊕A1(e)[s] with use σ0 ⊕ σ1,
which we want to test. The test is done in steps, in increasing priority. We start
with step s.

Instructions for testing σ0 ⊕σ1 at step n ∈ 1
2N. For i = 0, 1, if there is some k such

that pi(k)[s] = n (there will be at most one such k for each i), then we take the
last meta-box M = M i

di(k)(k) [s], and test σi on M by defining Φσi

i (x) = σi for all

x ∈ M . We then run the enumeration of the trace T i and of Ai until one of the
following happens:

• For all x ∈ M , σi appears in T i
x (we say that the test returns.)

• σi is not an initial segment of Ai anymore (we say that the test fails.)

One of the two has to occur since T i is indeed a trace for ΦAi

i .
If all tests that were started (either none, one test for one σi, or two tests for

both σi) have returned, then we move to test at step n− 1/2; but if n = 1 then all
tests at all levels have returned, and so we believe the computation JA0⊕A1(e)[s]
and trace it. In the latter case, from now we monitor this belief; we just keep
defining pi(s

′) and M i
j(s

′) at later stages s′. If at a later stage t we discover that
one of the σi was not in fact an initial segment of Ai, we update priorities as follows
and go back to following the instructions above.

Also, if some test at step n fails, then we stop the testing at stage s and update
priorities.

Updating priorities. Suppose that at some stage s, a test of σi at step n returns, but
at a stage t > s we discover that σi 6⊂ Ai. Let k be the level such that pi(k)[s] = n.
We do the following:

(1) If k = k∗
i [s] then let k∗

i [t + 1] = k − 1.
(2) Redefine pi(k − 1)[t + 1] = n and di(k − 1)[t + 1] = xny + 2, and let

M i
1(k− 1)[t+1], . . . , M i

xny+2(k− 1)[t+1] be the collection of metaxny
k−1-sub-

boxes of M i
di(k)[s] (which was the metaxny

k -box used for the testing of σi at

step n of stage s.)
(3) If k = s then redefine pi(k)[t + 1] = s + 1/2, redefine di(s)[t + 1] = s + 2

and let M i
1(s)[t+1], . . . , M i

s+2(s)[t+1] be the metas
s-sub-boxes of N ′

s (note
that these were untouched so far.)

On the other side, if at stage t we still have σ1−i ⊂ A1−i[t], and a test
of σ1−i at stage s at step n has started (and so returned), then we need to
discard the meta-box M1−i

d1−i(k)(k)[s] (where again p1−i(k)[s] = n) and redefine

d1−i(k)[t + 1] = d1−i(k)[s] − 1. We do this also if t = s and the first test at step s
has returned, but we immediately found out that σi 6⊂ Ai, and the test on the σi

side did not even return once.

Justification and verification. Let i < 2, s > k∗(e), k ∈ [k∗
i [s], s), and j ∈ {1, . . . , di(k)[s]}.

Let n = pi(k)[s].
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Lemma 3.2. The metaxny
k -box M i

j(k)[s] is a k-box; indeed, for all x ∈ M i
j(k)[s],

there are at least xny − k many strings in T i
x[s] which lie to the left of Ai[s] (and

h(x) = xny).

Proof. Let s be the least such that we define, for some level k, pi(k)[s] = n. Then
k = xny and there are two possibilities:

• If n ∈ N, then s = n, the definition is made at the beginning of stage s, and
we define M i

1(s), . . . , M
i
s+2(s) [s] to be sub-boxes of Ns, which is an s-box.

• If n /∈ N then at stage s − 1, a test that began at stage xny 6 s − 1
(and returned on the σi side) is resolved by finding that σi 6⊂ Ai[s]. We
then define pi(xny)[s] = n and define M i

1(xny), . . . , M i
xny+2(xny) [s] to be

sub-boxes of N ′
xny, which is an xny-box.

In either case, the M i
j(xny)[s] are xny-boxes, so indeed for each x in these meta-

boxes, h(x) = xny, and T i
x indeed contains at least xny − xny many strings.

By induction, if n = pi(k)[t] at a later stage t, then for all j, M i
j(k)[t] is a sub-box

of some M i
j′(xny)[s], and so for all x ∈ M i

j(k)[t] we have h(x) = xny.

Suppose that at stage t we redefine pi(k−1)[t+1] = n and redefine M i
j(k−1)[t+1].

Then at some stage r 6 t we defined, for all x ∈ M i
di(k)[s], Φσi

i (x) = σi where

σi ⊂ Ai[r] but σi 6⊂ Ai[t + 1]. By induction, at stage r there are at least xny − k
many strings in T i

x[r] that lie to the left of Ai[r]; they all must be distinct from
σi. The test at stage r returned, which means that σi ∈ T i

x[r + 1]; thus T i
x[t + 1]

contains at least xny − (k − 1) many strings that lie to the left of Ai[t + 1]. �

Lemma 3.3. The sequence k∗
i [s] is non-increasing with s; for all s we have

k∗
i [s] > 0.

Proof. By Lemma 3.2, for all j 6 di(k
∗
i )[s] and x ∈ M i

j(k
∗
i )[s] we have |T i

x| > h(x)−k∗
i [s];

as |T i
x| < h(x) we must have k∗

i [s] > 0. �

Lemma 3.4. The sequence pi(k)[s] is strictly increasing with k.

Proof. Assume this at the beginning of stage t. We first define pi(t)[t] = t; all
numbers used prior to this stage were below t.

Now suppose that at stage t we update priorities because of a test which returns
at some stage s 6 t is found to be incorrect. The induction hypothesis for s, and
the instructions for testing, ensure that the collection of levels k for which a σi-test
has returned at stage s is an interval [k0, s]. Priorities then shift one step downward
to the interval [k0 − 1, s − 1]; the sequence of priorities is still increasing. Finally,
a new priority s + 1/2 is given to level s; it is greater than the priorities for levels
k < s (which get priority at most s) but smaller than the priority k which is given
to all levels k ∈ (s, t]. �

Also note that we always have pi(k) > k because we start with pi(k)[k] = k,
then perhaps later change it to k + 1/2, and from then on it never decreases.

