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Abstract. We characterize the class of c.e. degrees that bound a critical triple

(equivalently, a weak critical triple) as those degrees that compute a function

that has no ω-c.e. approximation.

1. Introduction

This paper is concerned with the long term programme which attempts to relate
computational complexity as measured by, say, Turing reducibility, with definability
within the structures of computability theory.

In particular, we will be concerned with definability issues within the computably
enumerable Turing degrees. In terms of abstract results on definability, there has
been significant success in recent years, culminating in Nies, Shore, Slaman [NSS98],
where the following is proven.

Theorem 1.1 (Nies, Shore, Slaman [NSS98]). Any relation on the c.e. degrees
invariant under the double jump is definable in the c.e. degrees iff it is definable in
first order arithmetic.

The proof of Theorem 1.1 involves interpreting the standard model of arithmetic
in the structure of the c.e. degrees without parameters, and a definable map from
degrees to indices (in the model) which preserves the double jump. The beauty of
this result is that it gives at one time a definition of a large class of relations on
the c.e. degrees.

Theorem 1.1 has two shortcomings. One is the reliance on the invariance of the
relation under the double jump. It follows that no set of c.e. degrees that contains
some, but not all, low2 (or non-low2) degrees, can be defined using the theorem;
these are the kinds of sets we investigate here.

Another issue is that the definitions provided by the theorem are not natural
definitions of objects in computability theory (as outlined in Shore [Sho00].) Here
we are thinking of results such as the following. (We refer the reader to Soare
[Soa87] for unexplained definitions in the sequel, since they are used to provide
background for the results of the current paper.)

Theorem 1.2 (Ambos-Spies, Jockusch, Shore, and Soare [ASJSS84]). A c.e. degree
a is promptly simple iff it is not cappable.
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Theorem 1.3 (Downey and Lempp [DL97]). A c.e. degree a is contiguous iff it is
locally distributive, meaning that

∀a1,a2,b(a1 ∪ a2 = a ∧ b 6 a→
∃b1,b2(b1 ∪ b2 = b ∧ b1 6 a1 ∧ b2 6 a2))

holds in the c.e. degrees.

Theorem 1.4 (Ambos-Spies and Fejer [ASF01]). A c.e. degree a is contiguous iff
it is not the top of the non-modular 5 element lattice N5 (the pentagon) in the c.e.
degrees.

Theorem 1.5 (Downey and Shore [DS95]). A c.e. truth table degree is low2 iff it
has no minimal cover in the c.e. truth table degrees.

At the present time, as articulated in Shore [Sho00], there are very few such
natural definability results.

In this paper, and in the sequel [DGa], we will give some new natural definability
results for the c.e. degrees. Moreover, these definability results will be related to
the central topic of lattice embeddings into the c.e. degrees as analysed by, for
instance, Lempp and Lerman [LL97], Lempp, Lerman and Solomon [LLS], and
Lerman [Ler85]. Additionally our new definability results will allow us to tie a
number of natural constructions together in new degree classes in the same way
as the array noncomputable degrees did in Downey, Jockusch and Stob [DJS90,
DJS96]. Here the reader should recall that a degree a is called array noncomputable
iff for all functions f 6wtt ∅′ there is a a function g computable from a such that

∃∞x(g(x) > f(x)).1

To do this we will introduce a new degree class meant to capture a notion of
“multiple permitting” which is stronger than array noncomputability, but weaker
than non-low2-ness.

Definition 1.6. We say that a c.e. degree a is totally ω-c.e. if for all functions
g 6T a, g is ω-c.e. That is, there is a computable approximation g(x) = lims g(x, s),
and a computable function h, such that for all x,

|{s : g(x, s) 6= g(x, s+ 1)}| < h(x).

We remark that the key difference between being totally ω-c.e. and being array
computable is that for the latter, the function h(x) = x can always be chosen
(Downey, Jockusch, Stob [DJS96]).

A central notion for lattice embeddings into the c.e. degrees is the notion of a
weak critical triple. The reader should recall from Downey [Dow90] and Weinstein
[Wei88] that three incomparable elements a0,a1 and b in an upper semilattice form
a weak critical triple if a0 ∪ b = a1 ∪ b and there is no c 6 a0,a1 with a0 6 b ∪ c.
We say that incomparable a0,a1 and b in an upper semilattice form a critical triple
if a0∪b = a1∪b and every c below both a0 and a1 is also below b.2 These notions

1Of course, this was not the original definition of array noncomputability, but this version
from [DJS96] captures the domination property of the notion in a way that shows the way that it

weakens the notion of non-low2-ness, in that a would be non-low2 using the same definition, but
replacing 6wtt by 6T .

2This definition becomes more natural in a lattice, where we can write a0 ∩ a1 6 b. We recall

that a finite lattice is join semidistributive iff it is principally indecomposable iff it contains no
copy of M5 iff it contains no critical triple iff it contains no weak critical triple. See [LLS].
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Figure 1. The lattice M5

capture the need for “continuous tracing” which is used in an embedding of the
lattice M5 into the c.e. degrees (first embedded by Lachlan [Lac72]).

Indeed the first nonembeddability result was by Lachlan and Soare [LS80] who
demonstrated that an “infimum into an M5” could not be embedded in the c.e.
degrees by showing that the lattice S8 below could not be embedded (as suggested
by Lerman.)

The necessity of the “continuous tracing” process was further demonstrated by
Downey [Dow90] and Weinstein [Wei88] who showed that there are initial segments
of the c.e. degrees where no lattice with a (weak) critical triple can be embedded.
It was also noted in Downey [Dow90] that the embedding of critical triples seemed
to be tied up with multiple permitting in a way that was similar to non-low2-ness.
Indeed this intuition was verified by Downey and Shore [DS96] where it is shown
that if a is non-low2 then a bounds a copy of M5.

The notion of non-low2-ness seemed too strong to capture the class of degrees
which bound M5’s but it was felt that something like that should suffice. On the
other hand, Walk [Wal99] constructed an array noncomputable c.e. degree bounding
no weak critical triple, and hence it was already known that array non-computability
was not enough for such embeddings. We prove the following definitive results.

Theorem 1.7. Suppose that a is totally ω-c.e. Then a bounds no weak critical
triple.

Theorem 1.8. Suppose that a is not totally ω-c.e. Then a bounds a critical triple.

Corollary 1.9. The following are equivalent for a c.e. degree a:

(1) a bounds a critical triple;
(2) a bounds a weak critical triple;
(3) a is not totally ω-c.e.

Hence the class of totally ω-c.e. degrees is naturally definable in the c.e. degrees.
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Figure 2. The lattice S8

This result shows also that the array computable c.e. degrees form a proper
subset of the totally ω-c.e. degrees:

Corollary 1.10. There are c.e. degrees that are totally ω-c.e. and not array com-
putable.

Proof. Walk [Wal99] constructed an array noncomputable degree a below which
there was no weak critical triple. Such a degree must be totally ω-c.e. �

Another corollary answers a question of André Nies. Recall that a set A is called
superlow iff A′ ≡tt ∅′.
Corollary 1.11. The low degrees and the superlow degrees are not elementarily
equivalent.

Proof. As Schaeffer [Sch98] and Walk [Wal99] observe, all superlow degrees are
array computable, and hence totally ω-c.e. Thus we cannot put a copy of M5

below one. On the other hand there are indeed low copies of M5. �

One of the important aspects of the class of array noncomputable degrees is that,
in the same way that the high degrees capture the combinatorics of a wide class of
constructions such as the maximal set construction, the array computable degrees
also capture the combinatorics of a wide class of constructions. These include con-
structions of perfect thin Π0

1 classes ([CCDH01]), incomparable separating classes
([DJS90]), computably enumerable degrees containing sets of infinitely often maxi-
mal Kolmogorov complexity (Kummer [Kum]), and those computably enumerable
degrees with strong minimal covers (Ishmukhametov [Is]), to name but a few.
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Given the nature of the totally ω-c.e. degrees, we would therefore hope that
this class will also encode the combinatorics of other constructions aside from the
critical triple one.

