MODELS OF REAL-VALUED MEASURABILITY

SAKAE FUCHINO, NOAM GREENBERG, AND SAHARON SHELAH

Abstract

Solovay's random-real forcing ([Sol71]) is the standard way of producing real-valued measurable cardinals. Following questions of Fremlin, by giving a new construction, we show that there are combinatorial, measuretheoretic properties of Solovay's model that do not follow from the existence of real-valued measurability.

1. Introduction

Solovay ([Sol71]) showed how to produce a real-valued measurable cardinal by adding random reals to a ground model which contains a measurable cardinal. (Recall that a cardinal κ is real-valued measurable if there is an atomless, κ-additive measure on κ that measures all subsets of κ. For a survey of real-valued measurable cardinals see Fremlin [Fre93].)

The existence of real-valued measurable cardinals is equivalent to the existence of a countably additive measure on the reals which measures all sets of reals and extends Lebesgue measure (Ulam [Ula30]). However, the existence of real-valued measurable cardinals, and particularly if the continuum is real-valued measurable, has an array of Set Theoretic consequences reaching beyond measure theory. For example: a real-valued measurable cardinal has the tree property (Silver [Sil71]); if there is a real-valued measurable cardinal, then there is no rapid p-point ultrafilter on \mathbb{N} (Kunen); the dominating invariant \mathfrak{d} cannot equal a real-valued measurable cardinal (Fremlin). And further, if the continuum is real-valued measurable then $\diamond_{2^{\aleph_{0}}}$ holds (Kunen); and for all cardinals λ between \aleph_{0} and the continuum we have $2^{\lambda}=2^{\aleph_{0}}$ (Prikry [Pri75]); see [Fre93].

On the other hand, there are other properties of Solovay's model that have not been shown to follow from the mere existence of real-valued measurable cardinals: for example, the covering invariant for the null ideal $\operatorname{cov}(\mathcal{N})$ has to equal the continuum.

Thus, Fremlin asked ([Fre93, P1]) whether every real-valued measurable cardinal can be obtained by Solovay's method (the precise wording is: suppose that κ is realvalued measurable; must there be an inner model $M \subset V$ such that κ is measurable in M and a random extension $M[G] \subset V$ of M which contains $\mathcal{P} \kappa$?). The question was answered in the negative by Gitik and Shelah ([GS01]). The broader question remains: what properties of Solovay's model follow from the particular construction, and which properties are inherent in real-valued measurability?

In this paper we present a new construction of a real-valued measurable cardinal and identify a combinatorial, measure-theoretic property that differentiates between Solovay's model and the new one.

[^0]The property is the existence of what we call general sequences - Definition 4.5. A general sequence is a sequence which is sufficiently random as to escape all sets of measure zero. Standard definitions of randomness are always restricted, in the sense that the randomness has to be measured with respect to a specified collection of null sets (from effective Martin-Löf tests to all sets of measure zero in some ground model). Of course, we cannot simply remove all restrictions, as no real escapes all null sets. However, we are interested in a notion that does not restrict to a special collection of null sets but considers them all. One way to do this is to change the nature of the random object - here, from a real to a long sequence of reals, and to change the nature of escaping. We remark here that the following definitions echoes (in spirit) the characterization of (effective) Martin-Löf randomness as a string, each of whose initial segments have high Kolmogorov complexity.

We thus introduce a notion of forcing \mathbb{Q}_{κ}. We show that if κ is measurable (and $2^{\kappa}=\kappa^{+}$), then in $V^{\mathbb{Q}_{\kappa}}, \kappa$ (which is the continuum) is real-valued measurable (Theorem 3.18). We then show that in Solovay's model, the generic (random) sequence is general (Theorem 4.6); and that in the new model, no sequence is general (Theorem 4.14).
1.1. Notation. $\mathcal{P} X$ is the power set of $X . A-B$ is set difference. \subset denotes inclusion, not necessarily proper; \subsetneq denotes proper inclusion.

The reals \mathbb{R} are identified with Cantor space 2^{ω}. If $\sigma \in 2^{<\omega}$ then $[\sigma]=\{x \in$ $\mathbb{R}: \sigma \subset x\}$ denotes the basic open set determined by σ. If $\lambda \in$ On then \mathbb{R}^{λ} is the λ-fold product of \mathbb{R}. If $\alpha<\lambda$ and B is a Borel subset of \mathbb{R} then B^{α} denotes $\left\{\bar{x} \in \mathbb{R}^{\lambda}: x_{\alpha} \in B\right\}$.

If A is a Borel set (on some copy of Cantor space) and W is an extension of the universe V then we let A^{W} denote the interpretation in W of any code of A.

If $\mathbb{P}=(\mathbb{P}, \leqslant)$ is a partial ordering then we sometimes write $\leqslant \mathbb{P}$ for \leqslant.
If $\alpha<\beta$ are ordinals then $[\alpha, \beta)=\{\gamma: \alpha \leqslant \gamma<\beta\}$.
If X and Y are sets and $B \subset X \times Y$, then for $x \in X, B_{x}=\{y \in Y:(x, y) \in B\}$ and $B^{y}=\{x:(x, y) \in B\}$ are the sections.

Suppose that $\left\langle X_{\alpha}\right\rangle_{\alpha<\delta}$ is an increasing sequence of things (ordinals, sets (under inclusion), etc.); for limit $\beta \leqslant \delta$ we let $X_{<\beta}$ be the natural limit of $\left\langle X_{\alpha}\right\rangle_{\alpha<\beta}$ (the supremum, the union, etc.), and for successor $\beta=\alpha+1$ we let $X_{<\beta}=X_{\alpha}$.
1.1.1. Forcing. For notions of forcing, we use the notation common in the World $\{$ Jerusalem $\}$. Thus, $q \leqslant p$ means that q extends p. As far as \mathbb{P}-names are concerned, we often confuse between canonical objects and their names. Thus, G is both a generic filter but also the name of such a filter.

If \mathbb{B} is a complete Boolean algebra and φ is a formula in the forcing language for \mathbb{B}, then we let $\llbracket \varphi \rrbracket_{\mathbb{B}}$ be the Boolean value of φ according to \mathbb{B}; this is the greatest element of \mathbb{B} forcing φ. For a complete Boolean algebra the partial ordering corresponding to \mathbb{B} is not \mathbb{B} itself but $\mathbb{B}-\left\{0_{\mathbb{B}}\right\}$. Nevertheless we often think as if the partial ordering in the forcing were \mathbb{B} and let $0 \Vdash_{\mathbb{B}} \varphi$ for all formula φ in the forcing language.

If \mathbb{P} is a partial ordering and $p \in \mathbb{P}$ then $\mathbb{P}(\leqslant p)$ is the partial ordering inherited from \mathbb{P} on $\{q \in \mathbb{P}: q \leqslant p\}$.
$\mathbb{P} \lessdot \mathbb{Q}$ denotes the fact that \mathbb{P} is a complete suborder of \mathbb{Q}. If $\mathbb{P} \lessdot \mathbb{Q}$ and G is the (name for the) \mathbb{P}-generic filter, then \mathbb{Q} / G is the (name for the) quotient of \mathbb{Q} by G : the collection of all $q \in \mathbb{Q}$ which are compatible with all $p \in G$.

If $\mathbb{P} \subset \mathbb{Q}$, a strong way of getting $\mathbb{P} \lessdot \mathbb{Q}$ is having a restriction map $q \mapsto q \upharpoonright \mathbb{P}$ from \mathbb{Q} to \mathbb{P} : a map which is order preserving (but does not necessarily preserve $\nless)$, and such that for all $q \in \mathbb{Q}, q \upharpoonright \mathbb{P} \Vdash_{\mathbb{P}} q \in \mathbb{Q} / G$. If \mathbb{B} is a complete subalgebra of a complete Boolean algebra \mathbb{D} then there is a restriction map from \mathbb{D} to \mathbb{B}; $d \upharpoonright \mathbb{B}=\prod^{\mathbb{B}}\{b \in \mathbb{B}: b \geqslant d\}$ is in fact the largest $b \in \mathbb{B}$ which forces that $d \in \mathbb{D} / G ;$ $\mathbb{D} / G=\{d \in \mathbb{D}: d \upharpoonright \mathbb{B} \in G\}$.

If \mathbb{B} is a complete subalgebra of a complete Boolean algebra \mathbb{D} then we let $\mathbb{D}: G$ be the (name for the) quotient of \mathbb{D} by the filter generated by the generic ultrafilter $G \subset \mathbb{B} ; \mathbb{D}: G$ is the completion of the partial ordering \mathbb{D} / G.

1.2. Measure theory.

Notation; recollection of basic notions. Recall that a measurable space is a set X together with a measure algebra on X : a countably complete Boolean subalgebra of $\mathcal{P} X$, that is some $\mathcal{S} \subset \mathcal{P} X$ containing 0 and X and closed under complementation and unions (and intersections) of countable subsets of \mathcal{S}. A probability measure on a measure space (X, \mathcal{S}) is a function $\mu: \mathcal{S} \rightarrow[0,1]$ which is monotone and countably additive: $\mu(0)=0, \mu(X)=1$ and whenever $\left\{B_{n}: n<\omega\right\} \subset \mathcal{S}$ is a collection of pairwise disjoint sets, then $\mu\left(\cup B_{n}\right)=\sum \mu\left(B_{n}\right)$. All measures we encounter in this work are probability measures.

Let μ be a measure on a measurable space (X, \mathcal{S}). Then a μ-null set is a set $A \in \mathcal{S}$ such that $\mu(A)=0$. We let \mathcal{I}_{μ} be the collection of μ-null sets; \mathcal{I}_{μ} is a countably complete ideal of the Boolean algebra \mathcal{S}; we can thus let $\mathbb{B}_{\mu}=\mathcal{S} / \mathcal{I}_{\mu}$; this is a complete Boolean algebra and satisfies the countable chain condition. For $A \in \mathcal{S}$, we let $[A]_{\mu}=A+\mathcal{I}_{\mu} \in \mathbb{B}_{\mu}$. We often confuse A and $[A]_{\mu}$, though. We let $\subset_{\mu},={ }_{\mu}$ etc. be the pullback of the Boolean notions in $\mathbb{B}{ }_{\mu}$. Namely: $A \subset_{\mu} B$ if $[A]_{\mu} \leqslant \mathbb{B}_{\mu}[B]_{\mu}\left(\right.$ iff $\left.A-B \in \mathcal{I}_{\mu}\right)$, etc. We also think of μ as measuring the algebra \mathbb{B}_{μ}; we let $\mu\left([A]_{\mu}\right)=\mu(A)$.

Definition 1.1. Let $\mathcal{S} \subset \mathcal{R}$ be two measure algebras on a space X, and let μ be a measure on \mathcal{S} and ν be a measure on \mathcal{R}. We say that ν is absolutely continuous with respect to μ (and write $\nu \ll \mu$) if $\mathcal{I}_{\mu} \subset \mathcal{I}_{\nu}$; that is, if for all $A \in \mathcal{S}$, if $\mu(A)=0$ then $\nu(A)=0$.
(Of course, if $\nu \ll \mu, A \in \mathcal{S}$ and $\mu(A)=1$ then $\nu(A)=1$).
If $\nu \ll \mu$ then the identity $\mathcal{S} \subset \mathcal{R}$ induces a map $i: \mathbb{B}_{\mu} \rightarrow \mathbb{B}_{\nu}$ which is a complete Boolean homomorphism. If $\mathcal{I}_{\mu}=\mathcal{I}_{\nu} \cap \mathcal{S}$ then i is injective.

Definition 1.2. Let μ be a measure on (X, \mathcal{S}), and let $A \in \mathcal{S}$ be a μ-positive set. We let $\mu \| A$, the localization of μ to A, be μ restricted to A, recalibrated to be a probability measure: it is the measure on (X, \mathcal{S}) defined by $(\mu \| A)(B)=$ $\mu(B \cap A) / \mu(A)$.

If $A={ }_{\mu} A^{\prime}$ then $\mu\|A=\mu\| A^{\prime}$ so we may write $\mu \| a$ for $a \in \mathbb{B}_{\mu}$. We have $\mu \ll \mu \| a$ and $\mathbb{B}_{\mu \| a} \cong \mathbb{B}_{\mu}(\leqslant a)$; under this identification, the natural map $i: \mathbb{B}_{\mu} \rightarrow \mathbb{B}_{\mu \| a}$ is given by $i(b)=b \cap a$. If $a \neq 1$ (so $\mu \neq \mu \| a$) then i is not injective.