The following key calculation ensures that we never run out of boxes at any level,
on either side, so the construction can go on and never get stuck. It ties losses of
boxes on one side to gains on the other. For any k ∈ [k∗

i [s], s], let li(k)[s] be the
least level l such that p1−i(l) > pi(k) [s]. Such a level must exist because at the
beginning of the stage we let p1−i(s) = s, which is greater or equal to pi(k)[s] for
any k 6 s. Thus li(k)[s] > 1.



16 PETER CHOLAK, ROD DOWNEY, AND NOAM GREENBERG

Lemma 3.5. At stage s, for i < 2 and k ∈ [k∗
i [s], s], the number di(k)[s] of meta-

k-boxes is at least:

• li(k)[s], if p1−i(li(k)) > pi(k) [s];
• li(k)[s] + 1, if p1−i(li(k)) = pi(k) [s].

Proof. This goes by induction on the stage. Suppose this is true at the end of stage
t − 1; we consider what changes we may have at stage t.

First at stage t, we define pi(t) = t = p1−i(t). We thus have li(t) = t and
p1−i(li(t)) = pi(t) and so we are required to have t + 1 many t-boxes; we actually
have di(t)[t] = t + 2 many.

Suppose that a test which began at stage s 6 t is resolved at stage t, and
priorities are updated.

There are two sides. Suppose first that σi 6⊂ Ai[t+1], and that di(k)[t+1] 6= di(k)[t].
If k < s, then a test at level k + 1 returned at stage s. We then redefine
di(k)[t + 1] = xny + 2 where n = pi(k)[t + 1] (= pi(k + 1)[s]). As mentioned, we
always have p1−i(pnq) > pnq and so li(k)[t + 1] 6 xny + 1, so we’re in the clear.
If, however, k = s, then we redefine di(s)[t + 1] = s + 2 and pi(s)[t + 1] = s + 1/2;
again, p1−i(s+1)[t+1] > s+1 and so li(k)[t+1] 6 s+1, so di(s) > li(k)+1 [t+1]
as required.

Now take the losing side: suppose that σi ⊂ Ai[t + 1]. We may have lost
some meta-boxes on this side; but changing priorities on the other side give us
compensation. Let k ∈ [k∗

i [t], t]; before anything else, we note that if k > s then
di(k)[t + 1] = k + 2, li(k)[t + 1] = k and p1−i(k)[t + 1] = k, so there are sufficiently
many k-boxes. We assume then that k 6 s.

We also examine the case that k = s. In this case, di(k)[t+1] = di(k)[s]−1 = s+1.
We have pi(k)[t + 1] = s and li(k)[t + 1] 6 s and so di(k) > li(k) + 1 [t + 1]. We
assume from now that k < s.

Let n = pi(k)[t + 1] = pi(k)[s]. We note that if there is no k′ such that
p1−i(k

′)[s] = n, then there is no k′ such that p1−i(k
′)[t + 1] = n. This is be-

cause the only priority we may add at stage t (after the initial part of the stage) is
s + 1/2, and n < s. Thus, if n′ = p1−i(li(k))[s] > n then p1−i(li(k))[s] > n′ > n,
because there are three possibilities for the behaviour of li(k) and p1−i(li(k)). Let
k′ = li(k)[s], and note that k′ < s.

(1) A test for σ1−i at step n′ of stage s returns. In this case, li(k)[t+1] = k′−1
and p1−i(li(k))[t + 1] = n′.

(2) A test for σ1−i at level k′ (at stage s) does not return, but a test for
σ1−i at level k′ + 1 does return. In this case the priority n′ is removed
on side 1 − i at stage t; we redefine p1−i(k

′)[t + 1] = p1−i(k
′ + 1)[s] > n′.

However, we still have li(k)[t+1] = k′ because (if k′ > k∗
1−i[s]) we still have

p1−i(k
′ − 1)[t + 1] = p1−i(k

′ − 1)[s] < n.
(3) A test for σ1−i at level k′ + 1 is not started or does not return. In this

case there is no change at level k′ and k′ − 1; we have li(k)[t + 1] = k′ and
p1−i(k

′)[t + 1] = n′.

In any case, we see that we cannot have a case at which li(k) increases from
stage s to stage t + 1, or that p1−i(li(k))[s] > n but p1−i(li(k))[t + 1] = n. Thus
the required number of k-meta-boxes does not increase from stage s to stage t + 1.
Thus we need only to check what happens if di(k)[t + 1] = di(k)[s] − 1. Assume
this is the case; we check each of the three scenarios above.
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In case (1), the number of required boxes has decreased by one; this exactly
compensates the loss. Case (3) is not possible if a k-box is lost; this is because a
test at step n is started only after a test for σ1−i at step p1−i(k

′+1)[s] has returned.
The same argument shows that if case (2) holds and we lost a k-box, then neces-

sarily n′ = n. But then di(k)[s] > k′ + 1, but the fact that now p1−i(k
′)[t + 1] > n

implies that the number of required boxes has just decreased by one, to k′; again
the loss is compensated. �

We are now ready to finish. We note that if indeed JA0⊕A1(e) converges, then
at some point the correct computation appears and is tested. Of course all tests
must return, and so the correct value will be traced.

If, on the other hand, a value JA0⊕A1(e)[s] is traced at stage s because all tests
return, but at a later stage t we discover that this computation is incorrect, say
σi 6⊂ Ai[t + 1], then k∗

i [t + 1] < k∗
i [t]. As we always have k∗

i [r] > 1, this must
happen fewer than 2k∗(e) 6 m many times. It follows that the total number of
values traced is at most m, as required.

4. Strongly jump-traceable c.e. sets are K-trivial

Let A be strongly jump-traceable; we prove that it is low for K, and hence
K-trivial. We need to cover UA by an oracle-free machine, obtained via the Kraft-
Chaitin theorem. We enumerate A and thus approximate UA. When a string σ
enters the domain of UA we need to decide whether we believe the A-computation
that put σ in domUA; again the idea is to test this by testing the use ρ ⊂ A[s]
which enumerated σ into domUA[s]; again the naive idea is to pick some input x
and define a functional Ψρ(x) = ρ. Then ΨA is traced by a trace 〈Tx〉; only if ρ is
traced do we believe it is indeed an initial segment of A and so believe that UA(σ)
is a correct computation. We can then enumerate (|σ|, UA(σ)) into a Kraft-Chaitin
set we build and so ensure that K(UA(σ)) 6+ |σ|.