In this paper we make a modest contribution to this program. In Downey and
Stob [DS86], the authors observed that there seemed to be a deep connection be-
tween the structure of the c.e. weak truth table degrees within a c.e. Turing degrees
and lattice embeddings. To wit, Downey and Stob showed that if a c.e. Turing
degree a is the top of a 1-4-1 lattice with bottom degree 0 then a contains a pair
of c.e. sets A1 and A2 such that the weak truth table degrees of A1 and A2 form
a minimal pair. In fact, the original proof of the construction of a pair of noncom-
putable c.e. sets A1 ≡T A2 forming a wtt-minimal pair was a direct one, and it
was only when the authors noticed that the combinatorics of the construction were
very similar to the embedding of 1-3-1 that the proof using 1-4-1 was found.

In this paper, in the same spirit, we show that a weak truth table analog of a
weak critical triple also captures the combinatorics of being (not) totally ω-c.e. We
can make two definitions that are analogous to the weak and strong varieties of
critical triples.

Definition 1.12. Three c.e. sets A0, A1 and B form a wtt triple if A0 ≡T A1,
Ai 
T B, and for all C 6wtt A0, A1 we have C 6wtt B. The sets A0, A1, B form
a weak wtt triple if A0 ≡T A1, Ai 
T B, and there is no C 6wtt A0, A1 such that
A0 6T B ⊕ C.

Theorem 1.13. The following are equivalent for a c.e. degree a:
(1) There are A0, A1, B 6T a which form a wtt triple;
(2) There are A0, A1, B 6T a which form a weak wtt triple;
(3) a is not totally ω-c.e.

In one sequel to the present paper, Downey and Greenberg define another class
of degrees based on ordinal notations for ωω which captures the combinatorics of
the construction of a 1-n-1 lattice (for n ≥ 3) and for the construction of a pair
A1 ≡T A2 of c.e. sets with an infimum C <T Ai in the wtt-degrees, and a number
of other constructions.

In another sequel to the present paper, Downey and Greenberg show that the
classs of totally ω-c.e. degrees is related to presentations of left c.e. reals. Recall that
a real α is called left c.e. if it is the limit of a computable nondecreasing sequence of
rationals, and that a c.e., prefix free set of strings A presents α if α =

∑
σ∈A 2−|σ|.

Theorem 1.14 (Downey and Greenberg [DGb]). A degree a is not totally ω-c.e.
iff there exists a left c.e. real α 6T a and a c.e. set B <T α such that if A presents
α, then A 6T B.

In yet another sequel to the present paper, Barmpalias, Downey and Greenberg
([BDG]) demonstrate that the class of totally ω-c.e. degrees captures a number of
constructions. For example, it is shown that a is totally ω-c.e. iff every set in a is
weak truth table reducible to a ranked set. Finally in another paper, Brodhead,
Downey, Ng, and Reimann demostrate that for left-c.e. reals, totally ω-c.e. aligns
itself with a notion of randomness (finite randomness).

Thus it is already clear that the notions we introduce in this and subsequent
papers genuinely capture not just the combinatorics of a particular construction,
but a wide class of constructions.
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2. Constructions of critical triples

The goal of this section is to give a proof of Theorem 1.8. Recall how Downey
and Shore’s proof ([DS96]), that the M5 can be embedded below any non-low2

degree, is an elaboration on Lachlan’s original construction of an embedding of M5

into the c.e. degrees; working below a degree that permits sufficiently, they add a
bottom set which codes these permissions. We aim to pursue a similar strategy; so
first we need to give a “pure” construction of a critical triple.

2.1. A degenerate critical triple. Unlike M5, when insisting that a bottom of a
critical triple a0 ∩ a1 is 0, we get an object much simpler than the general notion.
Nevertheless the construction needs the continuous tracing that is central to the
class of constructions under consideration.

Theorem 2.1. There are incomparable c.e. degrees a0,a1 and b such that a0 and
a1 form a minimal pair, and such that for i < 2 we have ai 6 b ∪ a1−i.

To prove the theorem, we enumerate sets A0, A1 and B that meet the following
requirements:

NΦ: If Φ(A0) = Φ(A1) = Z are total and equal then Z is computable.
PΨ,i: Ψ(B) 6= Ai (i < 2).

Globally, we need to ensure that for i < 2, Ai 6T B ⊕A1−i.

Remark 2.2. Meeting the requirements ensures that the sets are all incomparable.
We have Ai 
T B, so neither Ai is computable; so they form a minimal pair
(and in particular are incomparable). We cannot have B 6T Ai or we’d have
A1−i 6T B ⊕Ai ≡T Ai, which we ruled out.

Discussion. Our starting point is the standard tree construction of a minimal pair
(see [Soa87]); nodes (agents) that work for some NΦ requirement ensure that “dan-
gerous” numbers cannot enter both A0 and A1 at the same stage, by allowing only
one number to be enumerated into A0 or A1 during an expansionary stage.

The global requirements are met using a tracing procedure. Thus, any number
that is appointed and targeted to enter a set Ai, must have a trace which is targeted
for either A1−i or for B. Suppose that x is a follower for some node which works for
a requirement PΨ,i. Until x is realised (Ψ(B, x) ↓= 0), we cannot appoint a trace
for B, since it would be smaller than the anticipated Ψ-use. Hence a trace must
be appointed for A1−i. That trace, in turn, must get a trace for Ai, and so on; we
get an entourage that consists of x and its descendants via tracehood. When x is
realised, we want to enumerate x and its entourage into the target sets; but since
the targets are alternating Ai, A1−i, Ai, . . . , we need to peel the entourage off one
at a time, so that the restriction imposed by minimality requirements is obeyed. Of
course we need to keep appointing traces; if we keep appointing for Ai and A1−i,
we’ll never get to peel off all of the entourage. But since x is realised, we can now
appoint all traces for B.

Construction. We use a tree of strategies. Each level of the tree is devoted to
meeting one requirement. Nodes ρ that work for some NΦ have two successors,
ρa∞ and ρaf (the former is stronger). Nodes that work for a P -requirement have
only one successor.

At stage s, inductively construct the path of accessible nodes.
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Suppose that ρ is an accessible node that works for NΦ. Let

`(Φ)[s] = max{x : ∀y < x (Φ(A0, y)↓= Φ(A1, y) [s])}

be the length of agreement between Φ(A0) and Φ(A1) at s. If `(Φ)[s] is greater
than the last expansionary stage t then s is declared to be expansionary, and we
take the infinite outcome (i.e. ρa∞ is accessible). Otherwise, we take the finite
outcome (ρaf is accessible).

Suppose now that η is an accessible node that works for PΨ,i. If η is satisfied, or
if it has a follower x which is not realised, let the unique successor of η on the tree
be accessible. Otherwise (we say η requires attention), we act as follows and then
halt the stage.

• If η has no follower (this is the first time we visit η since it was last ini-
tialised), then we appoint a fresh follower x for η.

• If η has a realised follower, let x be η’s follower, and suppose that x’s
entourage is x = x0, x1, . . . , xk. If xk is targeted for B, enumerate it into
B, and enumerate xk−1 into the set for which it is targeted. Otherwise, just
enumerate xk into the set for which it is targeted (this is the first stage at
which we see x realised). In either case, appoint a new, large, last trace to
x’s entourage (to be either xk−1 or xk), and target it for B. If, however, we
just enumerated x into Ai, then no new trace is defined; rather, η declares
itself satisfied.