Products of measures. If for $i<2, \mu_{i}$ is a measure on a measurable space $\left(X_{i}, \mathcal{S}_{i}\right)$, then there is a unique measure $\mu_{0} \mu_{1}=\mu_{0} \times \mu_{1}$ defined on the measure algebra on $X_{0} \times X_{1}$ generated by the cylinders, i.e. the sets $A_{0} \times A_{1}$ for $A_{i} \in \mathcal{S}_{i}$, such
that $\left(\mu_{0} \mu_{1}\right)\left(A_{0} \times A_{1}\right)=\mu\left(A_{0}\right) \mu_{1}\left(A_{1}\right)$ for all cylinders $A_{0} \times A_{1}$. We recall Fubini's theorem: For any $A \subset X_{0} \times X_{1}$, we have

$$
\left(\mu_{0} \mu_{1}\right)(A)=\int_{X_{0}} \mu_{1}\left(A_{x}\right) d \mu_{0}(x)
$$

where for $x \in X_{0}, A_{x}=\left\{y \in X_{1}:(x, y) \in A\right\}$ is the x-section of A.
We note that localization commutes with finite products:

$$
\left(\mu_{0} \| B_{0}\right)\left(\mu_{1} \| B_{1}\right)=\left(\mu_{0} \mu_{1}\right) \|\left(B_{0} \times B_{1}\right)
$$

We can generalize the notion of absolute continuity.
Definition 1.3 (Generalized absolute continuity). Suppose that μ measures (X, \mathcal{S}) and ν measures (Y, \mathcal{R}), and further that there is a Boolean homomorphism $i: \mathcal{S} \rightarrow$ \mathcal{R}. We say that $\nu \ll \mu$ if whenever $A \in \mathcal{S}$ and $\mu(A)=0$ then $\nu(i(A))=0$.

If i is injective then we don't really get anything new (we may identify \mathcal{S} with its image). In any case, the map i induces a Boolean homomorphism from \mathbb{B}_{μ} to \mathbb{B}_{ν}.

The standard example is of course if $\mathcal{S}=\mathcal{S}_{0}$ and \mathcal{R} is the algebra generated by $\mathcal{S}_{0} \times \mathcal{S}_{1}$ as above. We then let $i(A)=A \times X_{1}$ and get $\mu_{0} \mu_{1} \ll \mu_{0}$. The map i is injective and induces a complete embedding

$$
i_{\mu_{0}}^{\mu_{0} \mu_{1}}: \mathbb{B}_{\mu_{0}} \rightarrow \mathbb{B}_{\mu_{0} \mu_{1}}
$$

The following is an important simplification in notation.
Notation 1.4. Unless otherwise stated, we identify $\mathbb{B}_{\mu_{0}}$ with its image under $i_{\mu_{0}}^{\mu_{0} \mu_{1}}$. Thus $A \in \mathcal{S}_{0}$ is identified with $A \times X_{1}$.

Thus if $A_{i} \in \mathcal{S}_{i}$ then $A_{0} \cap A_{1}=A_{0} \times A_{1}$.
The restriction map from $\mathbb{B}_{\mu_{0} \mu_{1}}$ onto $\mathbb{B}_{\mu_{0}}$ is nicely defined: for measurable $A \subset$ $X_{0} \times X_{1}$, we let

$$
A \upharpoonright \mu_{0}=\left\{x \in X_{0}: \mu_{1}\left(A_{x}\right)>0\right\}
$$

this is the measure-theoretic projection of A onto X_{0}. If $A={ }_{\mu_{0} \mu_{1}} A^{\prime}$ then $A \upharpoonright$ $\mu_{0}={ }_{\mu_{0}} A^{\prime} \upharpoonright \mu_{0}$, so we indeed get a map from $\mathbb{B}_{\mu_{0} \mu_{1}}$ onto $\mathbb{B}_{\mu_{0}}$, and $[A]_{\mathbb{B}_{\mu_{0} \mu_{1}}} \upharpoonright \mathbb{B}_{\mu_{0}}=$ $\left[A \upharpoonright \mu_{0}\right]_{\mathbb{B}_{\mu_{0}}}$.

We make use of the following.
Lemma 1.5. Let ν be a measure on X and for $i<2$ let μ_{i} be a measure on Y_{i}. Let $B_{i} \subset X \times Y_{i}$ and let $A_{i}=B_{i} \upharpoonright \nu$. Then $A_{0} \cap A_{1}={ }_{\nu} 0$ iff $B_{0} \cap B_{1}={ }_{\nu \mu_{0} \mu_{1}} 0$.

Proof. To avoid confusion, in this proof we don't use the convention 1.4.
Suppose that A_{0} and A_{1} are ν-disjoint. Then $A_{0} \times Y_{0} \times Y_{1} \cap A_{1} \times Y_{0} \times Y_{1}={ }_{\nu \mu_{0} \mu_{1}} 0$. Also, $B_{i} \subset_{\nu \mu_{i}} A_{i} \times Y_{i}$ so $B_{i} \times Y_{1-i} \subset_{\nu \mu_{0} \mu_{1}} A_{i} \times Y_{0} \times Y_{1}$; it follows that $B_{0} \times Y_{1}$ and $B_{1} \times Y_{0}$ are $\nu \mu_{0} \mu_{1}$-disjoint.

Suppose that $B_{0} \times Y_{1}$ and $B_{1} \times Y_{0}$ are $\nu \mu_{0} \mu_{1}$-disjoint. Consider $\left(B_{0} \times Y_{1}\right) \upharpoonright \nu \mu_{1}$; As $B_{1} \times Y_{0}$ is a cylinder in the product $\left(X \times Y_{1}\right) \times Y_{0}$, we have $\left(B_{0} \times Y_{1}\right) \upharpoonright \nu \mu_{1} \cap B_{1}={ }_{\nu \mu_{1}} 0$. However, $\left(B_{0} \times Y_{1}\right) \upharpoonright \nu \mu_{1}=A_{0} \times Y_{1}$. Now reducing from $X \times Y_{1}$ to X we get $A_{1}=B_{1} \upharpoonright \nu$ is ν-disjoint from A_{0}.

Infinite products. Iterating the two-step product, we can consider products of finitely many measures. However, we need the more intricate notion of a product of infinitely many measures. Countable products behave much as finite products do. Let, for $n<\omega, \mu_{n}$ be a measure on a measurable space $\left(X_{n}, \mathcal{S}_{n}\right)$. Again, a cylinder is a set of the form $\prod_{n<\omega} A_{n}$ for $A_{n} \in \mathcal{S}_{n}$. There is a unique measure $\mu_{\omega}=\prod \mu_{i}$ on the measure algebra on $\prod X_{n}$ generated by the cylinders such that for a cylinder $\prod A_{n}$ we have $\mu_{\omega}\left(\prod A_{n}\right)=\prod_{n<\omega} \mu_{n}\left(A_{n}\right)$, where the infinite product is taken as the limit of the finite products.

Localization commutes with countable products: if $A_{n} \in \mathcal{S}_{n}$ is a sequence such that $\mu_{\omega}\left(\Pi A_{n}\right)>0$, then $\mu_{\omega} \| \prod A_{n}=\prod\left(\mu_{n} \| A_{n}\right)$. On the other hand, note that we can have a sequence of $A_{n} \mathrm{~s}$ such that for each $n, \mu_{n}\left(A_{n}\right)>0$, but $\mu_{\omega}\left(\prod A_{n}\right)=0$; in this case we can use the measure $\prod\left(\mu_{n} \| A_{n}\right)$, but $\mu_{\omega} \| \prod A_{n}$ cannot be defined.

To better understand uncountable products, we notice that a countable product can be viewed as a direct limit of finite products. Namely, we let a finite cylinder be a set of the form $\prod_{n<k} A_{n} \times \prod_{n \geqslant k} X_{n}$ for some $k<\omega$ and $A_{n} \in \mathcal{S}_{n}$ for $n \leqslant k$. The finite cylinders are the cylinders of $\prod_{n<k} X_{n}$ under the standard identification of subsets of $\prod_{n<k} X_{n}$ with subsets of $\prod_{n<\omega} X_{n}$. The measure algebra on $\prod_{n<\omega} X_{n}$ generated by the finite cylinders is the same as the algebra generated by the infinite cylinders. Under the standard identifications, the finite product measures cohere and μ_{ω} is the measure generated by their union.

Let $\lambda>\aleph_{0}$ and suppose that for $\alpha<\lambda, \mu_{\{\alpha\}}$ is a measure on a measurable space $\left(X_{\{\alpha\}}, \mathcal{S}_{\{\alpha\}}\right)$. For $u \subset \lambda$ let $X_{u}=\prod_{\alpha \in u} X_{\{\alpha\}}$. If $u \subset \lambda$ is countable, let \mathcal{S}_{u} be the measure algebra on X_{u} generated by the cylinders, and let μ_{u} be the product $\prod_{\alpha \in u} \mu_{\{\alpha\}}$. As discussed, we can identify \mathcal{S}_{u} with an algebra of subsets of X_{λ} (or more generally subsets of X_{V} for any $u \subset V \subset \lambda$) by considering the measure algebra generated by cylinders with support in u : subsets of X_{V} of the form $\prod_{\alpha \in u} A_{\alpha} \times X_{V-u}$, for $A_{\alpha} \in \mathcal{S}_{\{\alpha\}}$.

For any $V \subset \lambda$, we let \mathcal{S}_{V} be the union of \mathcal{S}_{u} for countable $u \subset V$ (we note that any cylinder $A \subset X_{V}$ has least support). The measures μ_{u} cohere (i.e. μ_{u} and μ_{v} agree on $\mathcal{S}_{u \cap v}$); thus the union of the $\mu_{u} \mathrm{~s}$ is a measure μ_{V} on \mathcal{S}_{V} (this is more immediate than the countable case because every countable subset of \mathcal{S}_{V} lies in some \mathcal{S}_{u}.) As for countable sets, we can view μ_{V} as measuring subsets of any X_{W} for $V \subset W \subset \lambda$. In fact, under this identification, \mathcal{S}_{V} consists of those sets of \mathcal{S}_{W} which have support in V, that is, sets of the form $A \times X_{W-V}$ for some $A \subset X_{V}$. [We note that unlike a cylinder, a set with infinite support may not have a minimal support: consider the set of all sequences in 2^{ω} which are eventually 0.] The measure μ_{V} is determined by its values on the cylinders with finite support; for any $V \subset W \subset \lambda$ we have $\mu_{W}=\mu_{V} \mu_{W-V}$.

General framework. For our work, we fix $\lambda>\aleph_{0}$. For all $u \subset \lambda$, we let \mathbb{R}^{u} be the u-product of Cantor space. Elements of \mathbb{R}^{u} are often written as $\bar{x}=\left\langle x_{\alpha}\right\rangle_{\alpha \in u}$. For countable $u \subset \lambda$, we let \mathcal{S}_{u} be the collection of Borel subsets of \mathbb{R}^{u}, and let m_{u} be Lebesgue measure on \mathbb{R}^{u}. For countable and uncountable $u \subset \lambda, \mathcal{S}_{u}$ is the algebra generated by \mathcal{S}_{v} for finite $v \subset u$ and m_{u} is the product $\prod_{\alpha \in u} m_{\{\alpha\}}$.

The measures we shall consider will all be localizations of products of localizations of the $m_{\{\alpha\}}$:

Definition 1.6. Let $u \subset \lambda$. A pure local product measure on u is a measure on \mathcal{S}_{u} of the form $\prod_{\alpha \in u}\left(m_{\{\alpha\}} \| B_{\alpha}\right)$ for $B_{\alpha} \in \mathcal{S}_{\{\alpha\}}$. A local product measure on u is a measure on \mathcal{S}_{u} of the form $\nu \| B$, where ν is a pure local product measure on u.

We will mention other measures (such as a measure witnessing that a cardinal is real-valued measurable); but when it is clear from context that we only mention local product measures, we drop the long name and just refer to "measures" and "pure measures".

If μ is a local product measure on u then we let $u^{\mu}=u$ and call u the support (or domain) of μ.

Topology. We note that every \mathbb{R}^{u} is also a topological space (which can be viewed as the Tychonoff product of $\mathbb{R}^{\{\alpha\}}$ for $\alpha \in u$). However, when u is uncountable, then the Borel subsets of \mathbb{R}^{u} properly extend \mathcal{S}_{u}. This is not a concern of ours because the completion of any local product measure measures the Borel subsets of \mathbb{R}^{u} (and in fact if $A \subset \mathbb{R}^{\lambda}$ has no countable support then it is always null or co-null by such a completion). We thus abuse terminology and when we say "Borel" we mean a set in \mathcal{S}_{u}; so for us, every Borel set has countable support.