The combinatorics of the construction aim to ensure that we indeed build a
Kraft-Chaitin set; that is, the total amount of mass that we believe at some stage
of the construction is finite. This would of course be ensured if we only believed
correct computations, as µ(domUA) is finite. However, the size of most Tx is
greater than 1, and so an incorrect ρ may be believed. We need to limit the mass
of the errors.

To handle this calculation, rather than treat each string σ individually, we batch
strings up in pieces of mass. When we have a collection of strings in domUA whose
total mass is 2−k we verify A up to a use that puts them all in domUA. The greater
2−k is, the more stringent the test will be (ideally, in the sense that the size of Tx

is smaller). We will put a limit mk on the amount of times that a piece of size 2−k

can be believed and yet be incorrect. The argument will succeed if
∑

k<ω

mk2−k

is finite.
Once we use an input x to verify an A-correct piece, it cannot be used again for

any testing, as ΨA(x) becomes defined permanently. Following the naive strategy,
we would need at least 2k many inputs for testing pieces of size 2−k. Even a single
error on each x (and there will be more, as the size of Tx has to go to infinity) means
that mk > 2k is too large. Again, the rest of the construction is a combinatorial
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strategy: which inputs are assigned to which pieces in such a way as to ensure
that the number of possible errors mk is sufficiently small. The strategy has two
ingredients.

First, we note that two pieces of size 2−k can be combined into a single piece
of size 2−(k−1). So if we are testing one such piece, and another piece, with com-
parable use, appears, then we can let the testing machinery for 2−(k−1) take over.
Thus, even though we need several testing locations for 2−k (for example if a third
comparable piece appears), at any stage, the testing at 2−k is really responsible for
at most one such piece.

The naive reader would imagine that it is now sufficient to let the size of Tx (for
x testing 2−k-pieces) be something like k and be done. However, the opponent’s
spoiling strategy would be to “drip-feed” small mass that aggregates to larger pieces
only slowly (this is similar to the situation in decanter constructions.) In particular,
fixing some small 2−k, the opponent will first give us k pieces (of incomparable use)
one after the other (so as to change A and remove one before giving us a new one.)
At each such occurrence we would need to use the input x devoted to the first 2−k

piece, because at each such stage we only see one. Once the amount of errors we
get from using x for testing is filled (Tx fills up to the maximum allowed size) the
opponent gives us one correct piece of size 2−(k−1) and then moves on to gives us
k more incorrect pieces which we test on the next x. Overall, we get k errors on
each x used for 2−k-pieces. As we already agreed that we need something like 2k

many such x’s, we are back in trouble.
Every error helps us make progress as the opponent has to give up one possible

value in some Tx; fewer possible mistakes on x are allowed in the future. The
solution is to make every single error count in our favour in all future testings of
pieces of size 2−k. In other words, what we need to do is to maximize the benefit
that is given by a single mistake; we make sure that a single mistake on some piece
will mean one less possible mistake on every other piece. In other words, we again
use meta-boxes.

In the beginning, rather than just testing a piece on a single input x, we test
it simultaneously on a large set of inputs and only believe it is correct if the use
shows up in the trace of every input tested. If this is believed and more pieces
show up then we use them on other large sets of inputs. If, however, one of these
is incorrect, then we later have a large collection of inputs x for which the number
of possible errors is reduced. We can then break up this collection into 2k many
smaller collections and keep working only with such x’s.

This can be geometrically visualised as follows. If the naive strategy was played
on a sequence of inputs x, we now have an mk-dimensional cube of inputs, each
side of which has length 2k. In the beginning we test each piece on one hyperplane.
If the testing on some hyperplane is believed and later found to be incorrect then
from then on we work in that hyperplane, which becomes the new cube for testing
pieces of size 2−k; we test on hyperplanes of the new cube. If the size of Tx for each
x in the cube is at most mk then we never “run out of dimensions”.

4.1. The formal construction and proof of Theorem 1.1. Given c < ω (say
c > 1), we partition ω into intervals 〈M c

k〉k<ω
such that |M c

k | = 2k(k+c). For x ∈ M c
k

we let hc(x) = k + c − 1. By Lemma 1.5, we get an order function h̃ such that for

all c and x, h̃(αc(x)) 6 hc(x). We fix a trace for JA with bound h̃. From this trace,
we can, uniformly in c, get a trace for ΨA

c with bound hc.
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Note that hc grows roughly like
√

log x. This gives us the bound mentioned in
the introduction. The exact bound for h̃ may be slower, depending on the way each
Ψc is coded into the jump function J .

In our construction, we define a functional Ψ; by the recursion theorem we know
some c such that for all X ∈ 2ω, ΨX = ΨX

c . We let Mk[0] = M c
k and let 〈Tx〉 be

the trace for ΨA with bound h = hc.

Usage of Ψ. Again, the axioms that we enumerate into Ψ are all of the form
Ψρ(x) = ρ for some ρ ∈ 2<ω and x < ω. We only enumerate such an axiom at
stage s if ρ ⊂ A[s].

Let Rk =
{
m2−k : m = 0, 1, 2, . . . , 2k

}
, and let R+

k = Rk \ {0}.

The boxes. We can label the elements of Mk[0] so that

Mk[0] =
{
xf : f : (k + c) → R+

k

}
.

[So Mk[0] is a (k + c)-dimensional cube; the length of each side is 2k.]
At stage s, for each k we have a function gk[s] : dk[s] → R+

k (where dk[s] < k+c)
which determines the current value of Mk:

Mk[s] = {xf ∈ Mk[0] : gk[s] ⊂ f}
(so dk[0] = 0 and gk[s] is the empty function.) Thus Mk[s] is a (k + c − dk)-
dimensional cube.

For q ∈ R+
k , we let

Nk(q)[s] = {xf ∈ Mk[s] : f(dk[s]) = q} ;

this is the (2k · q)th hyper-plane of Mk[s].

Strings. Recall that for any string ρ ∈ 2<ω, we let Ωρ be the measure of the domain
of Uρ, the universal machine with oracle ρ. Note that ρ 7→ Ωρ is monotone: if ρ ⊂ ν
then Ωρ 6 Ων . We assume that the running time of any computation with oracle
ρ is at most |ρ| steps, and so:

• The maps ρ 7→ Uρ and so ρ 7→ Ωρ are computable;
• For all σ ∈ domUρ, |σ| 6 |ρ|.