At the end of the stage, initialise all nodes that are weaker than the last accessible
node (including its extensions.) [If a node η working for some P -requirement is
initialised, it abandons its follower and all of its entourage, and declares itself
unsatisfied.] Finally, for every entourage (for any node on the tree) whose last
element y is targeted for some Aj , we add a new (large) trace for y at the end, and
target it for A1−j .

Verifications. As usual, the true path is the path of nodes that are leftmost with
respect to being accessible infinitely often.

Lemma 2.3. Suppose that η is a node on the true path that works for PΨ,i. If
there is a stage after which η is not initialised, then η meets its requirement and
requires attention only finitely often.

Proof. Let r∗ be the last stage at which η is initialised. Let s0 be the least stage
after r∗ at which η is visited. At stage s0 we appoint a follower x for η; x is never
cancelled. If we never see x realised during a stage at which η is accessible, then η
never requires attention again and the requirement is met.

Suppose that at some stage s1 > s0, η is accessible and sees x realised. The
last element of x’s entourage is enumerated into its target set, and the entourage
receives a last trace xk targeted for B. We first see that the computation Ψ(B, x)[s1]
realizing x is correct. This is because nodes that are weaker than η are initialised
at stage s1, and later traces appointed are larger than the use; and nodes stronger
than η don’t enumerate numbers into B after stage r∗. Finally, all the traces that
η appoints that are targeted for B are appointed no earlier than stage s1 and so
too are larger than the use.

At subsequent stages, whenever η is accessible, it is still realised, and the two
current last elements of x’s entourage are enumerated into their target sets. Thus
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at each such stage, the length of x’s entourage shrinks by 1. Eventually x will be
enumerated into Ai and η becomes satisfied, and never requires attention again. �

As a result, by induction we can see that every P -node on the true path is not
initialised infinitely often, and meets its requirement.

Lemma 2.4. Every NΦ requirement is met.

Proof. Let ρ be a node on the true path that works for NΦ. Assume that Φ(A0) =
Φ(A1) = Z are total and equal. The familiar argument for showing that Z is
computable follows since η is eventually never initialised; at every η-expansionary
stage, at most one number is enumerated into either A0 or A1; and nodes that
enumerate numbers into sets between expansionary stages are initialised during
expansionary stages. �

Lemma 2.5. For i < 2, Ai 6T B ⊕A1−i.

Proof. Consider any x < ω. If at stage x + 1, x is not appointed as an element of
some entourage which is targeted for Ai, then x /∈ Ai. Otherwise, at stage x+1, x is
appointed a trace y0, targeted for B or for A1−i. If it is targeted for B, then x ∈ Ai
iff y0 ∈ B. If it is targeted for A1−i, and y0 /∈ A1−i, then x /∈ Ai. Otherwise, we
can find a stage at which y0 is enumerated into A1−i; at that stage, x is appointed
a trace y1 targeted for B, and again x ∈ Ai iff y1 ∈ B. �

2.2. The proof of Theorem 1.8. Let D be a c.e. set that computes a function g
which is not ω-c.e.; let Γ be a Turing functional such that Γ(D) = g. We enumerate
sets B,A0, A1. The requirements to meet are:

NΦ: If Φ(A0) = Φ(A1) = Z are total and equal then Z 6T B.
PΨ,i: Ψ(B) 6= Ai (i < 2).

We also ensure that for i < 2, Ai 6T B ⊕ A1−i. Permitting will be used to ensure
Ai, B 6T D.

Remark 2.6. The requirements ensure that the degrees of Ai and B form a critical
triple. To see this we just need to see that B,A0 and A1 are all incomparable. We
cannot have Ai 6T A1−i; for then we’d have Ai 6T Ai, A1−i and so Ai 6T B,
which we ruled out. But then (as before), we also cannot have B 6T Ai.

Discussion. We now describe how to add permitting to the previous construction.
Once we decide how to grant permissions, the mechanism of implementing this
decision is familiar: instead of enumerating a pair of numbers (x, y) (where x is
targeted for some Ai and its trace y is targeted for B) into their target sets, we first
place the pair in a permitting bin and wait for permission. Only when permitted
(and since permissions will not be granted cofinally, at the stage at which x is
permitted, the node η that appointed x may not be accessible) do we enumerate
the pair; and then appoint a new B-trace to the end of the remaining entourage.
Since the pair may never get permission, the node η must in the meantime appoint
more and more followers and hope to succeed on one of them.

The difficulty lies in the fact that to succeed on a follower x, η must receive several
permissions for x. This is why simple permitting will not succeed: even though in
general, η will receive permission infinitely many times, so infinitely many followers
will receive permission at least once, it is possible that no follower will receive
enough permissions to enumerate all of its traces. [So if we get confinally many
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permissions, as in high permitting, the construction works in a straightforward
way. This shows that every high degree bounds a critical triple (which is of course
not new).] Also, we cannot bound in advance how many permissions each follower
needs; we need to wait until a follower is realised to know how long the eventual
entourage is going to be (as we soon see, if we could bound this length in advance,
then every array noncomputable degree would bound a critical triple).

We want to argue that if no follower receives enough permissions then we can
approximate g in an ω-c.e. fashion. To do this, every follower x receives a permitting
number n (say, the nth follower appointed receives the number n.) We have a ∆0

2-
approximation g[s] for g that is generated from an enumeration of D via Γ; thus
changes in the approximation are tied to D-changes. We wait until x is realised;
we then know the number of permissions we need. This is computable (given n).
And so we can permit x whenever there is a change in our guess for g(n). If not
enough permissions are given then we know a bound on how many times this guess
can change. Note that we use the fact that D is c.e., even though the permissions
are granted via g[s]-changes; to know when permissions will no longer be granted,
D needs to know that a correct Γ(n)-computation is permanent.

There is one last complication. Whenever we act for a follower x, we need to
cancel all weaker (larger) followers for the same node η; this is because the com-
putation realizing a weaker follower may have use which is greater than a B-trace
in x’s entourage. This cancellation leaves gaps in our threatened approximation
for g; we may receive all the permissions on permitting numbers that are assigned
to cancelled followers. The solution is for the cancelling follower x to assume re-
sponsibility for approximating g on all of the permitting numbers of the followers
that were cancelled because of x (sometimes you have to pay even for inflicting
finite injury). To make this work we need to incorporate the number of permissions
required by x into the bound on the number of changes for g[s] that the weaker
follower promises. Now, x receives the permissions that are granted to cancelled
followers (so the price paid buys quite a lot).

Construction. For each follower x (appointed by some P -node η), we associate a
permission interval I(x). This is an interval of natural numbers; its left end is fixed
from the time at which x is appointed, but its right end may grow with time (but
only finitely often). Suppose that at some stage s, elements of x’s entourage are
placed in the permitting bin, and that at stage t > s, these elements are still in the
bin. Then we say that x is permitted at stage t if for some n ∈ I(x)[t] (we will in fact
have I(x)[t] = I(x)[s]), we have g(n)[s] 6= g(n)[t]. Here g[s] is a ∆0

2 approximation
for g that is obtained by a computable enumeration of D via applying Γ.

At the beginning of stage s, if there are any permitted followers, then let x be the
strongest one. Let η be the node that appointed x. We enumerate those elements
of x’s entourage that lie in the permitting bin into their target sets. We initialise
all nodes weaker than η.

• If the follower x has not been just enumerated, then we appoint a new B-
trace at the end of x’s remaining entourage. We cancel all η-followers y that
are weaker (greater) than x. For each such y, redefine I(x) := I(x) ∪ I(y).
• If the follower x has just been enumerated, then all followers for η are

cancelled, and η is declared to be satisfied.