Recall that a measure μ which is defined on the Borel subsets of a topological space is regular if for all Borel $A, \mu(A)$ is both the infimum of $\mu(G)$ for open $G \supset A$ and the supremum of $\mu(K)$ for compact $K \subset A$. [Thus up to μ-measure 0 , each Borel set is the same as a $\boldsymbol{\Sigma}_{2}^{0}\left(\right.$ an $\left.F_{\sigma}\right)$ set and as a $\boldsymbol{\Pi}_{2}^{0}$ (a G_{δ}) set.] Lebesgue measure is regular, and a localization of a regular measure is also regular. Also, regularity is preserved under products; again note that even with uncountable products, every measurable set has countable support and so the closed sets produced by regularity have countable support.

Corollary 1.7. Every local product measures is regular.
Random reals. Let μ be a local product measure. Forcing with \mathbb{B}_{μ} is the same as forcing with $\mathcal{I}_{\mu}^{+}=\mathcal{S}_{u^{\mu}}-\mathcal{I}_{\mu}$, ordered by inclusion. A generic $G \subset \mathcal{I}_{\mu}^{+}$is determined by

$$
\left\{\bar{r}^{G}\right\}=\cap_{B \in G} B^{V[G]} .
$$

We have $B \in G$ iff $\bar{r}^{G} \in B^{V[G]}$; this follows from regularity of μ. We have $\bar{r}^{G} \in$ $\bigcap\left\{A^{V[G]}: A \in V\right.$ is co-null $\}$; and conversely, if W is an extension of V and $\bar{r} \in W$ lies in $\bigcap\left\{A^{V[G]}: A \in V\right.$ is co-null $\}$, then $G=\left\{A \in \mathcal{I}_{\mu}^{+}: \bar{r} \in A^{W}\right\}$ is generic over V and $\bar{r}=\bar{r}^{G}$.

Suppose that ν, μ are local product measures and that $u^{\nu} \cap u^{\mu}=0$. Then $\nu \mu$ is a local product measure. Recall that we have a complete embedding $i_{\nu}^{\nu \mu}: \mathbb{B}_{\nu} \rightarrow$ $\mathbb{B}_{\nu \mu}$. Thus if $G \subset \mathbb{B}_{\nu \mu}$ is generic then $G_{\nu}=\left(i_{\nu}^{\nu \mu}\right)^{-1} G$ is generic for \mathbb{B}_{ν}. In fact, $\bar{r}^{G_{\nu}}=\bar{r}^{G} \upharpoonright u^{\nu}$.
Quotients are measure algebras. Let $V[G]$ be any generic extension of V. There is a canonical extension of μ to a measure on $\mathcal{S}_{u}^{V[G]}$, which we denote by $\mu^{V[G]}$. For if $\mu=\left(\prod_{\alpha \in u}\left(m_{\{\alpha\}} \| B_{\alpha}\right)\right) \| B$ then we can let $\mu^{V[G]}=\left(\prod_{\alpha \in u}\left(m_{\{\alpha\}} \| B_{\alpha}^{V[G]}\right)\right) \| B^{V[G]}$. The usual absoluteness arguments show that indeed $\mu^{V[G]}$ is an extension of μ, and does not depend on the presentation of μ.

Let $u, v \subset \lambda$ be disjoint; and let ν be a local product measure on \mathcal{S}_{u}, μ a local product measure on \mathcal{S}_{v}. Of course, $\nu \mu$ is also a local product measure.

We make use of the following.

Fact 1.8. Let $G \subset \mathbb{B}_{\nu}$ be generic. Then the map $A \mapsto A^{V[G]}{ }_{\bar{r}^{G}}$ induces an isomorphism from $\mathbb{B}_{\nu \mu}: G$ to $\mathbb{B}_{\mu^{V[G]}}$.

In particular, $\Vdash_{\mathbb{B}_{\nu}}$ " $\mathbb{B}_{\nu \mu}: G$ is a measure algebra".
Proof. Let $\pi_{\nu, \mu}: \mathbb{B}_{\nu \mu} \rightarrow \mathbb{B}_{\nu \mu}: G$ be the quotient map. We know that

$$
\pi_{\nu, \mu}^{-1}\left(\mathbb{B}_{\nu \mu}: G-\{0\}\right)=\mathbb{B}_{\nu \mu} / G
$$

(the partial ordering). Thus for $A \in \mathcal{S}_{u \cup v}$, we have

$$
\begin{aligned}
\pi_{\nu, \mu}\left([A]_{\nu \mu}\right)>0 & \Longleftrightarrow[A \upharpoonright \nu]_{\nu} \in G
\end{aligned} \begin{gathered}
\bar{r}^{G} \in(A \upharpoonright \nu)^{V[G]}
\end{gathered} \Longleftrightarrow \Longleftrightarrow \mu^{V[G]}\left(A^{V[G]} \bar{r}^{G}\right)>0, ~ l
$$

The last equivalence follows from the fact that $(A \upharpoonright \nu)^{V[G]}=A^{V[G]} \upharpoonright \nu^{V[G]}$; again we use absoluteness. Thus we may define an embedding $\sigma_{\nu, \mu}: \mathbb{B}_{\nu \mu}: G \rightarrow \mathbb{B}_{\mu}{ }^{V[G]}$ by letting $\sigma_{\nu, \mu}\left(\pi_{\nu, \mu}\left([A]_{\nu \mu}\right)\right)=\left[A^{V[G]} \bar{r}^{G}\right]_{\mu^{V[G]}}$. It is clear that $\sigma_{\nu, \mu}$ preserves the Boolean operations.
$\sigma_{\nu, \mu}$ is onto: every set in the random extension is determined by a set in the plane in the ground model (see [BJ95, 3.1]). For any countable $v^{\prime} \subset v$, every $\mathbb{B}_{\nu^{-}}$ name y for a an element of $\mathbb{R}^{v^{\prime}}$ corresponds to a Π_{3}^{0} function $f_{y}: \mathbb{R}^{u} \rightarrow \mathbb{R}^{v^{\prime}}$ defined by $f_{y}(x)(i)(n)=k \Longleftrightarrow x \in \llbracket y(i)(n)=k \rrbracket_{\mathbb{B}_{\nu}}$; this function has the property that for all such $y, f^{V[G]}\left(\bar{r}^{G}\right)=y^{G}$. Let C be a \mathbb{B}_{ν}-name for a Borel subset of \mathbb{R}^{v}. The algebra \mathbb{B}_{ν} is c.c.c., so in V, there is some countable $v^{\prime} \subset v$ and some \mathbb{B}_{ν}-name C^{\prime} for a Borel subset of $\mathbb{R}^{v^{\prime}}$ such that $\Vdash_{\mathbb{B}_{\nu}} C=C^{\prime} \times \mathbb{R}^{v-v^{\prime}}$. We can let

$$
A=\left\{\left(x, f_{y}(x)\right): x \in \llbracket y \in C^{\prime} \rrbracket_{\mathbb{B}_{\nu}}\right\} \times \mathbb{R}^{v-v^{\prime}}
$$

where f_{y} ranges over Π_{3}^{0} functions from \mathbb{R}^{u} to $\mathbb{R}^{v^{\prime}}$; thus A is Borel and $\left(A^{G}\right)_{\bar{r}^{G}}=$ C^{G}. [However, in the sequel, we do not use the fact that $\sigma_{\nu, \mu}$ is onto.]

Commuting diagrams. We thus have the following diagram:

$$
\mathbb{B}_{\nu \mu} \xrightarrow{\pi_{\nu, \mu}} \mathbb{B}_{\nu \mu}: G \xrightarrow{\sigma_{\nu, \mu}} \mathbb{B}_{\mu^{V[G]}}
$$

Suppose now that ν is a local product measure on $u ; \mu, \varrho$ are local product measure on v_{0}, v_{1}, and u, v_{0}, v_{1} are pairwise disjoint. Let $v=\mu \varrho$. Let $G \subset \mathbb{B}_{\nu}$ be generic. For the rest of the section, we retract our convention 1.4. We thus have a complete embedding $i_{\nu \mu}^{\nu v}: \mathbb{B}_{\nu \mu} \rightarrow \mathbb{B}_{\nu v}$. This embedding induces a complete embedding $\iota_{\nu \mu}^{\nu v}: \mathbb{B}_{\nu \mu}: G \rightarrow \mathbb{B}_{\nu v}: G$.

Lemma 1.9. The following diagram commutes.

Proof. Let $A \in \mathcal{S}_{u \cup v_{0}}$, and let

$$
\begin{aligned}
a & =\pi_{\nu, \mu}\left([A]_{\nu \mu}\right) ; \\
a^{\prime} & =\iota_{\nu \mu}^{\nu}(a)=\pi_{\nu, v}\left(\left[A \times \mathbb{R}^{v_{1}}\right]_{\nu v}\right) ; \\
b & =\sigma_{\nu, \mu}(a)=\left[A^{V[G]} \bar{r}^{G}\right]_{\mu^{V[G]}} ; \text { and } \\
b^{\prime} & =\sigma_{\nu, v}\left(a^{\prime}\right)=\left[\left(A \times \mathbb{R}^{v_{1}}\right)^{V[G]}{ }_{\bar{r}^{G}}\right]_{v^{V[G]}} .
\end{aligned}
$$

The desired equation $i_{\mu^{V[G]}}^{v^{V[G]}}(b)=b^{\prime}$ follows from the fact that

$$
A^{V[G]_{\bar{r}^{G}}} \times \mathbb{R}^{v_{1} V[G]}=\left(A \times \mathbb{R}^{v_{1}}\right)^{V[G]}{ }_{\bar{r}^{G}}
$$

Note that $i_{\mu^{V[G]}}^{V[G]}$ is measure-preserving.
Next, suppose that ς, ϱ are local product measures on u_{0}, u_{1} and that μ is a local product measure on v; and that u_{0}, u_{1}, v are pairwise disjoint. We let $\nu=\varsigma \varrho$.

As i_{ς}^{ν} is a complete embedding, we know that if $G_{\nu} \subset \mathbb{B}_{\nu}$ is generic, then $G_{\varsigma}=$ $\left(i_{\varsigma}^{\nu}\right)^{-1} G_{\nu}$ is also generic. The map $i_{\varsigma \mu}^{\nu \mu}$ induces a complete embedding $\iota_{\varsigma \mu}^{\nu \mu}$ from $\mathbb{B}_{\varsigma \mu}: G_{\varsigma}$ to $\mathbb{B}_{\nu \mu}: G_{\nu}$.

Also, as $V\left[G_{\varsigma}\right] \subset V\left[G_{\nu}\right]$ we have (relying on absoluteness) a measure-preserving embedding $1_{\varsigma}^{\nu, \mu}: \mathbb{B}_{\mu^{V\left[G_{\varsigma}\right]}} \rightarrow \mathbb{B}_{\mu^{V\left[G_{\nu}\right]}}$, given by $[B]_{\mu^{V\left[G_{\varsigma}\right]}} \rightarrow\left[B^{V\left[G_{\nu}\right]}\right]_{\mu^{V\left[G_{\nu}\right]}}$.

Lemma 1.10. The following diagram commutes:

Proof. Let $A \in \mathcal{S}_{u_{0} \cup v}$. We let:

$$
\begin{aligned}
a & =\pi_{\varsigma, \mu}\left([A]_{\varsigma \mu}\right) \\
a^{\prime} & =\iota_{\varsigma \mu}^{\nu \mu}(a)=\pi_{\nu, \mu}\left(\left[A \times \mathbb{R}^{u_{1}}\right]_{\nu \mu}\right) ; \\
b & =\sigma_{\varsigma, \mu}(a)=\left[A^{V\left[G_{\varsigma}\right]_{\bar{r}^{G_{\varsigma}}}}\right]_{\mu^{V\left[G_{\varsigma}\right]}} ; \text { and } \\
b^{\prime} & =\sigma_{\nu, \mu}\left(a^{\prime}\right)=\left[\left(A \times \mathbb{R}^{u_{1}}\right)^{V\left[G_{\nu}\right]}{ }_{\bar{r}^{G_{\nu}}}\right]_{\mu V\left[G_{\nu}\right]} .
\end{aligned}
$$

We want to show that $1_{\varsigma, \mu}^{\nu, \mu}(b)=b^{\prime}$. Letting $B=A^{V\left[G_{\varsigma}\right]}{ }_{\bar{r}_{\varsigma} G_{\varsigma}}$ and $B^{\prime}=\left(A \times \mathbb{R}^{u_{1}}\right)^{V\left[G_{\nu}\right]}{ }_{\bar{r} G_{\nu}}$, we show that $B^{\prime}=B^{V\left[G_{\nu}\right]}$. We know, though, that $\bar{r}^{G_{\nu}}=\bar{r}^{G_{\varsigma}} \bar{r}^{G_{\varrho}}$, from which we deduce that $B^{\prime}=A^{V\left[G_{\nu}\right]} \bar{r}_{G_{\varsigma}}$. The conclusion follows from absoluteness.