It follows that Ωρ is a multiple of 2−|ρ|, in other words, is an element of R|ρ|. Also

note that since 〈〉 /∈ UX for any X , the assumption implies that U 〈〉 is empty and
so Ω〈〉 = 0.

Let q be any rational. For any ν ∈ 2<ω such that Ων > q, we let ̺ν(q) be the
shortest string ρ ⊆ ν such that Ωρ > q. This operation is monotone with q: if
q < q′ and Ων > q′ then ̺ν(q) ⊆ ̺ν(q′).

The standard configuration. At the beginning of stage s of the construction, we are
given A at some point of its enumeration, which we denote by A[s] (more than one
number may go into A at each stage, as we describe below.)

At the beginning of the stage, the cubes 〈Mk〉 will be in the standard configura-
tion for the stage. Fix k 6 s and q ∈ R+

k .

• If q 6 ΩA[s]↾s then for all x ∈ Nk(q)[s] we have Ψρ(x) ↓= ρ [s], where
ρ = ̺A[s]↾s(q).

• If q > ΩA[s]↾s then for all x ∈ Nk(q) [s], we have ΨA[s](x)↑ [s].
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Further, for all k > s and all x ∈ Mk [s], no definition of Ψ(x) (for any oracle)
was ever made.

Suppose that ρ ⊆ A[s] ↾ s. We say that ρ is semi-confirmed at some point during
stage s if for all x such that Ψρ(x) ↓= ρ at stage s, we have ρ ∈ Tx at that given
point (which may be the beginning of the stage or later.) We say that ρ is confirmed
if every ρ′ ⊆ ρ is semi-confirmed.

Note that the empty string is (emptily) confirmed at every stage. This is because
for no x do we ever define Ψ〈〉(x)↓= 〈〉; this is because Ω〈〉 = 0 and so for no s and
no q > 0 do we have 〈〉 = ̺A[s]↾s(q).

Construction. At stage s, do the following:

(1) Speed up the enumeration of A and of 〈Tx〉 (to get A[s + 1] and Tx[s + 1])
so that for all ρ ⊆ A[s] ↾ s, one of the following holds:
(a) ρ is confirmed.
(b) ρ is not an initial segment of A anymore.
One of the two must happen because 〈Tx〉 traces ΨA.

(2) For any k 6 s, look for some q ∈ R+
k such that q 6 ΩA[s]↾s and such that

for ρ = ̺A[s]↾s(q) we have:
• ρ was confirmed at the beginning of the stage; but
• ρ 6⊂ A[s + 1].

If there is such a q, pick one, and extend gk by setting gk(dk) = q. Thus
dk[s + 1] = dk[s] + 1 and Mk[s + 1] = Nk(q)[s].

(3) Next, define Ψ as necessary so that the standard configuration will hold at
the beginning of stage s + 1.

Justification. We need to explain why the construction never gets stuck. There are
two issues:

(1) Why don’t we “run out of dimensions”? That is, why can we always increase
dk if we are asked to?

(2) Why can we always return to the next standard configuration?

For the first, we prove the following.

Lemma 4.1. For every x ∈ Mk[s], there are at least dk[s] many strings ρ ∈ Tx[s]
which lie (lexicographically) to the left of A[s].

Proof. Suppose that during stage s, we increase dk by one. This is witnessed by
some q ∈ R+

k and a string ρ = ̺A[s]↾s(q) which was confirmed at the beginning
of the stage; we set Mk[s + 1] = Nk(q)[s]. The confirmation implies that for all
x ∈ Nk(q)[s], ρ ∈ Tx. But we also know that ρ ⊂ A[s] and ρ 6⊂ A[s + 1]. As A is
c.e., it had to move to the right of ρ. If we increase dk at stages s1 < s2 (witnessed
by strings ρ1 and ρ2) then ρ1 lies to the left of A[s1 + 1] whereas ρ2 is an initial
segment of A[s2] (which is not left of A[s1 + 1].) Thus ρ1 lies to the left of ρ2, and
in particular, they are distinct. �

Since for all x ∈ Mk[0], h(x) = k + c − 1, we know that for all such x,
|Tx| 6 k + c − 1, which implies that for all s we must have dk[s] < k + c.

For the second issue, let k < ω.
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If Mk[s + 1] 6= Mk[s], witnessed by some q ∈ R+
k and by ρ = ̺A[s]↾s(q), then

for all x ∈ Mk[s + 1] we know that Ψρ(x) ↓= ρ; so for no proper initial segment

ρ′ ( ρ do we have Ψρ′

(x)↓ [s]. As ρ is not an initial segment of A[s + 1] we must
have ΨA[s+1](x) ↑ so we are free to make any definitions we like (recall that no
definitions to right of A[s] are made before stage s.)

For k = s + 1, we know that Mk was empty up to stage s, so we have a clean
slate there.

Suppose that k 6 s and that Mk[s + 1] = Mk[s]. Let q ∈ R+
k such that

q 6 ΩA[s+1]↾s+1, and let x ∈ Nk(q)[s + 1] (= Nk(q)[s]). We want to define
Ψρ(x)↓= ρ where ρ = ̺A[s+1]↾s+1(q).

If ρ 6⊂ A[s] then ρ lies to the right of A[s], and so Ψρ(x) ↑ for all x ∈ Mk[s].
Suppose that ρ ⊂ A[s]. There are two possibilities:

(1) If |ρ| 6 s then ρ = ̺A[s]↾s(q) and so we already have Ψρ(x) ↓= ρ for all
x ∈ Nk(q)[s].

(2) If |ρ| = s+1 then (since we know that for every proper initial segment ρ′ of

ρ we have q > Ωρ′

) we have q > ΩA[s]↾s. Since the standard configuration
held at the beginning of stage s, we have ΨA[s](x)↑ at the beginning of the
stage (for all x ∈ Nk(q)). Thus we are free to define Ψρ(x) as we wish.

This concludes the justifications.

Verification. Let s be a stage. We let ρ∗[s] be the longest string (of length at most
s) which is a common initial segment of both A[s] and A[s + 1]. Thus ρ∗[s] is the
longest string which is confirmed at the beginning of stage s + 1.