Next, we construct the path of accessible nodes.
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Suppose that ρ is an accessible node that works for NΦ. We define the length of
agreement and expansionary stages exactly as in the previous subsection; we act in
the same way.

Suppose that η is an accessible node that works for PΨ,i. If η is satisfied, or if it
has an unrealised follower, then η does nothing and its only child is accessible.

Otherwise:
• If all followers for η have some numbers waiting in the permitting bin (this

includes the case that there are no followers appointed), then η appoints a
new (large) follower x. Let n be the least number that is not in I(y) for
any other η-follower y (x will be the (n+ 1)st follower appointed for η since
the last time at which η was initialised,) and define I(x) = {n}.
• Suppose that there is a follower x that is realised, but no elements of x’s en-

tourage lie in the permitting bin (necessarily x will be η’s weakest follower.)
If the last element of x’s entourage is not targeted for B, appoint a new
B-trace for the end of the entourage (this happens only at the first time at
which we see x realised). Place the last two elements of x’s entourage in
the permitting bin.

At the end of the stage, initialise nodes weaker than those accessible. For every
entourage whose last element is targeted for some Ai, appoint a new end trace,
targeted for A1−i.

Verifications. Define the true path as usual.

Lemma 2.7. Suppose that η is a P -node on the true path, and suppose that after
some stage, η is not initialised. Then η requires attention finitely often and meets
its requirement.

Proof. Let r∗ be the last stage at which η is initialised.
It is easy to see (by induction on the stages) that at any stage, all but η’s weakest

follower are realised and have elements of their entourage waiting in the permitting
bin. Also, if at some point η is declared satisfied then indeed the requirement is
met; this is exactly as before.

Suppose that η requires attention infinitely often. Every follower that η appoints
receives attention only finitely many times. The argument is as before: after being
realised, a follower’s entourage keeps shrinking (in this construction, it shrinks after
two times it receives attention: once to put elements in the permitting bin, and
then when they are enumerated). Indeed, if we let mx be the length of a follower
x’s entourage when it receives its first B-trace, then x receives attention at most
2mx + 1 many times. So there are infinitely many followers appointed.

So for every n < ω there is a follower xn which when appointed receives n as its
permitting number.

We define an approximation for g as follows: at stage s > r∗, if some follower x
for η puts numbers into the permitting bin, and n ∈ Iη(x)[s], then guess that g(n)
is g(n)[s].

Every follower that is appointed is either cancelled or eventually realised (and
equipped with a B-trace). Otherwise, some x is appointed and never realised when
η is accessible (and never cancelled); after the stage at which x was appointed, η
never receives attention.

So to bound the number of changes we make on our guess for g(n), go to the
least stage s at which xn is either cancelled or receives a B-trace. Then after s we
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do not make more than
∑
my guesses for g(n), where y ranges over followers for η

at stage s. This is effective.
The approximation is correct. There is a smallest follower x such that n ever

enters the permitting interval Iη(x); say after stage tn we always have n ∈ Iη(x).
The follower x is never enumerated into Ai, because in that case η would be satisfied.
Also, it is never cancelled. The node η is accessible unboundedly many times, and
so the only possible final outcome for x is that at some last stage sx, some elements
of x’s entourage are placed in the permitting bin and x is never permitted later. At
stage sx we guess that g(n) = g(n)[sx] and we never change our guess. The value
must be correct because otherwise there is some t > sx such that g(n)[sx] 6= g(n)[t];
but then x is permitted at t.

Thus we get an ω-c.e. approximation for g; this is a contradiction. �

Again, no node on the true path is initialised infinitely many times. To see
this we need to note that if σ is a node on the true path, then only finitely many
nodes to its left are ever accessible; each one puts finitely many numbers into the
permitting bin, and so eventually, none of these nodes initialises σ.

Lemma 2.8. Ai, B 6T D.

Proof. Work effectively with oracle D. To find out if some number y will ever enter
a set Ai or B, go to stage y and see if it is part of some entourage of a follower x
for some node η. If not, then y does not enter any set.

Let t0 = y. For every n ∈ Iη(x)[t0] we can find a stage sn at which the
computation Γ(D,n) is correct; n will not be a cause for permission for x after
stage sn (here we use the fact that D is c.e.). Of course, it is possible that at
t1 = max{sn : n ∈ Iη(x)[t0]} we have Iη(x)[t1] 6= Iη(x)[t0]. But then we repeat the
process and let t2 = max{sn : n ∈ Iη(x)[t1]}. Since Iη(x) only grows finitely many
times (when x receives attention), we eventually get some stage t∗ that has the
property t∗ > max{sn : n ∈ Iη(x)[t∗]} (we assume that x is not cancelled before
t∗.) We show that no numbers of x’s entourage are enumerated into any sets after
stage t∗.

Suppose that at the beginning of stage t∗, there is some part of x’s entourage
waiting in the permitting bin. By induction on s > t∗ we show that x does not
receive attention at s. If s > t∗ is the least stage at which x receives attention,
then we know that Iη(x)[s] = Iη(x)[t∗]. But at s, x must be permitted via some
n ∈ Iη(x), contradicting s > t∗ > sn.

Another possibility is that at t∗, x still has no B-trace. But then we know that
x is the last follower appointed by η up to stage t∗. If at some stage s > t∗, x
will receive attention, then since there will be no weaker followers for η at s we
will still have Iη(x)[s + 1] = Iη(x)[t∗]. At s, elements of x’s entourage are put in
the permitting bin. Now the same inductive argument shows that x never receives
attention after s, and so x does not enumerate numbers into sets after t∗.

Finally it is possible that at t∗, x has a B-trace, but the entire entourage is
waiting at the node η. Let r 6 t∗ be the last stage up to t∗ at which x received
attention (at r, some elements of x’s entourage were permitted.) Then η is not
accessible between r and t∗, because at the next stage after r at which η is accessible
some follower y 6 x for η must receive attention. It follows that at t∗, x is the
weakest follower of η. Again, the inductive argument above shows that x never
enumerates any numbers into any set after t∗. �
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For i < 2, Ai 6T B⊕A1−i; the argument is exactly as in the previous subsection.

Lemma 2.9. Every N -requirement is met.

Proof. Suppose that the hypothesis of NΦ holds. Let ρ be the node on the true
path that works for NΦ. We know that ρa∞ is on the true path (there are infinitely
many ρ-expansionary stages).

A ρ-expansionary stage s is called ρ-good if no number waiting in the permitting
bin at stage s (more precisely, at the second part of the stage at which the accessible
nodes are calculated, after numbers may have entered sets but before numbers are
placed in the bin) will ever be enumerated into a set. Note that B can effectively
recognise ρ-good stages, because all numbers in the bin have B-traces.

We show that there are infinitely many stages that are ρ-good. Let s∗ be a stage
after which ρ is never initialised. Let s > s∗ be any stage; let x be the smallest
number active at s that will ever receive attention after stage s. Suppose that x
last receives attention at stage t > s; let r > t be the next ρ-expansionary stage
after t. We claim that r is ρ-good. For suppose that y is a number that lies in the
permitting bin at stage r. If y < x then y must have been appointed before x was;
but this means that y is active at stage s and so by minimality of x, y does not
receive attention after s. If y > x then y must have been appointed after stage t; it
was not appointed by a node stronger than ρ because t > s∗. Since ρa∞ was not
accessible between t and r, y was appointed by some node that lies to the right of
ρa∞ and so y is cancelled at stage r.