In our third scenario, we have ϱ, μ which are local product measures on disjoint v, u; and we let $\nu=\varrho \| B$ be some localization of ϱ. In this case we have a projection $i_{\varrho}^{\nu}: \mathbb{B}_{\varrho} \rightarrow \mathbb{B}_{\nu}$. Let $G_{\nu} \subset \mathbb{B}_{\nu}$ be generic; then $G_{\varrho}=\left(i_{\varrho}^{\nu}\right)^{-1} G_{\nu}$ is generic, but in fact contains no less information; so we denote the extension by $V[G]$.

Lemma 1.11. The following diagram commutes:

Proof. As usual we take $A \in \mathcal{S}_{v \cup u}$ and follow $[A]_{\varrho \mu}$ along the diagram. We have $\iota_{\varrho, \mu}^{\nu, \mu}\left(\pi_{\varrho, m u}\left([A]_{\varrho \mu}\right)\right)=\pi_{\nu, \mu}\left([A]_{\nu \mu}\right)$; and $\sigma_{\varrho, \mu}\left(\pi_{\varrho, \mu}\left([A]_{\varrho \mu}\right)\right)=\left[A^{V[G]} \bar{r}^{G_{\varrho}}\right]_{\mu^{V[G]}}$ and $\sigma_{\nu, \mu}\left(\pi_{\nu, \mu}\left([A]_{\nu \mu}\right)\right)=\left[A^{V[G]} \bar{r}_{G_{\nu}}\right]_{\mu V[G]}$; the latter two are equal because $\bar{r}^{G_{\varrho}}=$ $\bar{r}^{G_{\nu}}$.

Our last case is perhaps the easiest. Suppose that u and v are disjoint and that ν, μ are local product measures on u, v respectively. Suppose that $C \in \mathcal{B}_{\mu}$ is positive; let $v=\mu \| C$. Let $G \subset \mathbb{B}_{\nu}$ be generic. Then by absoluteness $v^{V[G]}=$ $\mu^{V[G]} \| C^{V[G]}$. Note that unlike the previous cases, the Boolean homomorphism $i_{\mu^{V[G]}}^{v^{V[G]}}$ is not measure-preserving.
Lemma 1.12. The following diagram commutes.

Proof. Immediate, because for $A \in \mathcal{S}_{u \cup v}, i_{\nu \mu}^{\nu \varsigma}\left([A]_{\nu \mu}\right)=[A]_{\nu v}$ (which is the same as $\left.\left[A \cap\left(\mathbb{R}^{u} \times C\right)\right]_{\nu v}\right)$.

2. Solovay's construction

We hope that the gentle reader will not be offended if we repeat a proof of Solovay's original construction of a real-valued measurable cardinal, starting from a measurable cardinal. The exposition which we give is different from the one found in most textbooks, indeed from the one given by Solovay in his paper; since in the rest of this paper we shall elaborate on this proof, we thought such an exposition may be useful.

Let κ be a measurable cardinal; let $j: V \rightarrow M$ be an elementary embedding of V into a transitive class model M with critical point κ, such that $M^{\kappa} \subset M$.

We move swiftly between $M, V, M[G]$ and $V[G]$. To make things clearer, we use the blue color when we work in M or $M[G]$.

The forcing Solovay uses is $\mathbb{P}=\mathbb{B}_{m_{\kappa}}$, i.e. forcing with Borel subsets of X_{κ} of positive Lebesgue measure. We show that after forcing with \mathbb{P}, κ is real-valued measurable.

We have $j(\mathbb{P})=\mathbb{B}_{m_{j(\kappa)}}$. Also, $\mathbb{P} \in M$ and $\mathbb{P}=\mathbb{B}_{m_{\kappa}}$.
Let $G \subset \mathbb{P}$ be generic over V. Then G is generic over M. We have the following diagram:

$$
j(\mathbb{P}) \xrightarrow{\pi_{m_{\kappa}, m_{[\kappa, j(\kappa))}}} j(\mathbb{P}): G \xrightarrow{\sigma_{m_{\kappa}, m_{[\kappa, j(\kappa))}}} \mathbb{B}_{m_{[\kappa, j(\kappa))}}{ }^{M[G]} .
$$

For shorthand, we let $\pi=\pi_{m_{\kappa}, m_{[\kappa, j(\kappa))}}$ and we let ν be the pullback to $j(\mathbb{P}): G$ of $m_{[\kappa, j(\kappa))}{ }^{M[G]}$ by $\sigma_{m_{\kappa}, m_{[\kappa, j(\kappa))}}$.

Let A be a \mathbb{P}-name for a subset of $\kappa . j(A)$ is a $j(\mathbb{P})$-name for a subset of $j(\kappa)$. Let $b_{A}=\llbracket \kappa \in j(A) \rrbracket_{j(\mathbb{P})}\left(\right.$ note $A \mapsto b_{A}$ is in $\left.V\right)$ and in $V[G]$ let $\mu(A)=\nu\left(\pi\left(b_{A}\right)\right)$. We now work in V so we refer to the objects defined as names.

Lemma 2.1. Suppose that $a \in \mathbb{P}$, that A, B are \mathbb{P}-names for subsets of κ, and that $a \Vdash_{\mathbb{P}} A \subset B$. Then $a \Vdash_{\mathbb{P}} \mu(A) \leqslant \mu(B)$.

Proof. The point is that $j(a)=a$. Let $G \subset \mathbb{P}$ be generic over V such that $a \in G$. We have $a \Vdash_{j(\mathbb{P})} j(A) \subset j(B)$. Let $b=b_{A} \cap a$. As $a \in G$ we have $\pi(a)=1_{j(\mathbb{P}): G}$ so $\pi(b)=\pi\left(b_{A}\right)$. However, $b \Vdash_{j(\mathbb{P})} \kappa \in j(B)$ (as it forces that $j(A) \subset j(B)$ and that $\kappa \in j(A))$ and so $b \leqslant b_{B}$. It follows that $\pi\left(b_{A}\right) \leqslant \pi\left(b_{B}\right)$ so $\mu(A) \leqslant \mu(B)$. As G was arbitrary, $a \Vdash_{\mathbb{P}} \mu(A) \leqslant \mu(B)$.

It follows that μ, rather than being defined on names for subsets of κ, can be well-defined on subsets of κ in $V[G]$. The following lemmas ensure that μ is indeed a (non-trivial) κ-complete measure.

Lemma 2.2. Let $A \subset \kappa$ be in V and let $G \subset \mathbb{P}$ be generic over V. If $\kappa \in j(A)$ then $\mu(A)=1$ and if $\kappa \notin j(A)$ then $\mu(A)=0$.

Proof. Suppose that $\kappa \in j(A)$. Then $1_{j(\mathbb{P})} \Vdash \kappa \in j(A)$. Thus $b_{A}=1_{j(\mathbb{P})}$ so $\pi\left(b_{A}\right)=1_{j(\mathbb{P}): G}$. Thus $\mu(A)=1$. On the other hand, if $\kappa \notin j(A)$ then no $b \in j(\mathbb{P})$ forces that $\kappa \in j(A)$, so $b_{A}=0$; it follows that $\mu(A)=0$.

Lemma 2.3. Suppose that $\left\langle A_{n}\right\rangle_{n<\omega}$ is a sequence of \mathbb{P}-names for subsets of κ. Suppose that $a \in \mathbb{P}$ forces that $A=\bigcup_{n<\omega} A_{n}$ is a disjoint union. Then $a \Vdash_{\mathbb{P}}$ $\mu(A)=\sum_{n<\omega} \mu\left(A_{n}\right)$.

Proof. We have $j(a)=a$ and $j\left(\left\langle A_{n}\right\rangle_{n<\omega}\right)=\left\langle j\left(A_{n}\right)\right\rangle_{n<\omega}$; so a forces (in $j(\mathbb{P})$) that $j(A)=\cup_{n<\omega} j\left(A_{n}\right)$ is a disjoint union. Again let G be generic such that $a \in G$.

Let $l, k<\omega$ and $l \neq k$. $a \Vdash_{j(\mathbb{P})} j\left(A_{k}\right) \cap j\left(A_{l}\right)=0$ so $b_{A_{k}} \cap a$ and $b_{A_{l}} \cap a$ are disjoint in $j(\mathbb{P})$. As $a \in G$ it follows that in $j(\mathbb{P}): G, \pi\left(b_{A_{k}}\right) \wedge \pi\left(b_{A_{l}}\right)=0$. We thus have $\nu\left(\sum_{n}^{j(\mathbb{P}): G} \pi\left(b_{A_{n}}\right)\right)=\sum_{n} \mu\left(A_{n}\right)$. It thus suffices to show that $\sum_{n}^{j(\mathbb{P}): G} \pi\left(b_{A_{n}}\right)=$ $\pi\left(b_{A}\right)$.

For any $n<\omega, a \Vdash A_{n} \subset A$ so as we saw before, $\pi\left(b_{A_{n}}\right) \leqslant \pi\left(b_{A}\right)$. To show the other inclusion, let $b=b_{A}-\sum_{n}^{j(\mathbb{P})} b_{A_{n}}$. Then $b \vdash_{j(\mathbb{P})} \kappa \in j(A)-\cup_{n} j\left(A_{n}\right)$. Since $a \Vdash_{j(\mathbb{P})} j(A) \subset \cup_{n} j\left(A_{n}\right)$ we must have $a \cap b=0$, which implies that $\pi(b)=0$. The equality follows.

Lemma 2.4. Suppose that $\gamma<\kappa$ and that $\left\langle A_{\alpha}\right\rangle_{\alpha<\gamma}$ is a sequence of \mathbb{P}-names for subsets of κ. Suppose that $a \in \mathbb{P}$ and $a \Vdash_{\mathbb{P}} \forall \alpha<\gamma\left(\mu\left(A_{\alpha}\right)=0\right)$. Then $a \Vdash_{\mathbb{P}} \mu\left(\cup_{\alpha} A_{\alpha}\right)=0$.

Proof. Let A be a \mathbb{P}-name for a subset of κ such that $a \Vdash_{\mathbb{P}} A=\cup_{\alpha<\gamma} A_{\alpha}$. Then $a \Vdash_{j(\mathbb{P})} j(A)=\cup_{\alpha<\gamma} j\left(A_{\alpha}\right)$ and also $a \Vdash_{j(\mathbb{P})} \forall \alpha<\gamma\left[\pi\left(b_{A_{\alpha}}\right)=0\right]$, that is, $a \Vdash \forall \alpha<$ $\gamma\left[\kappa \notin j\left(A_{\alpha}\right)\right]$. Thus $a \Vdash_{j(\mathbb{P})} \kappa \notin j(A)$ so $a \cap b_{A}=j(\mathbb{P}) 0$ so $a \Vdash_{j(\mathbb{P})} \pi\left(b_{A}\right)=0$ so $a \vdash_{\mathbb{P}} \mu(A)=0$.

3. A NEW CONSTRUCTION OF A REAL-VALUED MEASURABLE CARDINAL

Definition 3.1. A set of ordinals u is of Easton type if whenever θ is an inaccessible cardinal, $u \cap \theta$ is bounded below θ.

Let \mathbb{Q} consist of the collection of all local product measures (definition 1.6) whose support is of Easton type. If u is a set of ordinals, then we let \mathbb{Q}_{u} be the collection of measures in \mathbb{Q} whose support is contained in u.

Let $\mu, \nu \in \mathbb{Q}$. We say that ν is a pure extension of μ (and write $\nu \leqslant_{\text {pur }} \mu$) if $\nu=\mu \varsigma$ where ς is a pure local product measure.

We say that ν is a local extension of μ (and write $\nu \leqslant_{\text {loc }} \mu$) if ν is a localization of μ (in particular μ and ν have same support u).

We let ν extend $\mu(\nu \leqslant \mu)$ if there is some ς such that $\nu \leqslant_{\text {loc }} \varsigma \leqslant_{\text {pur }} \mu$. It is not hard to verify that \leqslant is indeed a partial ordering on \mathbb{Q}, and in fact on every \mathbb{Q}_{u}.