We define

L =
⋃{

Uρ∗[s] : s < ω
}

=
{

(σ, τ) : ∃s Uρ∗[s](σ) = τ
}

.

This is a c.e. set.

Lemma 4.2. UA ⊆ L.

Proof. Suppose that UA(σ) = τ . Let ρ ⊂ A some string such that Uρ(σ) = τ .
Let s > |ρ| be late enough so that ρ ⊂ A[s], A[s + 1]. Then ρ ⊆ ρ∗[s] and so
(σ, τ) ∈ L. �

The remainder of the verification is devoted to prove the following:

Lemma 4.3. ∑

(σ,τ)∈L

2−|σ|

is finite.

This would show that
{(|σ|, τ) : (σ, τ) ∈ L}

is a Kraft-Chaitin set and so there is some constant e such that for all (σ, τ) ∈ L,
K(τ) 6 |σ| + e. Together with Lemma 4.2, we see that A is low for K: for all τ ,
K(τ) 6 KA(τ) + e.

Now L has two parts: UA and L \ UA. We know of course that µ
(
domUA

)
is

finite, and so we need to show that
∑

(σ,τ)∈L\UA

2−|σ|
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is finite.
Let s be a stage. For k 6 s, let qk[s] be the greatest element of Rk not greater

than Ωρ∗[s]. This is monotone: if k < k′ 6 s then qk[s] 6 qk′ [s] because Rk ⊂ Rk′ .

Note that |ρ∗[s]| 6 s and so Ωρ∗[s] is an integer multiple of 2−s; it follows that
qs[s] = Ωρ∗[s]. Also, since for all ρ we have Ωρ < 1, we must have q0[s] = 0.

Let νk[s] = ̺ρ∗[s](qk[s]). By the monotonicity just mentioned, if k < k′ 6 s

then νk[s] ⊆ νk′ [s] and so Ωνk[s] 6 Ωνk′ [s]. Also, ν0[s] = 〈〉, and Ωνs[s] = Ωρ∗[s] (so
Uνs[s] = Uρ∗[s]).

The following is the key calculation.

Lemma 4.4. For all k ∈ {1, 2, . . . , s},

Ωνk[s] − Ωνk−1[s] 6 2 · 2−k.

Proof. We know that qk−1[s] 6 Ωνk−1[s] and that Ωνk−1[s] 6 Ωνk[s]. On the other
hand, Ωνk[s] 6 Ωρ∗[s] and Ωρ∗[s] 6 qk−1[s] + 2−(k−1). So overall,

qk−1[s] 6 Ωνk−1[s] 6 Ωνk[s] 6 qk−1[s] + 2 · 2−k. �

If (σ, τ) ∈ L \ UA, then we will find some k < ω and some stage t and “charge”
the mistake of adding (σ, τ) to L against k at stage t; we denote the collection of
charged mass by Lk,t. Formally, we will define sets Lk,t and show that:

(1) For each k and t, the mass of Lk,t, namely
∑

(σ,τ)∈Lk,t

2−|σ| ,

is at most 2 · 2−k.
(2)

L \ UA ⊆
⋃

k,t

Lk,t.

(3) For each k, there are at most k+c many stages t such that Lk,t is non-empty.

Given these facts, we get that
∑

(σ,τ)∈L\UA

2−|σ| 6
∑

k,t

∑

(σ,τ)∈Lk,t

2−|σ| 6
∑

k

2(k + c)2−k

which is finite as required. We turn to define Lk,t and to prove (1)–(3).
Fix t and k such that 1 6 k 6 t. If νk[t] 6⊂ A[t + 2] then we let

Lk,t = Uνk[t] \ Uνk−1[t].

Otherwise, we let Lk,t = ∅.
Fact (1) follows from Lemma 4.4:

∑

(σ,τ)∈Lk,t

2−|σ| = µ
(

dom
(

Uνk[t] \ Uνk−1[t]
))

= Ωνk[t] − Ωνk−1[t] 6 2 · 2−k.

Lemma 4.5.

L \ UA ⊆
⋃

k,t

Lk,t.
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Proof. Let (σ, τ) ∈ L \ UA.
Let ρ be the shortest string such that (σ, τ) ∈ Uρ and for some s, ρ ⊂ ρ∗[s].

Find such a stage s (so ρ ⊂ A[s], A[s + 1]). Since ρ 6⊂ A, there is a stage t > s such
that ρ ⊂ A[t], A[t + 1] but ρ 6⊂ A[t + 2].

Since ρ ⊂ ρ∗[t] and Uρ∗[t] = Uνt[t], by minimality of ρ, we have ρ ⊆ νt[t]. Since
ν0[t] = 〈〉, there is some k ∈ [1, t] such that νk−1[t] ( ρ ⊆ νk[t].

Since ρ ⊆ νk[t], we have (σ, τ) ∈ Uνk[t]. Since νk−1[t] ⊂ ρ∗[t], the minimality of
ρ implies that (σ, τ) /∈ Uνk−1[t]. Finally, ρ 6⊂ A[t + 2] and so νk[t] 6⊂ A[t + 2]. Thus
(σ, τ) ∈ Lk,t. �

Finally, we prove fact (3) by showing the following:

Lemma 4.6. Suppose that Lk,t 6= ∅. Then Mk[t + 1] 6= Mk[t + 2].

Proof. Suppose that Lk,t 6= ∅, so νk[t] 6⊂ A[t + 2]. Let q = qk[t]. Then

νk[t] = ̺ρ∗[t](q) = ̺A[t]↾t(q). Since νk[t] ⊆ ρ∗[t], it was confirmed at the be-
ginning of stage t + 1. Also, q > 0 because otherwise νk[t] = 〈〉 and then Uνk[t],
and so Lk,t, would be empty.

But then all the conditions for redefining Mk during stage t +1 are fulfilled. �

5. Strongly jump-traceable c.e. sets do not ML-cup

The framework from the previous section can be adapted to provide a proof of
Theorem 1.3, that no strongly jump-traceable, c.e. set A can be joined above 0′

by an incomplete Martin-Löf random set. To show this (following in part Nies’s
construction [22] of a set that does not ML-cup,) we take a set Y of degree 0′ and
are given some Turing functional Γ; we want to construct a Solovay test which
contains all incomplete reals X such that Γ(A ⊕ X) = Y .5 To assist with that, we
build our own Turing functional ∆ and ensure that if Γ(A ⊕ X) = Y then either
∆(X) = Y or we can cover X in our Solovay test.