Now suppose that s > s∗ is a ρ-good stage, and let m < `(Φ)[s]. We show
that there is some ρ-good stage t > s and some i < 2 such that the computation
Φ(Ai,m)[s] is preserved between s and t, so the Lachlan minimal pair algorithm
works to show that Z 6T B.

At stage s, at most one number targeted for some Aj is placed in the permitting
bin. If at stage s no number is placed in the permitting bin, or if a number that will
not be later enumerated into a set is placed in the bin, then the next ρ-expansionary
stage t must be ρ-good, because at t, all numbers put in the bin between s and t
are cancelled. Also, suppose that a number y enters either Aj between t and s. y
cannot be in the bin at s because s is good. Also, y cannot originate from above
ρa∞ because it wasn’t put in the bin at s and these nodes are not accessible until
t. So y originated from a node that lies to the right of ρa∞, and as these were
initialised at s, y must have been appointed after s and so is greater than s, and so
is greater than the use φ(Ai,m)[s].

For the remaining case, suppose that a number x, targeted for Aj , enters the
bin at stage s, and enters Aj at stage r > s. Let t > r be the next ρ-expansionary
stage and let i = 1− j. We claim that t and i are as required.

First, we show that no number y < s enters Ai between stages s and t. Suppose
it does. We must have y < x, because numbers greater than x are cancelled at s
and new numbers greater than x are appointed greater than s. Because s is ρ-good,
y is not in the bin at stage s; so y must originate from some node η extending ρa∞,
and must still be at η at stage r; but then y cannot be put in the bin before stage
t. (Note that this argument holds if y belongs to an entourage stronger than x but
also if y belongs to the same entourage as x.)

Next, we show that t is ρ-good. In fact, every number y that is waiting in the
bin at stage t (when ηa∞ is visited) was already in the bin at stage s. For let
y be a number that is not in the bin at stage s but is at stage t. Since η is not
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initialised after stage s, y cannot be appointed by a node which is stronger than η.
If it is appointed by some node that lies to the right of ηa∞ then y is cancelled at
t. Thus y is appointed by some node extending ηa∞; so y cannot be placed in the
bin between stage r and t, so must enter between s and r. But then, if y is weaker
than x then it is cancelled at stage r; and if y is stronger than x then it would
cancel x when it is placed in the bin. Also, y cannot be in the same entourage as
x’s, because no numbers from this entourage are placed in the bin between s and
r. �

3. Degrees that do not bound critical triples

In this section we prove Theorem 1.7. We give a detailed proof of the following
slightly weaker theorem:

Theorem 3.1. Suppose that d is array computable. Then d bounds no weak critical
triple.

The proof of the general theorem requires only few modifications, which we
describe later.

3.1. Discussion. Let D ∈ d be c.e. Suppose that we are given B,A0, A1 6T D
that are incomparable, and such that Ai 6T B ⊕ A1−i (i < 2). To show that they
do not form a weak critical triple we need to construct a set E 6T A0, A1 such that
A0 6T B⊕E. The strategy is similar to that of [CDS98]. Recall that a fundamental
notion is that of a layer, which we get by iterating the use function of the given
reductions of A0 and A1 to the top of the triple. To preserve the correctness of
a computation reducing A0(x) to B ⊕ E, we protect a certain amount of layers
above x. The main argument is that to get a change in A0(x), there must be a
sequence of changes in A0 and A1 starting at the last layer set up and working its
way backwards (we say that a layer is peeled when such a change occurs.) The
point is that if there is a change in either A0 or A1 below the last existing layer,
then there is necessarily another change in the next layer, either in the other set
(A1 or A0), or in B; in the first case, we can enumerate a marker into E and rectify
the reduction, and in the second case, the reduction is rectified automatically. The
argument then works because each node can calculate how much injury it needs to
sustain from higher priority agents, and set up more layers; beyond the necessary
injury, further changes are prevented by restraining the top set D that computes
everything.

In this construction, we do not have control over the bounding set D. The plan
of this construction is to build a functional Γ such that Γ(D) is total, and correlate
peeling of layers to changes in Γ(D)’s values. Because d is array computable, Γ(D)
will be id-c.e., so we know that some approximation will give us a tight bound on
the number of changes to a particular value of Γ(D), and so on the number of layers
that can be peeled. Such a nice approximation is not given (the recursion theorem
cannot be applied, since there is no uniform way to go from an index for Γ to an
index for the approximation of Γ(D).) Thus, we have infinitely many agents, each
working with its own guess for the approximation for Γ(D); each will build its own
version of E and the relevant reductions, and an agent with a correct approximation
will give the required set E.
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Layers. Fix functionals Λ and Ψi (i < 2) such that Λ(D) = B ⊕ A0 ⊕ A1, and
Ψi(B ⊕ A1−i) = Ai. Let x < ω and i < 2. We let (x, i)′ = ψi(B ⊕ A1−i, x).
An iteration of this layer “derivative” is as expected: We let (x, i)(0) = x, and
(x, i)(n+1) =

(
(x, i)(n), (n+ i) mod 2

)′
. Modification of these notions by a finite

stage is done, as usual, by appealing to functionals and sets as they appear at that
stage. Thus (x, i)′[s] = ψi(B ⊕A1−i, x)[s], with the main idea being that a change
in Ai(x) after stage s necessitates a change in either B or A1−i below (x, i)′ [s].
And if also (x, i)′ < dom Λ(D) [s] then such a change also necessitates a change in
D below λ((x, i)′) [s].

Strictly speaking, (x, i)′[s] is defined only for x < dom Ψi(B ⊕ A1−i)[s]. But as
we know that Ψi(B ⊕ A1−i) is total, we can always speed up the enumeration of
the given sets to obtain the next value of (x, i)′, or for that matter, of λ((x, i)(n))
for any particular x, i, n we wish. So we assume that at the beginning of any stage,
after Ai, B and D change, we further speed-up the enumerations of these sets so
that the “lengths of agreement” are longer than any number previously mentioned.

Guesses. For every e < ω, agent e enumerates a set Ee and builds a functional
Ξe, with the intention that Ξe(B ⊕ Ee) = A0. For i < 2, it builds a functional
Θe,i with the intention that Θe,i(Ai) = Ee. The agent guesses that ∆e is an id-c.e.
approximation for Γ(D), where 〈∆e〉e<ω is an effective list of partial computable
functions from ω2 to 2.

Some common conventions can be enforced effectively: for example, we declare
that ∆e(n, 0) = 0 for every n; and that at every stage, dom ∆e is downward closed
in both coordinates. Further, we can assume that each ∆e is total by ‘stretching’
and delaying guesses until new guesses are discovered: we let ∆e(n, s) be the last
value among ∆e(n, 0),∆e(n, 1), . . . ,∆e(n, t) where t < s is the greatest such that
∆e(n, t)↓ [s].

But ∆e may fail to be a correct approximation for deeper reasons:
• For some n, more than n many changes in the guess ∆e(n, s) are observed

(this of course includes the case that the limit of ∆e(n, s) does not exist).
Such failure will be manifested at some finite stage and can be effectively
detected. When this happens, the agent is abandoned and does not take
part in the construction any more.

• For some n, the value Γ(D,n) is fixed but all registered guesses have the
opposite value. This will never be discovered at any finite time. An agent
waiting for the correct guess will not be abandoned, but will not receive
attention after some stage.

There is little interaction between agents, since they each enumerate their own
sets and functionals, except for Γ, which is global. However, every particular value
of Γ(D) will be defined by a unique agent so again there is no interaction there.
For each e and x < ω we assign a layer number ne(x) such that:

• The map (e, x) 7→ ne(x) is a bijection between ω2 and ω;
• For any e, if x < y then ne(x) < ne(y).