Lemma 3.2. Suppose that $\nu \leqslant_{\text {pur }} \varsigma$ and $\varsigma \leqslant_{\text {loc }} \mu$. Then $\nu \leqslant \mu$.
Proof. Let v be a pure measure such that $\nu=\varsigma v$. Let $B \in \mathcal{S}_{u^{\mu}}$ such that $\varsigma=\mu \| B$. Then $\nu=(\mu v) \| B$, so μv witnesses $\nu \leqslant \mu$.

Note that if $\nu \leqslant \mu$ then $\nu \ll \mu$.
3.1. Characterization of a generic. We wish to find some characterization of a generic filter of \mathbb{Q}_{u}, analogous to the description of a generic for random forcing in term of a random real. We need to discuss compatibility in \mathbb{Q}.

3.1.1. Compatibility in \mathbb{Q}.

Definition 3.3. Let $\mu, \nu \in \mathbb{Q}$. We say that μ and ν are explicitly incompatible (and write $\left.\mu \perp_{\exp } \nu\right)$ if there is some $B \in \mathcal{S}_{u^{\mu} \cap u^{\nu}}$ such that $\mu(B)=0$ but $\nu(B)=1$.

It is clear that if $\mu \perp_{\exp } \nu$ then $\mu \perp \nu\left(\right.$ in \mathbb{Q} and in every $\left.\mathbb{Q}_{u}\right)$; because we cannot have some $\varsigma \ll \mu, \nu$.

Lemma 3.4. Suppose that $u^{\mu} \cap u^{\nu} \neq 0$ and $\mu \not \chi_{\exp } \nu$. Then there is some pure measure ς on $u^{\mu} \cap u^{\nu}$ such that $\mu, \nu \leqslant \varsigma$.

Proof. Let μ_{0}, ν_{0} be pure local product measures such that $\mu=\mu_{0}\left\|C^{\mu}, \nu=\nu_{0}\right\| C^{\nu}$ for some positive sets C^{μ}, C^{ν}. Pick sequences $\left\langle B_{\alpha}^{\mu}\right\rangle_{\alpha \in u^{\mu}},\left\langle B_{\alpha}^{\nu}\right\rangle_{\alpha \in u^{\nu}}$ which define μ_{0}, ν_{0} (i.e. $\mu_{0}=\prod_{\alpha \in u^{\mu}}\left(m_{\{\alpha\}} \| B_{\alpha}^{\mu}\right)$ and similarly for $\left.\nu_{0}\right)$. Note that μ_{0} and ν_{0} are not by any means unique, but that the $B_{\alpha} \mathrm{s}$ are determined (up to Lebesgue measure) by μ_{0}, ν_{0}.

Let $v=u^{\mu} \cap u^{\nu}$. Let $\varsigma=\prod_{\alpha \in v}\left(m_{\{\alpha\}} \|\left(B_{\alpha}^{\mu} \cup B_{\alpha}^{\nu}\right)\right)$.
First we show that for all but countably many $\alpha \in v$ we have $B_{\alpha}^{\mu}={ }_{m_{\{\alpha\}}} B_{\alpha}^{\nu}$. Suppose not; then for some $\epsilon<1$ we have some countable, infinite $w \subset v$ such that for all $\alpha \in w,\left(m_{\{\alpha\}} \| B_{\alpha}^{\mu}\right)\left(B_{\alpha}^{\nu}\right)<\epsilon$ (or the other way round). Let $A=\prod_{\alpha \in w} B_{\alpha}^{\nu}$. Then $\nu(A)=1$ but $\mu(A)=0$.

Let $w=\left\{\alpha \in v: B_{\alpha}^{\mu}{\neq m_{\{\alpha\}}} B_{\alpha}^{\nu}\right\}$. We assume that $w \neq 0$ for otherwise we're done. Let $A^{\mu}=\prod_{\alpha \in w} B_{\alpha}^{\mu}$ (and similarly define A^{ν}). It is sufficient to show
that $\varsigma\left(A^{\mu}\right), \varsigma\left(A^{\nu}\right)>0$; it will then follow that μ_{0} is a pure extension of $\varsigma \| A^{\mu}$, and similarly for ν_{0}. Suppose that $\varsigma\left(A^{\mu}\right)=0$. Let $\alpha \in w$; let $a_{\alpha}=m_{\{\alpha\}}\left(B_{\alpha}^{\nu}-\right.$ $\left.B_{\alpha}^{\mu}\right), c_{\alpha}=m_{\{\alpha\}}\left(B_{\alpha}^{\mu}-B_{\alpha}^{\nu}\right)$ and $b_{\alpha}=m_{\{\alpha\}}\left(B_{\alpha}^{\mu} \cap B_{\alpha}^{\nu}\right)$. The assumption is that $\prod_{\alpha \in w} \frac{b_{\alpha}+c_{\alpha}}{a_{\alpha}+b_{\alpha}+c_{\alpha}}=0$. However, for each $\alpha \in w, \frac{b_{\alpha}}{a_{\alpha}+b_{\alpha}} \leqslant \frac{b_{\alpha}+c_{\alpha}}{a_{\alpha}+b_{\alpha}+c_{\alpha}}$, which means that $\prod_{\alpha \in w}\left(m_{\{\alpha\}} \| B_{\alpha}^{\nu}\right)\left(B_{\alpha}^{\mu}\right)=0$, so $\nu\left(A^{\mu}\right)=0$ (and of course $\mu\left(A^{\mu}\right)=1$).

For $\mu, \nu \in \mathbb{Q}$, if $u^{\mu} \cap u^{\nu}=0$ then $\mu \nu \leqslant \mu, \nu$ and so μ and ν are compatible. The following is the generalization we need:

Lemma 3.5. Let u be a set of ordinals and let $\mu, \nu \in \mathbb{Q}_{u}$. Then $\mu \perp_{\mathbb{Q}_{u}} \nu$ iff $\mu \perp_{\exp } \nu$.

Proof. Suppose that $\mu \not \chi_{\exp } \nu$. We may assume that $v=u^{\mu} \cap u^{\nu} \neq 0$. By lemma 3.4, find some pure ς on v, some pure μ_{1}, ν_{1} and some C^{μ}, C^{ν} such that $\mu=\left(\varsigma \mu_{1}\right) \| C^{\mu}$, $\nu=\left(\varsigma \nu_{1}\right) \| C^{\nu}$. Let $v=\varsigma \mu_{1} \nu_{1}$. We have $v\left(C^{\mu} \cap C^{\nu}\right)>0$ for otherwise, by lemma $1.5, C^{\mu} \upharpoonright \varsigma, C^{\nu} \upharpoonright \varsigma$ are ς-disjoint and would witness that $\mu \perp_{\exp } \nu$. Then $v \|\left(C^{\mu} \cap C^{\nu}\right)$ is a common extension of μ and ν; for example, $v\left\|\left(C^{\mu} \cap C^{\nu}\right)=\left(\mu \nu_{1}\right)\right\| C^{\nu}$.

Remark 3.6. If $\mu \not \perp \nu$ then there is some v on $u^{\mu} \cup u^{\nu}$ which is a common extension of μ and ν. In fact, the common extension constructed in the proof of lemma 3.5 is the greatest common extension of μ and ν in \mathbb{Q} (thus this extension does not depend on the choice of ς).
3.1.2. Characterization of the generic. Let u be a set of ordinals, and let $G \subset \mathbb{Q}_{u}$ be generic over V. Let

$$
A_{G}=\cap\left\{B^{V[G]}: \text { for some } \mu \in G, \mu(B)=1\right\}
$$

Lemma 3.7. A_{G} is not empty.
Proof. Let $\mathcal{F}_{G}=\left\{B^{V[G]}: B\right.$ is closed and for some $\left.\mu \in G, \mu(B)=1\right\}$, and let $B_{G}=\cap \mathcal{F}_{G}$. We show that $B_{G}=A_{G}$ and that B_{G} is not empty.

For the first assertion, recall (corollary 1.7) that every $\mu \in \mathbb{Q}$ is a regular measure. Let $\mu \in \mathbb{Q}_{u}$ and let B be of μ-measure 1. There is some closed $A \subset B$ of positive measure, so $\mu \| A \in \mathbb{Q}_{u}$. Thus by genericity, for every B such that $\mu(B)=1$ for some $\mu \in G$, there is some closed $A \subset B$ and some $\nu \in G$ such that $\nu(A)=1$. This shows that $B_{G}=A_{G}$.

Next, we note that \mathcal{F}_{G} has the finite intersection property. Let $F \subset \mathcal{F}_{G}$ be finite. For $B \in F$ let $\nu_{B} \in G$ witness $B \in \mathcal{F}_{G}$. There is some $\mu \in G$ which extends all ν_{B} for $B \in F$. Then $\mu(\cap F)=1$ which implies that $\cap F \neq 0$. As $\mathbb{R}^{u V[G]}$ is compact, $B_{G} \neq 0$.

In fact,
Lemma 3.8. A_{G} is a singleton $\left\{\bar{s}^{G}\right\}$.
Proof. Let $\alpha<\lambda$ and let $n<\omega$. There is some $\mu \in G$ and some $\sigma \in 2^{n}$ such that $\mu\left([\sigma]^{\alpha}\right)=1$. For given any μ we can extend it to some ν such that $\alpha \in u^{\nu}$ and then extend ν locally to some ς such that $\varsigma\left([\sigma]^{\alpha}\right)=1$ for some $\sigma \in 2^{n}$.

As usual,
Lemma 3.9. $V[G]=V\left[\bar{s}^{G}\right]$.

Proof. In fact, G can be recovered from \bar{s}^{G} because for all $\mu \in \mathbb{Q}_{u}, \mu \in G$ iff for all B such that $\mu(B)=1$ we have $\bar{s}^{G} \in B^{V[G]}$. For if $\mu \notin G$ then there is some $\nu \in G$ such that $\nu \perp \mu$. By lemma 3.5, there is some B such that $\nu(B)=0$ and $\mu(B)=1$. Then $\bar{s}^{G} \notin B^{V[G]}$.
3.1.3. The size of the continuum. Here is an immediate application:

Lemma 3.10. \mathbb{Q}_{u} adds at least $|u|$ reals.
Proof. Let G be generic and let \bar{s}^{G} be the generic sequence. We want to show that for distinct $\alpha, \beta \in u$ we have $\bar{s}_{\alpha}^{G} \neq \bar{s}_{\beta}^{G}$. Let $\mu \in G$ be such that $\alpha, \beta \in u^{\mu} . \mu \leqslant$ $m_{\{\alpha, \beta\}}$ so $\mu \ll m_{\{\alpha, \beta\}}$. Let $A=\left\{(x, y) \in \mathbb{R}^{\{\alpha\}} \times \mathbb{R}^{\{\beta\}}: x \neq y\right\}$ be the complement of the diagonal. Then $m_{\{\alpha, \beta\}}(A)=1$ so $\mu(A)=1$. Thus $\mu \Vdash \bar{s}^{G} \in A^{V[G]}$. But $A^{V[G]}=\left\{(x, y) \in \mathbb{R}^{\{\alpha\}^{V[G]}} \times \mathbb{R}^{\{\beta\}^{V[G]}}: x \neq y\right\}$. Thus $\bar{s}_{\alpha}^{G} \neq \bar{s}_{\beta}^{G}$.
3.2. More on local and pure extensions. Let $\mu \in \mathbb{Q}$. The collection of local extensions of μ (ordered by \leqslant) is isomorphic to \mathbb{B}_{μ}, so we identify the two.
Lemma 3.11. Let $\mu \in \mathbb{Q}_{u}$. Then $\mathbb{B}_{\mu} \lessdot \mathbb{Q}_{u}(\leqslant \mu)$.
Proof. Let $A, B \in \mathbb{B}_{\mu}$. Then A and B are compatible in \mathbb{B}_{μ} iff $\mu(A \cap B)>0$ iff $\mu\|A, \mu\| B$ are compatible in \mathbb{Q}.

Let $\left\langle A_{n}\right\rangle_{n<\omega}$ be a maximal antichain of \mathbb{B}_{μ}. Let $\nu \in \mathbb{Q}_{u}, \nu \leqslant \mu$. Since $\mu\left(\cup A_{n}\right)=$ 1 we have $\nu\left(\cup A_{n}\right)=1$ and so for some $n<\omega$ we have $\nu\left(A_{n}\right)>0$. Then $\nu \| A_{n}$ is a common extension of ν and $\mu \| A_{n}$.