Again the idea is to use traceability to certify given computations, this time of
the form Γ(A ⊕ σ) ⊂ Y [s]. Once such a computation is certified, we will declare
that ∆(σ) computes that initial segment τ of Y which was given by Γ(A⊕σ). Three
conditions must hold in order for us to be worried by such a declaration.

(1) A changes (below the use of the Γ computation);
(2) Y changes (so that τ 6⊂ Y );
(3) A new computation Γ(A⊕σ) ⊂ Y appears (with the new versions of A and

Y .)

In this case we’d like to declare that ∆(σ) = τ ′, the new initial segment of Y ;
but τ and τ ′ are incompatible and this would make ∆ inconsistent. Note that we
do not need to worry unless all three conditions hold: if A doesn’t change (but
Y does), then Γ(A ⊕ X) = Y fails for all X extending σ; if Y doesn’t change
then the ∆ computation remains correct; and even if both A and Y change, but
a new computation with σ (or some extension of σ) does not occur, then again
Γ(A ⊕ X) = Y fails for reals X extending σ. In case all conditions hold, we would
like to enumerate σ into a Solovay test S that we build.

5Recall that a Solovay test is a c.e. collection G of intervals [σ] in Cantor space such that
∑

[σ]∈G 2−|σ| is finite. A real X ∈ 2ω is said to pass the test if X ∈ [σ] for only finitely many

[σ] ∈ G; otherwise, X is covered by the test (or contained by it).
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Instead of capturing UA, this time, for every n, we need to capture the collection
of sets X such that Γ(A⊕X) ⊇ Y ↾ n. Thus for every n we will have an infinite list
of “boxes” on which this measurement becomes finer and finer. The first obvious
obstacle is that it is not enough to ensure that for every n, the sum of errors we
make “on the nth column” is finite; we need the sum of these sums to be finite.
Thus we need to limit even the initial box in each column. We can do this if we
pick Y to be Martin-Löf random, thanks to the following result:

Fact 5.1 (Miller and Yu, [18]). If Y is a Martin-Löf random set and Γ is a Turing
functional, then there is a constant C such that for all n, the measure of the set of
sets X such that Γ(X) ⊇ Y ↾ n is at most C2−n.

In relativised form, we need Y to be A-random; but we already know that A is
low for Martin-Löf randomness.

Another issue is that for every n, we have 2n many possibilities for τ = Y ↾ n.
Even if for every one, the nth “agent” contributes about 2−n (letting the constant
C = 1 for simplicity), the total sum may be too much. We need a further layer of
delegating authority: not only from finer to coarser boxes in the same column, but
also from boxes in a certain column to ones of a previous column. The scenario is
the following: for some time, without a change in A, we get τ0, . . . , τk as possibilities
for Y ↾ n, and for each i 6 k, we aggregate about 2−n much mass of X ’s such that
Γ(A⊕X) ⊇ τi. Then a change in A occurs, which means that for all τi (except for
the current value of Y ↾ n), we would want to throw this mass into S. Clearly this
is too much. However, we note that for three distinct τi’s, at least two of τi ↾ n− 1
must be distinct as well. This means that the same phenomenon happened for
the (n − 1)st agent. If we require stringent certification, that is, to certify some
Γ(A ⊕ σ) = τ we also require certification, for all initial segments τ ′ of τ , of some
Γ(A ⊕ σ′) = τ ′ for some σ′ ⊆ σ, then the responsibility for all but at most one
of the τi’s falls with previous agents and so the contribution of the nth column in
this case could be kept below 2−n. To keep the picture tidy, we assume that Y is
a left-c.e. real, so that a cancelled τi will not return.

There is one last problem with this strategy: it is possible that in this situation,
the computations Γ(A ⊕ σi) = τi disappear, but for the responsible τ ′

i ⊂ τi, the
corresponding computation Γ(A ⊕ σi) = τ ′

i does not disappear because its A-use
is shorter. We would then not be able to charge the τi-mistake to τ ′

i ’s account.
However, we note that so far we didn’t use the third “worry condition”: that a new
σi computation appears. In case it does, the corresponding τ ′

i computation must
be incorrect as well (using the consistency of Γ), and we could make the charge we
need.

5.1. The formal construction and proof of Theorem 1.3. Let A be strongly
jump-traceable. We are given a Martin-Löf random, left-c.e. real Y (so Y ≡T ∅′),
and a Turing functional Γ. We already know (Theorem 1.1) that A is low for K,
and so is low for Martin-Löf randomness; in other words, Y is A-random. By Fact
5.1 relativised to A, we know that there is some constant c∗ such that for all n,

µ ({X ∈ 2ω : Γ(A ⊕ X) ⊇ Y ↾ n}) < 2c∗−n.

Now by replacing Y by Y ↾ [c∗,∞) (and updating Γ accordingly) we may assume
that c∗ = 0.
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As in section 4, we define a functional Ψ and get a trace 〈Tx〉 for ΨA. Again we
only enumerate, at stage s, axioms of the form Ψρ(x) = ρ where ρ ⊂ A[s]. Again
we get a constant c such that Ψ = Ψc; the trace will be bounded by a slow-growing
function h such that h(0) = c.

For every n, k < ω we have an interval of numbers Mn,k which we think of as a
(k+n+c)-dimensional cube, each side of which has length 2n2k: so the size of Mn,k

is 2(n+k)(n+k+c). The function h grows sufficiently slowly so that for all x ∈ Mn,k,
we have |Tx| < n + k + c.

We let

Rn,k = {2−nm2−k : m = 0, 1, . . . , 2k} = Rn+k ∩ [0, 2−n]

and let
R+

n,k = Rn,k \ {0}.
The coordinates of Mn,k are pairs (τ, q) where τ ∈ 2n and q ∈ R+

n,k. The idea is
that for every τ ∈ 2n we have a box Mτ,k; Mn,k is their product. We index the
elements of Mn,k:

Mn,k[0] = {xf : f : (n + k + c) → 2n × R+
n,k}.