The value Γ(D,ne(x)) will be defined by agent e in relation to its attempts to define
and maintain Ξe(B ⊕ Ee, x). To ensure that Γ(D) is total, whenever an agent e is
abandoned, we define Γ(D,ne(x)) = 0 with use 0 for every x.

Even between two different inputs x < y of Ξe there is not much interaction.
The requirement ne(x) < ne(y) will ensure that at any stage, the use of Ξe(x) is
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not greater than the use of Ξe(y), and so larger inputs y cannot undefine a Ξe(x)
computation.

3.2. Construction. At stage s, every unabandoned agent e < s defines and main-
tains Ξe(x) (for x < s) as follows. The least value of x < s for which action is
needed is always treated first.

From now, we drop the subscript e.
If the computation Ξ(B ⊕ E, x) is undefined, agent e will execute the following

algorithm.
How to define a new Ξ(B ⊕ E, x) computation:

Let u = (x, 0)(n(x)+1). Let v be a large number (so v was never
used before by anyone; in particular v /∈ E).

Define:
(1) Ξ(B ⊕ E, x) = A0(x) with B-use u and E-use v + 1.
(2) Γ(D,n(x)) = 0 with use λ(u).
(3) Θi(Ai, v) = 0 with use u.

Further (to make Θi(Ai) total), for every z < v that is not
currently picked as some E-use for any y < x, we define (if not
already defined) Θi(Ai, z) = E(z) with use 0.

We let u(x) = u, v(x) = v and call u, v the parameters of the Ξ(x) computation.

The agent next monitors the defined computations. Suppose that at some stage
t0, a Ξ(x) computation is defined with parameters u, v. Let n = n(x).

Suppose that at s > t0 the computation still holds. The following will be evident
from the construction.

• Let i < 2. If Θi(Ai, v)↓ [s] then it does so with use u.
• If Γ(D,n)[s] is defined then its use is λ(u)[s]. So a change in Ai or B below
u (which makes either Ξ(x) or Θi(v) undefined) means that Γ(D,n) also
becomes undefined.
• Suppose that Ξ(y) is also defined at s (where y > x). Then it was last

defined at a stage t > t0, so v(x) < v(y); and also u(x) < u(y) (this relies
on ne(x) < ne(y) and some innocent properties of the given functionals Ψi

and Λ, namely, the use is increasing in input and non-decreasing in time.)
• It follows that γ(D,n(x)) < γ(D,n(y)) [s].

At each stage the agent acts according to which of D,A0, A1, B have changed
below the use of the computation being monitored.

Trivial changes (case 1: only D changes). We correct Γ(D,n) if it becomes un-
defined due to a trivial change. A trivial change (say from stage s − 1 to stage
s) is a change in D below λ(u)[s − 1] which is not accompanied by any change in
either Ai or B below u. This change doesn’t really affect input x, but Γ(D,n) does
become undefined; so in this case we redefine Γ(D,n)[s] to have the same value as
Γ(D,n)[s− 1] with new use λ(u)[s].

A vanished computation (case 2: B changes). It is possible that at some stage s,
B � u changes, making Ξ(x) undefined. As mentioned, it follows that Γ(D,n(x)) is
also undefined. A new Ξ(x) computation is now defined according to the algorithm
above. The old parameter v is abandoned and so no further corrections need to be
made to Θi(Ai, v) (which may or may not be currently defined).
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A voluntary vanishing (case 3: both Ai change). Suppose that both Θ(A0, v) and
Θ(A1, v) are undefined at stage s. We then cancel the Ξ(x) computation ourselves
by enumerating v into E (both Θi(Ai, v) can be redefined correctly). We redefine
Ξ(x) as above.

• We need to ensure that in this situation too, Γ(D,n) is undefined. But the
most recent Ai change guarantees it.
• After such action, for all y > x, Ξ(y) vanishes; and Γ(D,n(y)) is also

undefined, so agent e can redefine all of these computations.

A layer is peeled (case 4: one Ai changes). Suppose that up to some stage t1, all
computations Ξ(x) and Θi(v) are defined, but at t1, a single Ai changes below u.
When this happens, the input x is put on alert. The Ai change frees us to define
Γ(D,n)[t1] = 1 − Γ(D,n)[t1 − 1]. Now the agent waits until some stage s > t1 at
which we have

∆e(n, s) = Γ(D,n)[s] (= Γ(D,n)[t1]) .

When such a ∆ guess is discovered (the price for unpeeling the Ai layer is paid),
the agent redefines Θi(Ai, v) = 0 with use u.

• While x is waiting, we maintain Γ(D,n) by attending to trivial changes in
D.
• Of course, if, while x is on alert, a change in B or in A1−i below u is

discovered, then we find ourselves in one of the previous scenarios and we
define a whole new Ξ(x) computation.
• While e is waiting for a ∆(x) guess, it keeps maintaining Ξ(y) computations

for y > x. That’s ok since Ξ(x) is not cancelled. This is pure altruism: the
agent wouldn’t mind waiting, but we need Γ(D) to be total.

We have surveyed all the possibilities and so this concludes the construction.

3.3. Verifications.

Lemma 3.2. For any agent e and input x, Ξe(x) is redefined only finitely many
times.

Proof. This is done by induction on x. Assume that after some stage s0, agent
e does not redefine Ξe(y) for any y < x. Let n = ne(x) and let u = (x, 0)(n+1).
Let s1 > s0 be a stage at which B � u and both Ai � u are correct. Suppose
that at some stage s2 > s1, agent e makes a new Ξe(x)-definition; we then have
u(x)[s2] = u. This computation cannot be invalidated by a B-change, cannot be
cancelled due to action for some y < x, and x will not be prompted to destroy it
due to Ai changes. �

Corollary 3.3. Γ(D) is total.

Proof. Let n < ω; find e, x such that n = ne(x). If e is ever abandoned then
Γ(D,n) is permanently defined. By the previous lemma, there is a stage s1 at
which a permanent Ξe(x) computation is defined, with parameters u, v. Find a
stage s2 > s1 at which D � λ(u) is correct. If after stage s2, Γ(D,n) becomes
undefined, then it is redefined with use λ(u) and cannot be injured later. �

Fix some e such that ∆e is an id-c.e. approximation for Γ(D). Agent e is never
abandoned. We again drop e-indices.

Lemma 3.4. Θi(Ai) = E.
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Proof. Let v < ω. There are two cases. If at some stage s, v is not an E-parameter
for any x, and a new Ξ(x) computation is defined with larger v(x), then at stage
s, Θi(Ai, v) is defined with use 0 (so the computation is permanent), and value
E(v)[s]. This value must be correct because v will not be picked later as any v(y).

If this is not the case, then necessarily at some stage s, v is picked as some v(x).
We claim that x will define a permanent Θi(Ai, v) computation. For either the Ξ(x)
computation is later destroyed, in which case, if yet later Θi(Ai, v)↑ then we find
ourselves back in case one. Or, Ξ(x) is never cancelled; in which case some layers
may be peeled (but no more than n(x) many), but a last Θi(Ai, v) computation
must be defined. The point is that agent e approximates Γ(D) correctly and so it
cannot be stuck for ever, waiting for a guess to materialize, while Θi(Ai, v) remains
undefined.

The value is 0 = E(v)[s]. If ever v enters E it is because of action for x (to destroy
Ξ(x)) and as described during the construction, this is only done if both Θi(Ai, v)
are undefined at the time; this again catapults us back to the first case. �

This is the heart of the argument:

Lemma 3.5. Suppose that a Ξ(x) computation is defined at some stage t0 with
parameters u, v, and let t1 < t2 < . . . tk be the subsequent stages at which a Θi(Ai, v)
computation is redefined (but at which the t0 computation still holds). Let l 6 k;
let m = n(x) + 1− l, and let i = m mod 2. Let z = (x, 0)(m)[t0]. Then

Ai[tl] � z = Ai[t0] � z.