It follows that \bar{s}^{G} is a string of random reals.
Remark 3.12. For all $u \subset v$ we have $\mathbb{Q}_{u} \lessdot \mathbb{Q}_{v}$; we do not need this fact.
Definition 3.13. Let $\mu \in \mathbb{Q}_{u}$ and let $\mathbb{U} \subset \mathbb{Q}_{u}$. We say that μ determines \mathbb{U} if $\mathbb{U} \cap \mathbb{B}_{\mu}$ is dense in \mathbb{B}_{μ}.

We say that $\mu \in \mathbb{Q}_{u}$ determines a formula φ of the forcing language for \mathbb{Q}_{u} if μ determines $\left\{\nu \in \mathbb{Q}_{u}: \nu\right.$ decides $\left.\varphi\right\}$. Of course, this depends on u, so if not clear from context we will say " u-determines". Informally, μ determining φ means that φ is transformed to be a statement in the random forcing \mathbb{B}_{μ}, which is a simple notion, compared to formulas of \mathbb{Q}_{u}. If μ determines pertinent facts about a \mathbb{Q}_{u}-name then that name essentially becomes a \mathbb{B}_{μ}-name.

For a formula φ of the forcing language for \mathbb{Q}_{u} and $\mu \in \mathbb{Q}_{u}$ we let

$$
\llbracket \varphi \rrbracket_{\mu}^{u}=\sum^{\mathbb{B}_{\mu}}\left\{b \in \mathbb{B}_{\mu}: \mu \| b \Vdash_{\mathbb{Q}_{u}} \varphi\right\} .
$$

Then μu-determines φ iff $\llbracket \varphi \rrbracket_{\mu}^{u} \vee \llbracket \neg \varphi \rrbracket_{\mu}^{u}=1_{\mathbb{B}_{\mu}}$. Recall that if $\nu \leqslant \mu$ then $\nu \ll \mu$ so there is a natural map $i_{\mu}^{\nu}: \mathbb{B}_{\mu} \rightarrow \mathbb{B}_{\nu}$ (which is a measure-preserving embedding if ν is a pure extension of μ). For all $a \in \mathbb{B}_{\mu}$, if $i_{\mu}^{\nu}(a) \neq 0$ then $\nu\left\|i_{\mu}^{\nu}(a) \leqslant \mathbb{Q} \mu\right\| a$, so for all $\varphi, \llbracket \varphi \rrbracket_{\nu}^{u} \geqslant_{\mathbb{B}_{\nu}} i_{\mu}^{\nu}\left(\llbracket \varphi \rrbracket_{\mu}^{u}\right)$. Thus if μ determines φ then so does ν and in this case $\llbracket \varphi \rrbracket_{\nu}^{u}=i_{\mu}^{\nu}\left(\llbracket \varphi \rrbracket_{\mu}^{u}\right)$. If also $\nu \leqslant_{\text {pur }} \mu$ then these Boolean values have the same measure: $\mu\left(\llbracket \varphi \rrbracket_{\mu}^{u}\right)=\nu\left(\llbracket \varphi \rrbracket_{\nu}^{u}\right)$.

We now prove determinacy. Here and in the rest of the paper we often make use of sequences of pure extensions. This gives us some closedness that the forcing as a whole does not have; the situation is similar to that of Prikry forcing. We should think of pure extensions as mild ones.

A pure sequence is a sequence $\left\langle\mu_{i}\right\rangle_{i<\delta}$ such that for all $i<j<\delta, \mu_{j} \leqslant$ pur μ_{i}. If δ is limit, then such a sequence has a natural limit (which by our notational conventions we usually denote by $\left.\mu_{<\delta}\right)$. For all $i<\delta$ we have $\mu_{<\delta} \leqslant_{\text {pur }} \mu_{i}$. However we note that it may be that $\mu_{<\delta}$ is not a condition in \mathbb{Q} as its support may be too large. If $\delta=\gamma+1$ then we let $\mu_{<\delta}=\mu_{\gamma}$.

Lemma 3.14. Let $\mu_{0} \in \mathbb{Q}_{u}$ and let $\mathbb{U} \subset \mathbb{Q}_{u}$ be dense and open. Then there is some $\mu \leqslant_{\text {pur }} \mu_{0}$ in \mathbb{Q}_{u} which determines \mathbb{U}.

Proof. We construct a pure sequence $\left\langle\mu_{i}\right\rangle$, starting with μ_{0}. If μ_{j} is defined then we also pick some $a_{j} \in \mathbb{B}_{\mu_{j}}$ such that $\mu_{j} \| a_{j} \in \mathbb{U}$ and for all $i<j$ we have $\mu_{j}\left(a_{j} \cap a_{i}\right)=0$. (Note that for all $i<j, \mu_{j}\left(a_{i}\right)=\mu_{i}\left(a_{i}\right)$.)

We keep constructing until we get stuck: we get some δ such that $\mu_{<\delta}$ is defined but $\mu_{<\delta}$ does not have any pure extension ς such that there is some $a \in \mathbb{B}_{\varsigma} \cap \mathbb{U}$ which is ς-disjoint from all a_{i} for $i<\delta$.

We get stuck at a countable stage. For if not, $\left\langle a_{i}\right\rangle_{i<\omega_{1}}$ are pairwise $\mu_{<\omega_{1}}$-disjoint which is impossible. This shows that at limit stages i we indeed have $\mu_{<i} \in \mathbb{Q}_{u}$ so the construction can continue.

Suppose that we got stuck at stage δ; let $\mu=\mu_{<\delta} \in \mathbb{Q}_{u}$. We show that μ is as desired. $\left\{\mu \| a_{i}: i<\delta\right\} \subset \mathbb{U}$; we claim that this is a maximal antichain in \mathbb{B}_{μ}. If not, find some $a \in \mathbb{B}_{\mu}$ which is μ-disjoint from all a_{i}. Now there is some extension of $\mu \| a$ in \mathbb{U}; it is of the form $\varsigma \| b$ where $\varsigma \leqslant$ pur μ and $b \subset a$. But then we can pick ς for μ_{δ} and b for a_{δ}.

Lemma 3.15. Suppose that $\kappa<\delta$ are inaccessible. Let $\mu_{0} \in \mathbb{Q}_{[\kappa, \delta)}$ and let $\mathbb{U} \subset \mathbb{Q}_{\delta}$ be dense and open. Then there is some $\mu \leqslant_{\text {pur }} \mu_{0}$ in $\mathbb{Q}_{[\kappa, \delta)}$ such that

$$
\left\{\nu \in \mathbb{Q}_{\kappa}: \nu \mu \text { determines } \mathbb{U}\right\}
$$

is dense in \mathbb{Q}_{κ}.
Proof. We construct a pure sequence $\left\langle\mu_{i}\right\rangle$ of elements of $\mathbb{Q}_{[\kappa, \delta)}$ of length below κ^{+}, starting with μ_{0}. Together with this sequence we enumerate an antichain $\mathcal{A} \subset \mathbb{Q}_{\kappa}$. At stage i, we search for a pure extension ϱ of $\mu_{<i}$ in \mathbb{Q}_{δ} which determines \mathbb{U} and is of the form $\varrho=\nu^{\prime} \mu^{\prime}$ where $\nu^{\prime} \in \mathbb{Q}_{\kappa}, \mu^{\prime} \in \mathbb{Q}_{[\kappa, \delta)}$ and ν^{\prime} is incompatible with all elements enumerated so far into \mathcal{A}. If such exist, then we pick one, enumerate ν^{\prime} into \mathcal{A} and let $\mu_{i}=\mu^{\prime}$. If none such exist then we stop the construction and let $\varsigma=\mu_{<i}$.

We must stop at some stage $i^{*}<\kappa^{+}$because $\left|\mathbb{Q}_{\kappa}\right|=\kappa$.
Let $\nu \in \mathcal{A}$. If ν is enumerated into \mathcal{A} at stage $i<i^{*}$ then $\nu \mu_{i}$ determines \mathbb{U}; as $\varsigma \leqslant$ pur μ_{i} we have $\nu \varsigma \leqslant$ pur $\nu \mu_{i}$ so $\nu \varsigma$ determines \mathbb{U}. It thus remains to show that \mathcal{A} is a maximal antichain of \mathbb{Q}_{κ}. Suppose not; let $v \in \mathbb{Q}_{\kappa}$ be incompatible with all elements of \mathcal{A}. By lemma 3.14 , we can find some $\varrho \leqslant_{\text {pur }} v \varsigma$ which determines \mathbb{U}. We can write ϱ as $\nu^{\prime} \mu^{\prime}$ where $\nu^{\prime} \leqslant_{\text {pur }} v$ is in \mathbb{Q}_{κ} and $\mu^{\prime} \leqslant_{\text {pur }} \varsigma$ is in $\mathbb{Q}_{[\kappa, \delta)}$. But ν^{\prime} is incompatible with all elements of \mathcal{A} so we can pick $\mu_{i^{*}}=\mu^{\prime}$, which we didn't.

Scenario 3.16. Suppose now that $\kappa<\delta$ are both inaccessible. Let $\bar{\mu}=\left\langle\mu_{\alpha}\right\rangle_{\alpha<\alpha^{*}}$ be a pure sequence of measures in $\mathbb{Q}_{[\kappa, \delta)}$.

Let $G \subset \mathbb{Q}_{\kappa}$ be generic over V. For all $\nu \in G$, by lemma 3.11, $G_{\nu}=G \cap \mathbb{B}_{\nu}$ is generic for B_{ν} over V. The system $\left\langle G_{\nu}\right\rangle_{\nu \in G}$ coheres: if $\nu \leqslant \varrho$ then $G_{\varrho}=\left(i_{\varrho}^{\nu}\right)^{-1} G_{\nu}$.

Let $\mathbb{D}_{G}=\left\{\nu \mu_{\alpha}: \nu \in G \& \alpha<\alpha^{*}\right\}$. This is a directed system (under $\geqslant_{\mathbb{Q}}$). Note that from $\varsigma \in \mathbb{D}_{G}$ we can recover ν and μ_{α}. We thus let, for $\varsigma=\nu \mu_{\alpha} \in \mathbb{D}_{G}$,
$\tau_{\varsigma}=\sigma_{\nu, \mu_{\alpha}} \circ \pi_{\nu, \mu_{\alpha}}: \mathbb{B}_{\varsigma} \rightarrow \mathbb{B}_{\mu_{\alpha}^{V\left[G_{\nu}\right]}}$ be the quotient by G_{ν} (this of course depends on G as well but we suppress its mention). Lemmas $1.9,1.10$ and 1.11 show that for any $\varsigma=\nu \mu_{\alpha} \geqslant \varsigma^{\prime}=\nu^{\prime} \mu_{\beta}$ in \mathbb{D}_{G} and any $a \in \mathbb{B}_{\varsigma}$ we have $\mu_{\alpha}^{V\left[G_{\nu}\right]}\left(\tau_{\varsigma}(a)\right)=$ $\mu_{\beta}^{V\left[G_{\nu^{\prime}}\right]}\left(\tau_{\varsigma^{\prime}}\left(i_{\varsigma}^{\varsigma^{\prime}}(a)\right)\right)$.

Let φ be a formula of the forcing language for \mathbb{Q}_{δ}. For $\varsigma=\nu \mu_{\alpha} \in \mathbb{D}_{G}$ we let $\left.\xi_{\varsigma}(\varphi)=\mu_{\alpha}^{V\left[G_{\nu}\right]}\left(\tau_{\varsigma}(\llbracket \varphi]_{\varsigma}^{\delta}\right)\right)$. The analysis above shows that if $\varsigma \geqslant \varsigma^{\prime}$ are in \mathbb{D}_{G} then $\xi_{\varsigma}(\varphi) \leqslant \xi_{\varsigma^{\prime}}(\varphi)$, and that if $\varsigma \delta$-determines φ then $\xi_{\varsigma}(\varphi)=\xi_{\varsigma^{\prime}}(\varphi)$ for all $\varsigma^{\prime} \leqslant \varsigma$. We therefore let $\xi_{G}(\varphi)=\sup _{\varsigma \in \mathbb{D}_{G}} \xi_{\varsigma}(\varphi)$. To calculate $\xi_{G}(\varphi)$ it is sufficient to take the supremum of $\xi_{\varsigma}(\varphi)$ over a final segment of $\varsigma \in \mathbb{D}_{G}$ (or in fact any cofinal subset of $\left.\mathbb{D}_{G}\right)$. If some $\varsigma \in \mathbb{D}_{G}$ determines φ then $\xi_{\varsigma}(\varphi)$ is eventually constant and we get $\xi_{G}(\varphi)=\max _{\varsigma \in \mathbb{D}_{G}} \xi_{\varsigma}(\varphi)$ which equals $\xi_{\varsigma}(\varphi)$ for any ς which determines φ.