At stage s, we have some dn,k[s] < (n+k+c) and a function gn,k[s] : dn,k → 2n×R+
n,k

which gives us the current value of Mn,k:

Mn,k[s] = {xf ∈ Mn,k[0] : gn,k[s] ⊂ f}.
For τ ∈ 2n, we let

Mτ,k[s] = {xf ∈ Mn,k[s] : for some q ∈ R+
n,k, f(dn,k) = (τ, q)}.

For τ ∈ 2n and q ∈ R+
n,k, we let

Nτ,k(q)[s] = {xf ∈ Mn,k[s] : f(dn,k) = (τ, q)}.

For any ρ ∈ 2<ω and τ ∈ 2<ω, we let

Wρ
τ = {X ∈ 2ω : Γ(ρ ⊕ X) ⊇ τ} .

If τ ⊆ τ ′ and ρ ⊆ ρ′ then Wρ
τ ′ ⊆ Wρ′

τ .
Like the universal machine, we assume that is a “nice” functional: any compu-

tation Γ(ρ ⊕ σ) = τ runs in at most min{|σ|, |ρ|} many steps, and so:

• |τ | 6 |ρ|, |σ|
• If σ is minimal such that Γ(ρ ⊕ σ) = τ then |σ| 6 |ρ|.

It follows that Wρ
τ is a clopen set which is thus presented by a finite antichain

W ρ
τ (which means that Wρ

τ = {X : ∃σ ∈ W ρ
τ (σ ⊂ X)};) the map (ρ, τ) 7→ W ρ

τ is
computable.

We let θρ
τ = µ (Wρ

τ ). We may further assume that for all ρ and all τ , θρ
τ < 2−|τ |.

For if this fails for some ρ and τ , then we know that either ρ 6⊂ A or τ 6⊂ Y . In
this case (assuming that Γ computations are given in some order), we ignore all Γ
computations that would put some θρ

τ beyond its permissible limit 2−|τ |; We will
not lose any X such that Γ(A ⊕ X) = Y .

The assumptions on Γ imply that for any τ , θρ
τ is an integer multiple of 2−|ρ|.

Also, if τ 6= 〈〉 then W〈〉
τ is empty and so θ

〈〉
τ = 0.

For any τ ∈ 2<ω and rational q, for any ν such that θν
τ > q, we let ̺ν

τ (q) be the
shortest ρ ⊆ ν such that θρ

τ > q.
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Construction. At the beginning of stage s of the construction, we are given A[s]
and Tx[s].

At the beginning of the stage, the boxes 〈Mn,k〉 will be in the standard con-
figuration for the stage, as follows. Fix n 6 s, τ ∈ 2n, some k 6 s and some
q ∈ R+

n,k.

• If q 6 θ
A[s]↾s
τ then for all x ∈ Nτ,k(q)[s] we have Ψρ(x) ↓= ρ [s] where

ρ = ̺
A[s]↾s
τ (q).

• If q > θ
A[s]↾s
τ then for all x ∈ Nτ,k(q) [s] we have ΨA[s](x)↑ [s].

Further, for all pairs (n, k) such that k > s or n > s, for all x ∈ Mn,k [s], no
definition of Ψ(x) (for any oracle) was ever made.

Let ρ ⊆ A[s] ↾ s. We say that ρ is semi-confirmed at some point of stage s if at
that point, for all x such that Ψρ(x)↓= ρ [s] we have ρ ∈ Tx at that point. We say
that ρ is confirmed if every ρ′ ⊆ ρ is semi-confirmed. Again, the empty string is
always confirmed.

At the beginning of stage s, we speed-up the enumeration of all sets to get their
versions A[s + 1], Tx[s + 1], so that for all ρ ⊆ A[s] ↾ s, either ρ becomes confirmed
or is no longer an initial segment of A[s + 1].

Next, for any n < s and k < s, we look for some τ ∈ 2n and some q ∈ R+
n,k

such that q 6 θ
A[s]↾s
τ and such that for ρ = ̺A[s]↾s(q) we have that ρ was confirmed

at the beginning of the stage, but ρ 6⊂ A[s + 1]. If there are such τ and q then
we pick one such pair and extend gk by setting gk[s + 1](dk[s]) = (τ, q). Thus
Mn,k[s + 1] = Nτ,k(q)[s].

Finally, we define Ψ as necessary so that the standard configuration will hold at
the beginning of stage s + 1.

The justification for why the construction runs smoothly is identical to that of
the previous section.

Verification. Again let ρ∗[s] be the longest common initial segment of both A[s] ↾ s
and A[s + 1].

We define a “functional” ∆ – it will not be quite consistent, because of us be-
lieving false Γ(A ⊕ σ) computations. We let

∆ =
{

(σ, τ) : ∃s
(

τ ⊂ Y [s] & σ ∈ W ρ∗[s]
τ

)}

.

For any X ∈ 2ω, we let

∆X = {τ : ∃σ ⊂ X [(σ, τ) ∈ ∆]} .

As ∆ may be inconsistent in parts, ∆X may fail to be an element of 26ω. In fact,
it is a tree:

Lemma 5.2. For all X, ∆X is closed under taking initial segments.

Proof. Suppose that (σ, τ) ∈ ∆, witnessed by some stage s. Suppose that τ ′ ⊂ τ .

Then certainly τ ′ ⊂ Y [s]. Because σ ∈ W
ρ∗[s]
τ , [σ] ⊂ Wρ∗[s]; we know that

Wρ∗[s]
τ ⊆ Wρ∗[s]

τ ′ and so there is some initial segment σ′ of σ in W
ρ∗[s]
τ ′ ; so

(σ′, τ ′) ∈ ∆. �
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Lemma 5.3. Let X ∈ 2ω and suppose that Γ(A ⊕ X) = Y . Then Y is a path on
∆X .

Proof. Let τ ⊂ Y . Let ρ ⊂ A be some finite initial segment such that Γ(ρ⊕X) ⊇ τ .
Let s > |ρ| be a late enough stage so that ρ ⊂ A[s] (and so ρ ⊂ A[s + 1]); and

τ ⊂ Y [s]. Then ρ ⊂ ρ∗[s] and so X ∈ Wρ∗[s]
τ ; so there is some σ ⊂ X such that

σ ∈ W
ρ∗[s]
τ ; so (σ, τ) ∈ ∆. �

Of course, ∆ is c.e. and ∆X is computable from X , and so if Y is an isolated
path on ∆X then Y 6T X and we’re done. We show that if Γ(A ⊕ X) = Y and Y
is not an isolated path on ∆X then X fails some Solovay test S.