Proof. By induction on l. For l = 0 there is nothing to prove. Assume it holds for
l − 1; so for w = (x, 0)(m+1)[t0] and j = 1 − i we have Aj [tl−1] � w = Aj [t0] � w
and so w = (x, 0)(m+1)[tl−1] (since there was no B-change after t0). At some stage
sl ∈ (tl−1, tl), we get a change in A0 or A1 below u. However, the change cannot
be in Ai � z. This is because at stage tl−1, Ai � z ⊆ Ψi(B ⊕ Aj) as the use is
w. Any change in Ai below z necessitates a change in Aj below w < u and so the
destruction of Ξ(x).

It follows that the change is inAi above z or inAj , (necessarily above (x, 0)(m−1)).
In the first case, no further change in Aj is possible before tl, and so there is no
change in Ai below z either. In the second case, no further change in Ai is possible
before tl. So the induction is carried to tl. �

Lemma 3.6. A0 6T B ⊕ E.

Proof. For every x, a final Ξ(x) computation is defined and is never altered, so
Ξ(B ⊕ E) is total. Suppose that the final Ξ(B ⊕ E, x) computation is defined at
stage s0, with layer number n. We show that A0(x)[s0] = A0(x). Let t0 < t1 < . . .
be the stages at which case four occurs for x (after s0), and let zk = (x, 0)(k)[s0].
By induction we show that if k 6 n − l and i = k mod 2 then Ai � zk did not
change between s0 and tl. The conclusion then follows from the fact that case four
can occur at most n times (or agent e would be abandoned). �

3.4. The proof of theorem 1.7. There is only one alteration to the previous
proof that we need to add on to get Theorem 1.7. Under the assumption that D
is totally ω-c.e., we know that Γ(D) has an ω-c.e. approximation. An individual
agent e will guess that ∆e is such an approximation, with a bound given by the
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computable function ϕe. So all we need to do is instead of setting up n many layers
for an input x with ne(x) = n, to set up ϕe(n) many such layers.

The problem, of course, is that ϕe may be partial. Of course the correct e
gives us a total function; but an agent with an incorrect guess cannot wait until
ϕe(n) converges, since this may make Γ(D) partial. The solution is to use simple
permitting. Upon the first time of setting up x, we define Γ(D,n) with use n; we
do not define a Ξe (or Θe,i) computation. We keep maintaining Γ(D,n) with use n
until we get ϕe(n) to converge. After that, we wait for a D-change below n. Once
we get it, n is permitted, and we can set up a Ξe(x) computation with sufficiently
many layers. If ϕe is total, then unless it is abandoned, agent e will get infinitely
many permissions, for otherwise we can compute D in the usual way.

A minute change we should make is to let Ξe(x) compute A0 � x rather than
A0(x); this is because only infinitely many x’s (rather than all of them) are per-
mitted. This makes no difference to the argument because setting up enough layers
prevents changes in A0 up to x, rather than only in A0(x).

To keep the use of Ξe(x) monotone, we declare that if, while waiting for an
input x to be permitted, a larger input y is permitted, then we can abandon x and
never define a Ξe(x) computation. This is of course harmless. We can also define
Γ(D,ne(x)) with use 0.

4. wtt triples

Most of the ideas used for the proofs of either direction of Theorem 1.13 were
already utilised in the previous sections, and so we give fewer details. In section
4.1 we show that property 3 of Theorem 1.13 implies properties 1 and 2 by showing
that any degree which is not totally ω-c.e. bounds a wtt triple. Section 4.2 provides
the remainder of the equivalence, that a degree which is totally ω-c.e. does not
bound a weak wtt triple.

4.1. Existence. Let D be c.e. and suppose that g = Γ(D) is not ω-c.e. We enu-
merate sets A0, A1, B; the requirements to meet are:

NΦ: If Φ(A0) = Φ(A1) = Z are total and equal then Z 6wtt B. Here Φ ranges
over weak truth table functionals.

PΨ,i: Ψ(B) 6= Ai (i < 2). Here Ψ ranges over Turing functionals.

We also ensure that A0 ≡T A1, and by permitting, that A0, A1, B 6T D.

Remark 4.1. The main difference between this construction and that of a critical
triple is that we cannot appoint traces for B, as we want Ai 6T A1−i, not Ai 6T
B ⊕ A1−i. Thus the entourages will keep growing even after a follower is realised.
However, since we do not have bottom 0, this construction does not require the full
pinball machinery of [DS86] (and the strength of total ωω-c.e.-ness as investigated in
[DGa]). Suppose that at some stage s a follower x is realised; let x = x0, x1, . . . , xm
be x’s entourage at that time. Then at the kth time after s at which x receives
attention, we try to enumerate xm−k and all of its traces into their sets in one
go. Stronger NΦ-nodes need to be alerted of this; thus before being enumerated,
xm−k will also be assigned a marker targeted for B. At stage s we know how many
markers we need, and so we can bound their size; this yields a weak truth table
reduction of Φ(A0) = Φ(A1) to B.
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Construction. The construction takes place on a tree of strategies. A node η which
works for PΨ,i will appoint followers x and wait for them to be realised, i.e. for
Ψ(B, x)↓= 0. Each follower (targeted for Ai) will have a trace targeted for A1−i;
the trace will have a trace of its own, targeted for Ai, and so on. On top of the
traces, after a follower x is realised, an element of x’s entourage may receive a
B-marker. This aids in meeting the infimum requirements.

Each follower is assigned a permitting interval I(x). Suppose that at some stage
s, elements of a follower x’s entourage are placed in the permitting bin, and that
at stage t > s these elements are still in the bin. Then x is permitted at stage t if
for some n ∈ I(x)[t] we have g(n)[s] 6= g(n)[t].

At the beginning of a stage s (in particular, before we determine the path of ac-
cessible nodes), if there is some permitted follower x, then we let x be the strongest
one. Let η be the node that appointed x. We enumerate those elements of x’s en-
tourage that lie in the permitting bin into their target sets. We initialise all nodes
weaker than η (they may still be accessible during the stage).

• If the follower x has not been just enumerated, then we appoint a new B-
marker for the last element of x’s remaining entourage. The B-marker is
the least unused number in ω[x] greater than s∗(x), where s∗(x) is the stage
at which x was first appointed a B-trace. We cancel all η-followers y that
are weaker (greater) than x. For each such y, redefine I(x) := I(x) ∪ I(y).

• If the follower x has just been enumerated, then all followers for η are
cancelled, and η is declared to be satisfied.

Next, we construct the path of accessible nodes. Suppose that a node ρ working
for NΦ is accessible. Let `(Φ) be the length of agreement between Φ(A0) and Φ(A1).
If `(Φ) is greater than the previous expansionary stage then s is expansionary and
ρa∞ is accessible. Otherwise, ρaf is accessible.

Suppose that η is an accessible node that is working for PΨ,i. If η is satisfied, or
if it has an unrealised follower, then η does nothing and its only child is accessible.
Otherwise, η requires attention:

• If all followers for η have some numbers waiting in the permitting bin (this
includes the case that there are no followers appointed), then η appoints a
new (large) follower x. Let n be the least number that is not in I(y) for
any other η-follower y (x will be the (n+ 1)st follower appointed for η since
the last time at which η was initialised,) and define I(x) = {n}.

• Suppose that there is a follower x that is realised, but no elements of x’s
entourage lie in the permitting bin (necessarily x will be η’s weakest fol-
lower.)