Remark 3.17. This is important. Suppose that M is an inner model of V. Then we can work with this scenario "mostly in M ": we'll have all the ingredients in M (so κ, δ are inaccessible in $M, \mathbb{Q}_{\kappa}, \mathbb{Q}_{\delta}$ are in the sense of M) but the sequence $\bar{\mu}$ will not be in M. Thus if $G \subset \mathbb{Q}_{\kappa}^{M}$ is generic over V then the entire system $\left(\mathbb{D}_{G}, \tau_{\varsigma}, \xi_{\varsigma}(\varphi), \ldots\right)$ will be in $V[G]$ but not in $M[G]$ (of course G is generic over M too). We can still make, in $V[G]$, the above calculations of $\xi_{G}(\varphi)$ for $\varphi \in M$ (although "determining" and the calculation of $\llbracket \varphi \rrbracket_{\varsigma}^{\delta}$ and $\xi_{\varsigma}(\varphi)$ for each particular ς will be done in M or $M[G]$).

3.3. Real-valued measurability. In this section we prove the following:

Theorem 3.18. Suppose that there is an elementary $j: V \rightarrow M$ with critical point κ such that $M^{<2^{\kappa}} \subset M$ (for example, if κ is measurable and $2^{\kappa}=\kappa^{+}$.) Then in $V^{\mathbb{Q}_{\kappa}}, \kappa$ is real-valued measurable.

Let j be as in the theorem. Again when we work in M or $M[G]$ we use blue.
Let $\mathbb{P}=\mathbb{Q}_{\kappa}$. Then $\mathbb{P} \in M$ and $\mathbb{P}=\mathbb{Q}_{\kappa}$; also, $j(\mathbb{P})=\mathbb{Q}_{j(\kappa)}$ (note that this is not absolute; we do not have $\left.j(\mathbb{P})=\mathbb{Q}_{j(\kappa)}\right)$. Let $\mathbb{P}^{\prime}=\mathbb{Q}_{[\kappa, j(\kappa))}$.

What we do now is construct a pure sequence $\bar{\mu}=\left\langle\mu_{\alpha}\right\rangle_{\alpha<2^{\kappa}}$ of elements of \mathbb{P}^{\prime}. We start with a list $\left\langle\mathbb{U}_{\alpha}\right\rangle_{\alpha<2^{\kappa}}$ of dense subsets of $j(\mathbb{P})$ each of which is in M (note that this sequence is not in M). Rather than specify now which dense sets we put on this list, we will, during the verifications that κ is real-valued measurable in $V^{\mathbb{Q}_{\kappa}}$, list dense sets that are necessary for the proofs, making sure that we never put more than 2^{κ} sets on the list.

Given $\left\langle\mathbb{U}_{\alpha}\right\rangle$, we construct $\bar{\mu}$ as follows. For μ_{0} we pick any element of \mathbb{P}^{\prime}. At stage $\alpha<2^{\kappa}$, we note that by the closure property of $M,\left\langle\mu_{\beta}\right\rangle_{\beta<\alpha} \in M$ and so $\mu_{<\alpha} \in M$. Now $2^{\kappa}=2^{\kappa}$ and so 2^{κ} is smaller than the least inaccessible beyond κ; it follows that $\mu_{<\alpha} \in \mathbb{P}^{\prime}$. We now apply lemma 3.15 in M, with κ standing for κ, $j(\kappa)$ standing for $\delta, \mu_{<\alpha}$ for μ_{0} and \mathbb{U}_{α} for \mathbb{U}. The resulting measure is μ_{α}.

If $G \subset \mathbb{P}$ is generic over V then we find ourselves in scenario 3.16 (as modulated by remark 3.17). For every \mathbb{U} on our list, we know that some $\varsigma \in \mathbb{D}_{G}$ determines \mathbb{U}.

Let \mathcal{N} be the set of all \mathbb{P}-names for subsets of κ (up to equivalence); note that because $\left|\mathbb{Q}_{\kappa}\right|=\kappa,|\mathcal{N}|=2^{\kappa}$. If G is generic over V then for every $A \in \mathcal{N}$ we let $f_{G}(A)=\xi_{G}(\kappa \in j(A))$.

Lemma 3.19. Let $\nu \in \mathbb{P}$ and $A, B \in \mathcal{N}$. Suppose that $\nu \Vdash_{\mathbb{P}} A \subset B$. Then $\nu \Vdash_{\mathbb{P}} f_{G}(A) \leqslant f_{G}(B)$.

Proof. As we had in our discussion of Solovay's construction, $j \upharpoonright \mathbb{P}$ is the identity. So $\nu \Vdash_{j(\mathbb{P})} j(A) \subset j(B)$. Let $G \subset \mathbb{P}$ be generic and suppose that $\nu \in G$. For any $\varsigma=\nu^{\prime} \mu_{\alpha} \in \mathbb{D}_{G}$ such that $\nu^{\prime} \leqslant \nu$ we have $\varsigma \leqslant \nu$ so $\varsigma \Vdash_{j(\mathbb{P})} j(A) \subset j(B)$ so $\llbracket \kappa \in j(A) \rrbracket_{\varsigma}^{\delta} \leqslant \mathbb{B}_{\varsigma} \llbracket \kappa \in j(B) \rrbracket_{\varsigma}^{\delta}$ so $\xi_{\varsigma}(\kappa \in j(A)) \leqslant \xi_{\varsigma}(\kappa \in j(B))$. As this is true for a final segment of $\varsigma \in \mathbb{D}_{G}$ we have $\xi_{G}(\kappa \in j(A)) \leqslant \xi_{G}(\kappa \in j(B))$. [Note that in this proof we didn't need any particular \mathbb{U}.]

It follows that f_{G} induces a function on subsets of κ in $V[G]$ (rather than only on their names). We show this function is the desired measure on κ.

Lemma 3.20. Let $A \subset \kappa$ be in V. If $\kappa \in j(A)$ then $\Vdash_{\mathbb{P}} f_{G}(A)=1$ and if $\kappa \notin j(A)$ then $\Vdash_{\mathbb{P}} f_{G}(A)=0$.

Proof. Suppose that $\kappa \in j(A)$. Then every condition in $j(\mathbb{P})$ forces this fact. Let $G \subset \mathbb{P}$ be generic. It follows that for all $\varsigma \in \mathbb{D}_{G}, \llbracket \kappa \in j(A) \rrbracket_{\varsigma}^{\delta}=1_{\mathbb{B}_{\varsigma}}$ so $\xi_{G}(\kappa \in$ $j(A))=1$.

We get a similar argument if $\kappa \notin j(A)$.
Lemma 3.21. Let $\left\langle B_{n}\right\rangle_{n<\omega}$ be a sequence of names in \mathcal{N}. Suppose that $\nu \in \mathbb{P}$ forces that B_{n} are pairwise disjoint. Then $\nu \Vdash_{\mathbb{P}} f_{G}\left(\cup_{n} B_{n}\right)=\sum_{n<\omega} f_{G}\left(B_{n}\right)$.

Proof. Let $B \in \mathcal{N}$ be such that $\nu \Vdash_{\mathbb{P}} B=\cup_{n} B_{n}$.
We have $j(\nu)=\nu$ and $j\left(\left\langle B_{n}\right\rangle_{n<\omega}\right)=\left\langle j\left(B_{n}\right)\right\rangle_{n<\omega}$; so ν forces (in $j(\mathbb{P})$) that $j(B)=\cup_{n<\omega} j\left(B_{n}\right)$ is a disjoint union. Again let G be generic such that $\nu \in G$.

Let \mathbb{U} be the collection of $\mu \in j(\mathbb{P})$ extending ν such that if $\mu \Vdash_{j(\mathbb{P})} \kappa \in j(B)$ then for some $n<\omega, \mu \Vdash_{j(\mathbb{P})} \kappa \in j\left(B_{n}\right) . \mathbb{U} \in M$ and \mathbb{U} is dense in $j(\mathbb{P})$. We assume that some $\varsigma \in \mathbb{D}_{G}$ (and so a final segment of $\varsigma \in \mathbb{D}_{G}$) determines \mathbb{U}. [Note that the number of such sequences $\left\langle B_{n}\right\rangle$ is $|\mathcal{N}|^{\aleph_{0}}=2^{\kappa}$ so we may put all the associated \mathbb{U} 's on the list.]

If ς determines \mathbb{U} then $\llbracket \kappa \in j(B) \rrbracket_{\varsigma}^{\delta}=\sum_{n<\omega}^{\mathbb{B}_{\varsigma}} \llbracket \kappa \in j\left(B_{n}\right) \rrbracket_{\varsigma}^{\delta}$. Also, if $\varsigma \in \mathbb{D}_{G}$ extends ν then for $n \neq m$ we have $\llbracket \kappa \in j\left(B_{n}\right) \rrbracket_{\varsigma}^{\delta} \wedge_{\mathbb{B}_{\varsigma}} \llbracket \kappa \in j\left(B_{m}\right) \rrbracket_{\varsigma}^{\delta}=0$. It follows that in addition, if ς determines $\kappa \in j(B)$ then it determines $\kappa \in j\left(B_{n}\right)$ for every $n<\omega$ (again only 2^{κ} many \mathbb{U} 's to add).

Thus, for plenty $\varsigma \in \mathbb{D}_{G}$ we have $f_{G}(B)=\xi_{\varsigma}(\kappa \in j(B))=\sum_{n<\omega} \xi_{\varsigma}\left(\kappa \in j\left(B_{n}\right)\right)=$ $\sum_{n<\omega} f_{G}\left(B_{n}\right)$ as required.

Lemma 3.22. Suppose that $\gamma<\kappa$ and that $\left\langle B_{\alpha}\right\rangle_{\alpha<\gamma}$ is a sequence of names in \mathcal{N}. Suppose that $\nu \in \mathbb{P}$ forces that for all $\alpha<\gamma, f_{G}\left(B_{\alpha}\right)=0$. Then $\nu \Vdash_{\mathbb{P}} f_{G}\left(\cup_{\alpha} B_{\alpha}\right)=$ 0.

Proof. Let $B \in \mathcal{N}$ be such that $\nu \Vdash_{\mathbb{P}} B=\cup_{\alpha<\gamma} B_{\alpha}$. Then $\nu \Vdash_{j(\mathbb{P})} j(B)=$ $\cup_{\alpha<\gamma} j\left(B_{\alpha}\right)$. Let $G \subset \mathbb{P}$ be generic over V and suppose that $\nu \in G$. For all $\alpha<\gamma, f_{G}\left(B_{\alpha}\right)=0$ so for all $\varsigma \in \mathbb{D}_{G}, \llbracket \kappa \in j\left(B_{\alpha}\right) \rrbracket_{\varsigma}^{\delta}=0_{\mathbb{B}_{\varsigma}}$.

Let \mathbb{U} be the collection of conditions $\mu \in j(\mathbb{P})$ extending ν such that if $\mu \Vdash_{j(\mathbb{P})}$ $\kappa \in j(B)$ then for some $\alpha<\gamma, \mu \Vdash_{j(\mathbb{P})} \kappa \in j\left(B_{\alpha}\right)$. Then $\mathbb{U} \in M$ and \mathbb{U} is dense below ν in $j(\mathbb{P})$. We assume that some $\varsigma \in \mathbb{D}_{G}$ determines \mathbb{U}. If ς determines \mathbb{U} then $\llbracket \kappa \in j(B) \rrbracket_{\varsigma}^{\delta}=\sum_{\alpha<\gamma}^{\mathbb{B}_{\varsigma}} \llbracket \kappa \in j\left(B_{\alpha}\right) \rrbracket_{\varsigma}^{\delta}=0$. Thus on a final segment of $\varsigma \in \mathbb{D}_{G}$ we have $\llbracket \kappa \in j(B) \rrbracket_{\varsigma}^{\delta}=0$ so $\xi_{G}(\kappa \in j(B))=0$.

Now there are $|\mathcal{N}|^{<\kappa}=2^{\kappa}$ such sequences $\left\langle B_{\alpha}\right\rangle$ so we only need 2^{κ} many such \mathbb{U} on our list of dense sets to determine.