For any k 6 s, let qτ,k[s] be the greatest element of R|τ |,k not greater than

θ
ρ∗[s]
τ ; again, as θ

ρ∗[s]
τ is a multiple of 2−s, we have qτ,s[s] = θ

ρ∗[s]
τ for all τ . Also,

if τ 6= 〈〉 then qτ,0[s] = 0 because R|τ |,0 = {0, 2−|τ |} and θ
ρ∗[s]
τ < 2−|τ |. We let

ντ,k[s] = ̺
ρ∗[s]
τ (qτ,k[s]). Again if k < k′ 6 s then ντ,k[s] ⊆ ντ,k′ [s]; θ

ντ,s[s]
τ = θρ∗

τ and
ντ,0[s] = 〈〉.

We get the same calculation:

Lemma 5.4. Let τ ∈ 26s. For all k ∈ {1, 2, . . . , s},
θ

ντ,k[s]
τ − θ

ντ,k−1 [s]
τ 6 2 · 2−|τ |2−k.

The proof is identical to that of Lemma 4.4.
Fix n > 0 and k, t < ω. Let τ = (Y [t] ↾ n − 1)a0. If ντ,k[t] 6⊂ A[t + 2] then we

let Sn,k,t be the collection of all those strings σ ∈ 2t such that

[σ] ⊂ Wντ,k[t]
τ \Wντ,k−1[t]

τ .

Note that because both Wντ,k[t]
τ and Wντ,k−1[t]

τ are the union of basic clopen sets
determined by strings of length at most t, the definition of Sn,k,t is fine enough so
that

Sn,k,t =
⋃

{[σ] : σ ∈ Sn,k,t} = Wντ,k[t]
τ \Wντ,k−1[t]

τ .

If ντ,k[t] ⊂ A[t + 2] then let Sn,k,t = ∅.
Again we get (Lemma 5.4 for τ = (Y [t] ↾ n − 1)a0) that for all n, k and t, the

mass of Sn,k,t,
∑

σ∈Sn,k,t

2−|σ| = µ (Sn,k,t) ,

is at most 2 · 2−(n+k).
The following is also familiar:

Lemma 5.5. Suppose that Sn,k,t 6= ∅. Then Mn,k[t + 1] 6= Mn,k[t + 2].

Proof. Let τ = (Y [t] ↾ n − 1)a0 and let q = qτ,k[t]. Then q > 0 because otherwise

ντ,k[t] = 〈〉 and then (as |τ | > 0) we’d have θ
ντ,k [t]
τ = 0 and so Sn,k,t = ∅. Also,

q < 2−|τ | because θ
ρ∗[t]
τ < 2−|τ |.

As in the proof of Lemma 4.6, we get that ντ,k[t] = ̺
A[t]↾t
τ (q) and it is confirmed

at the beginning of stage t+1, because it is a substring of ρ∗[t]. On the other hand,
we assume that ντ,k[t] 6⊂ A[t+2]. Then (τ, q) witness Mn,k[t+1] 6= Mn,k[t+2]. �
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Let S =
⋃

n>0,k<ω,t<ω Sn,k,t. Then the mass of S,
∑

σ∈S

2−|σ| 6
∑

n,k

2(c + n + k)2−(n+k)

is finite (the series grows more slowly than
∑

m 2(c +m)m22−m.) We end with the
following.

Lemma 5.6. Suppose that Γ(A ⊕ X) = Y but that Y is a non-isolated path on
∆X . Then there are infinitely many initial segments of X in S.

Proof. Let t0 < ω. We will show that there is some initial segment σ of X in some
Sn,k,t for some t > t0 (in other words, that X ∈ Sn,k,t); as |σ| = t we’d be done.

Let τ0 be some initial segment of Y which lies to the right of Y [t0]. By assump-
tion, there is some τ ′ ∈ ∆X which is not an initial segment of Y but τ ′ ⊃ τ0. Let
τ1 be the common initial segment of τ ′ and Y ; so τ1 ⊇ τ0 and so has length at least
t0.

Let s be a stage which witnesses that τ ′ ∈ ∆X : so τ ′ ⊂ Y [s] and X ∈ Wρ∗[s]
τ ′ .

Also, as τ0 ⊆ τ ′ ⊂ Y [s] we must have s > t0.
Since Y is left-c.e., it must be the case that τ ′ lies to the left of Y , and so

τ ′ ⊇ τa
1 0 (and Y ⊃ τa

1 1.) Note that for all t > s we have τ1 ⊂ Y [t]. Let τ = τa
1 0.

We know that X ∈ Wρ∗[s]
τ ′ ⊆ Wρ∗[s]

τ . Let ρ be the shortest initial segment of
ρ∗[s] such that X ∈ Wρ

τ .
As ρ ⊆ ρ∗, we know that ρ ⊂ A[s], A[s + 1]; but we cannot have ρ ⊂ A (as

Γ(ρ ⊕ X) ⊥ Y ). Thus there is a stage t > s such that ρ ⊂ A[t], A[t + 1] but
ρ 6⊂ A[t + 2].

Again we know that ντ,0[t] = 〈〉 and that Wρ∗[t]
τ = Wντ,s[t]

τ ; so X ∈ Wντ,t[t]
τ ;

so ρ ⊆ ντ,t[t] and ρ ) 〈〉. It follows that there is a unique k 6 t such that

ντ,k−1[t] ( ρ ⊆ ντ,k[t]. Thus X ∈ Wντ,k[t]
τ \Wντ,k−1[t]

τ .
As ρ 6⊂ A[t + 2], we have ντ,k[t] 6⊂ A[t + 2]. As we noticed before, Y [t] ⊃ τ1 and

so τ = (Y ↾ |τ | − 1)a0. All the conditions for setting S|τ |,k,t 6= ∅ and X ∈ S|τ |,k,t

are now fulfilled and we’re done. �
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machines. Proceedings of Computational Prospects of Infinity, World Scientific, to appear.
[6] Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity. Springer-

Verlag, to appear.
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