– If this is the first time at which η is accessible and x is realised, then
no element of x’s entourage has a B-marker. Appoint a new B-marker
for the last element of x’s entourage. The value of this marker is the
least element of ω[x] greater than s∗(x) = s.

Let y be the element of x’s entourage that has a B-marker. Drop y, its
marker, and all subsequent traces (if they exist) into the permitting bin.

At the end of the stage, initialise nodes weaker than those accessible. For ev-
ery uncancelled follower, appoint a new (large) trace for the last element of its
entourage.
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Verifications. The nodes on the true path are eventually never initialised, and even-
tually do not receive attention; this is exactly as argued for Lemma 2.7. It follows
(noticing that B-markers are appointed larger than s∗(x), hence larger than the use
of the computation realising x,) that every P -requirement is met. Also, A0 ≡T A1;
every number targeted for Ai receives at most two traces, each targeted for A1−i.
The argument for Lemma 2.8 shows that for every follower x appointed, D can
compute a stage after which no number associated with x is ever enumerated into
any set. That A0, A1 6T D follows immediately, because numbers targeted for
these sets are always chosen large. But numbers targeted for B are always chosen
from ω[x] for some follower x and so the same algorithm gives a decision procedure
for B.

Thus it remains to check that the N -requirements are met.

Lemma 4.2. Every N -requirement is met.

Proof. This is an elaboration on the proof of Lemma 2.9. Let Φ be a wtt-functional
(with use function φ). Let ρ be the node on the true path that works for NΦ.
Assuming that Φ(A0) = Φ(A1) = Z, we know that there are infinitely many ρ-
expansionary stages. Let r∗ be a stage after which ρ is never initialised.

As before, we say that an expansionary stage s is good if (when ρa∞ is visited at
that stage) no numbers residing in the permitting bin will be later enumerated into
sets. For m < ω, we say that a stage s is good for m if it is good, if `(Φ) > m [s],
and moreover, if whenever x is an uncancelled follower at s (again, when ρa∞ is
accessible and weaker nodes are initialised) with a B-marker z < φ(m), then z /∈ B
(so no numbers of x’s entourage are later enumerated into sets).

Similarly to the argument of Lemma 2.9, we can show that the value of Φ(Ai,m)
at a stage that is good for m is correct (note that if s < t are good stages and s
is good for m then t is good for m). The point is that if φ(m) < z (where z
is a B-marker for some follower x), then whenever numbers from x’s entourage
are enumerated into sets, only the smallest number can injure either Φ(A0,m) or
Φ(A1,m); this puts us exactly in the situation in Lemma 2.9.

Similarly we can argue that there are infinitely many good stages; and certainly
almost all are good for a given m.

We just need to see why this gives us a weak truth table reduction of Z to B. For
this, let s be the least expansionary stage greater than r∗ such that `(Φ) > m [s].
Let x be the strongest follower active at s such that at a later stage, numbers from
x’s entourage enter a set. Let r > s be the last stage at which numbers from x’s
entourage enter sets, and let t > r be the next ρ-expansionary stage. If there is no
such x then let t = s. We claim that t is good for m, and moreover, that we can
effectively bound the queries from B that are required to ensure that t is good for
m by the state of affairs at stage s.

If x does not exist then t = s is good for m (as no follower active at x will
ever enumerate any number into a set) and of course all B-markers that need to be
consulted are defined at stage s. So we may assume that x exists.

Let y be a follower, still active when ρa∞ is accessible at t. First, suppose that
y has a B-marker z and that z < φ(m). We know that the first B-marker z′ for
y was appointed before stage s (because φ(m) < s); its value is the least element
of ω[y] which is greater than s∗(y) (and s∗(y) < s). The length of y’s entourage
at stage s∗(y) is again below s, and the number of new B-markers is bounded by
this length; for each B-marker, we take the next element of ω[y]. It follows that z
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is bounded by, say, the 2sth element of ω[y]. Further, we know that z /∈ B, because
otherwise x is stronger than y and so y would be cancelled at r. (If x = y then no
numbers of y’s entourage are enumerated after stage r.)

Next, suppose that numbers from y’s entourage lie in the permitting bin at stage
t. Since y is issued by some η extending ρa∞ (otherwise y is issued by some node
stronger than ρ; there are finitely many such y, and they will never enter sets after
r∗), we know that these numbers were placed in the bin before stage r, and so y
is stronger than x. It follows that numbers of y’s entourage do not enter sets after
stage s (otherwise, minimality of x is contradicted); and that the numbers in the
bin were placed in the bin before stage s and so have a small B-trace as before.
The point is that even if y is stronger than x, then it cannot be the case that y is
only realised much later than stage s (and thus has a large B-marker) but also has
numbers in the bin at stage t. �

4.2. Nonexistence. We show that if a c.e. set D is totally ω-c.e. then there are no
A0, A1, B 6T D that form a weak wtt triple. This is very similar to the argument
for Theorem 1.7; the layers now correspond to the reductions of A0 to A1 and
vice-versa. We note that the reductions Θe,i we got in section 3 were actually wtt
reductions already.

Suppose that we are given such A0, A1 and B; let Ψi (for i < 2) be such that
Ψi(A1−i) = Ai, and Λ be such that Λ(D) = A0 ⊕ A1 ⊕ B. We let (x, i)′ =
ψi(A1−i, x), and we iterate to get (x, i)(n). We construct a functional Γ and let agent
e guess that ∆e is an ω-c.e. approximation for Γ(D), with computable bound ϕe.
Agent e enumerates a set Ee and builds functionals Ξe and Θe,i so that Θe,i(Ai) =
Ee, and Ξe reduces A0 to B⊕Ee. For each e and x we assign a layer number ne(x)
as before.

Construction. At stage s, every unabandoned agent e < s defines and maintains
Ξe(x) (for x < s) as follows. Let n = ne(x). When the agent e first tends to x,
it defines Γ(D,n) = 0 with use n. If D changes below n then a new definition,
with same use, is made. This is maintained until ϕe(n) converges. Then, the agent
waits until x is permitted by D changing below n, freeing us to redefine Γ(D,n)
with large use. When this happens, we are ready to define Ξ(x). [If, while waiting
for x to be permitted, a larger number y is permitted, then all attempts to define
Ξ(x) are abandoned. All agent e does with regards to x is keep defining Γ(D,n) (it
may as well define it with use 0).]

Whenever a computation Ξe(B ⊕ Ee, x) is undefined, agent e will define it ac-
cording to the following algorithm.

Let m = ϕe(n) and let u = (x, 0)(m+1). Let v be a large number.
Define:
(1) Ξe(B ⊕ Ee, x) = A0 � x with B-use u and Ee-use v + 1.
(2) Γ(D,n) = 0 with use λ(u).
(3) Θe,i(Ai, v) = 0 with use u.

For every z < v that is not currently picked as some Ee-use for any
y < x, we define (if not already defined) Θe,i(Ai, z) = Ee(z) with
use 0.

The agent now monitors the defined computations. Suppose that at some stage
t0, a Ξe(x) computation is defined with parameters u, v. At stage s > t0: if a
trivial change occurs, i.e. a change in D � λ(u) without a change in A0, A1 or B
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below u, then Γ(D,n) is redefined with use λ(u) [s]. If the computaion vanishes,
i.e. there is a B � u change, then a new Ξe(x) computation is defined (with new
u, v parameters). If there is a double change: both A0 � u and A1 � u change, then
we enumerate v into Ee and redefine a new Ξe(x) computation. If a layer is peeled,
i.e. there is a single Ai � u change, then Γ(D,n) is redefined with new value, and
we wait for a correct ∆e(n) guess; only after the guess is obtained do we redefine
Θe,i(Ai, v) = 0 with use u.

Verifications. These are exactly as in section 3.
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