4. General sequences

To facilitate the definition, we introduce some notation. Suppose that $w \subset$ On and that $\bar{x}=\left\langle x_{\alpha}\right\rangle_{\alpha \in w}$ is a sequence of reals. Suppose that $B \subset \mathbb{R}^{\text {otp } w}$. Then we say that $\bar{x} \in B$ if $\left\langle x_{f(\xi)}\right\rangle \in B$, where $f:$ otp $w \rightarrow w$ is order-preserving. If $\bar{B}=\left\langle B_{i}\right\rangle_{\underline{i}<\sigma}$ is a sequence of sets such that for all $i<\sigma, B_{i} \subset \mathbb{R}^{i}$, then we say that $\bar{x} \in \bar{B}$ if $\bar{x} \in B_{\operatorname{otp} w}$.

Let $\sigma \leqslant \kappa$ be regular, uncountable cardinals.
Definition 4.1. A κ-null set is a union of fewer than κ null sets. ${ }^{1}$
Definition 4.2. A κ-null sequence is a sequence $\bar{B}=\left\langle B_{i}\right\rangle_{i<\sigma}$ such that for each $i<\sigma, B_{i}$ is a κ-null subset of \mathbb{R}^{i}.
Definition 4.3. Let A be any set. A noncountable club on $[A]^{<\sigma}$ is some $\mathcal{C} \subset[A]^{<\sigma}$ which is cofinal in $\left([A]^{<\sigma}, \subseteq\right)$ and is closed under taking unions of increasing chains of uncountable cofinality.

Definition 4.4. Let $\bar{B}=\left\langle B_{i}\right\rangle_{i<\sigma}$ be such that for all $i<\sigma, B_{i} \subset \mathbb{R}^{i}$. Let $\bar{x}=\left\langle x_{\alpha}\right\rangle_{\alpha \in U}$ be a sequence of reals (where $U \subset$ On). We say that \bar{x} escapes \bar{B} if there is some noncountable club \mathcal{C} on $[U]^{<\sigma}$ such that for all $w \in \mathcal{C}, \bar{x} \upharpoonright w \notin \bar{B}$.

Definition 4.5. A sequence $\bar{x}=\left\langle x_{\alpha}\right\rangle_{\alpha<\kappa}$ of reals is σ-general if for every κ-null sequence $\bar{B}=\left\langle B_{i}\right\rangle_{i<\sigma}$, there is some final segment W of κ such that $\bar{x} \upharpoonright W$ escapes \bar{B}.
4.0.1. Justifying the definition. Naïve approaches might have liked to strengthen the above definition. However, it is fairly straightforward to see that expected modes of strengthening result in empty notions. For example, one would like to eliminate the restriction to a final segment of κ. But given a sequence $\bar{x}=\left\langle x_{\alpha}\right\rangle_{\alpha<\kappa}$, we can let, for $i<\sigma$,

$$
B_{i}=\left\{x_{0}\right\} \times \mathbb{R}^{i-\{0\}}=\left\{\bar{y} \in \mathbb{R}^{i}: \bar{y}(0)=x_{0}\right\}
$$

Then whenever $w \subset \kappa$ such that $0 \in w, \bar{x} \upharpoonright w \in B_{\operatorname{otp} w}$ (and every noncountable club on $[\kappa]^{<\sigma}$ contains such a w.)

Accepting the restriction to a final segment, we may ask why we need to restrict to a club - why we can't have $\bar{x} \upharpoonright w \notin \bar{B}$ for all $w \in[W]^{<\sigma}$. But consider

$$
B_{\omega}=\left\{\bar{y} \in \mathbb{R}^{\omega}: \forall n<\omega \bar{y}(2 n)(0)=\bar{y}(2 n+1)(0)\right\} .
$$

Given a final segment W of κ, we can always choose some ω-sequence $w \subset W$ such that $\bar{x} \upharpoonright w \in B_{\omega}$.

4.1. General sequences in Solovay's model.

Theorem 4.6. Let κ be inaccessible. Then in $V^{\mathbb{B}_{m_{\kappa}}}$, the random sequence is σ general for all regular, uncountable $\sigma<\kappa$.

This relies on the following well-known fact:

[^1]Fact 4.7. Let \mathbb{P} be a notion of forcing which has the λ-Knaster condition for all regular uncountable $\lambda<\sigma$, and let $A \in V$. Then (in $\left.V^{\mathbb{P}}\right),\left([A]^{<\sigma}\right)^{V}$ is a noncountable club of $[A]^{<\sigma}$.
(Recall that \mathbb{P} has the λ-Knaster condition if for all $A \subset \mathbb{P}$ of size λ, there is some $B \subset A$ of size λ such that all elements of B are pairwise compatible in \mathbb{P}.)
Proof. Let $\mathcal{A}=\left([A]^{<\sigma}\right)^{V}$. To see that \mathcal{A} is cofinal in $[A]^{<\sigma}$, let u be a name for an element of $[A]^{<\sigma}$. Let $p \in \mathbb{P}$ force that $\left\{t_{i}: i<\lambda\right\}$ is an enumeration of u (for some $\lambda<\sigma)$. For $i<\lambda$, let $P_{i} \subset \mathbb{P}(\leqslant p)$ be a maximal antichain of elements q which force that $t_{i}=a_{i, q}$ for some $a_{i, q} \in A$. Then p forces that $w=\left\{a_{i, q}: i<\lambda, q \in P_{i}\right\}$ (which is in \mathcal{A}) contains u.

Now suppose that $p \in \mathbb{P}$ forces that $\left\langle u_{i}\right\rangle_{i<\lambda}$ is an increasing sequence in \mathcal{A}, for some regular uncountable $\lambda<\sigma$. For every $i<\lambda$ pick some $p_{i} \leqslant p$ and some $w_{i} \in \mathcal{A}$ such that $p_{i} \Vdash u_{i}=w_{i}$. Note that if p_{i} and p_{j} are compatible and $i<j$ then $w_{i} \subset w_{j}$. Let $X \in[\lambda]^{\lambda}$ be such that for $i, j \in X, p_{i}$ and p_{j} are compatible. Without loss of generality, assume that \mathbb{P} is a complete Boolean algebra. For $i \in X$ let $q_{i}=\sum_{j>i, j \in X}^{\mathbb{P}} p_{j}$. Then $\left\langle q_{i}\right\rangle_{i \in X}$ is decreasing and so halts at some $q_{i^{*}}$. Then $q_{i^{*}}$ forces that for unboundedly many $i \in X, p_{i} \in G$, and so that $\cup_{i<\lambda} u_{i}=\cup_{i<\lambda} w_{i}$ which is in \mathcal{A}.

Fact 4.8. A measure algebra (\mathbb{B}, μ) has the λ-Knaster condition for all regular uncountable λ.
Proof. This is well-known; see, for example, [AK82]. We give a proof for the sake of completeness.

Suppose that $\left\{b_{i}: i<\lambda\right\} \subset \mathbb{B}$. Let $X_{0} \in[\lambda]^{\lambda}$ such that for all $i \in X_{0}$, $\mu\left(b_{i}\right)>1 / n$. Inductively define X_{m+1} from X_{m} : if there is some $i \in X_{m}$ such that for λ many $j \in X_{m}, b_{i} \cap b_{j}=0$, then let i be minimal such and let $X_{m+1}=\{j \in$ $\left.X_{m}: j>i \& b_{j} \cap b_{i}=0\right\}$. This process has to terminate with some $X_{m^{*}}$ because $\sum_{i \in X_{m}} b_{i}-\sum_{i \in X_{m+1}} b_{i}$ has measure $>1 / n$. We can now find $Y \in\left[X_{m^{*}}\right]^{\lambda}$ which indexes a set of pairwise compatible conditions by inductively winnowing all j such that b_{j} is disjoint from something we put into Y so far.

Proof of Theorem 4.6. Let $G \subset \mathbb{B}_{m_{\kappa}}$ be generic over V, and let $\bar{r}=\left\langle r_{\alpha}\right\rangle_{\alpha<\kappa}$ be the random sequence obtained from G. In $V[G]$, let $\bar{B}=\left\langle B_{i}\right\rangle_{i<\sigma}$ be a κ-null sequence of length σ. For $i<\sigma$ choose null sets $B_{\alpha}^{i} \subset \mathbb{R}^{i}$ for $\alpha<\alpha_{i}<\kappa$ such that $B_{i}=\cup_{\alpha<\alpha_{i}} B_{\alpha}^{i}$.

A code for each B_{α}^{i} is a real, together with some countable subset of i. It follows that there is some $\theta<\kappa$ such that each B_{α}^{i} is defined in $V^{\prime}=V\left[G \cap \mathbb{B}_{m_{\theta}}\right]$. Let $W=[\theta, \kappa)$. Then $\bar{r} \upharpoonright W$ is random (for $\mathbb{B}_{m_{W}}$) over V^{\prime}. Let $w \in\left([W]^{<\sigma}\right)^{V^{\prime}}$, and let $i=\operatorname{otp} w$. The collapse $h: w \rightarrow i$ induces a bijection $h: \mathbb{R}^{w} \rightarrow \mathbb{R}^{i}$. Let $\alpha<\alpha_{i}$ and consider $h^{-1} B_{\alpha}^{i}$; this is a null subset of \mathbb{R}^{w} defined in V^{\prime} and so $\bar{r} \upharpoonright w$, being random over V^{\prime}, is not in $h^{-1} B_{\alpha}^{i}$. Which means, in our notation, that $\bar{r} \upharpoonright w \notin B_{\alpha}^{i}$ and so $\bar{r} \upharpoonright w \notin \bar{B}$. The noncountable club $\mathcal{C}=\left([W]^{<\sigma}\right)^{V^{\prime}}$ thus witnesses that $\bar{r} \upharpoonright W$ escapes \bar{B}.
4.2. Some necessary facts about \mathbb{Q}_{κ}. The following information will be useful in showing the lack of general sequences. From now, assume that $\aleph_{2} \leqslant \sigma<\kappa$, both σ and κ are regular, and that σ is at most the least inaccessible; this is a convenience, since then \mathbb{Q}_{κ} is purely σ-closed.

4.2.1. Cardinal preservation.

Lemma 4.9. All cardinals and cofinalities below the least inaccessible are preserved by \mathbb{Q}_{κ}.

This is important; if σ is not regular in the extension then $[W]^{<\sigma}$ ceases to be interesting.

Proof. Let θ be a regular, uncountable cardinal below the least inaccessible cardinal. Let $\lambda<\theta$ and suppose that $\mu_{0} \in \mathbb{Q}_{\kappa}$ forces that $f: \lambda \rightarrow \theta$ is a function. By lemma 3.14 construct a pure sequence $\left\langle\mu_{i}\right\rangle_{i<\lambda}$ in \mathbb{Q}_{κ} starting with μ_{0} such that for each $i<\lambda, \mu_{i}$ determines the value of $f(i)$ (that is, the collection of $a \in \mathbb{B}_{\mu_{i}}$ such that for some $\gamma<\theta, \mu_{i} \| a \vdash_{\mathbb{Q}_{\kappa}} f(i)=\gamma$ is dense in $\left.\mathbb{B}_{\mu_{i}}\right)$. For $i<\lambda$ let A_{i} be the (countable) set of such values γ. For every $i, \mathbb{B}_{\mu_{i}} \lessdot \mathbb{Q}_{\kappa}\left(\leqslant \mu_{i}\right)$ and so $\mu_{<\lambda}$ forces that the range of f is contained in $\cup_{i<\lambda} A_{i}$.

4.2.2. Finding elements of clubs.

Lemma 4.10. Let $A \in V$. Suppose that $\mu \in \mathbb{Q}_{\kappa}$ forces that \mathcal{C} is a noncountable club on $[A]^{<\sigma}$. Then there is some (pure) extension ν of μ and some $w \in[A]^{<\sigma}$ (in V) such that $\nu \Vdash w \in \mathcal{C}$.

Proof. We show the following claim: given $\mu \in \mathbb{Q}_{\kappa}$ forcing that \mathcal{C} is a noncountable club on $[A]^{<\sigma}$ and given some $w \in[A]^{<\sigma}$, there is some ν purely extending μ and some $w^{\prime} \in[A]^{<\sigma}$ containing w such that ν forces that there is some $v \in \mathcal{C}$, $w \subset v \subset w^{\prime}$.

This suffices: given μ as in the lemma, we construct a pure sequence $\left\langle\mu_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ starting with μ and an increasing sequence of $w_{\alpha} \in[A]^{<\sigma}$ such that $w_{0}=0$, and μ_{α} forces that there is some $v_{\alpha} \in \mathcal{C}, w_{<\alpha} \subset v_{\alpha} \subset w_{\alpha}$. Then $\mu_{<\omega_{1}}$ forces that $\cup_{\alpha<\omega_{1}} w_{\alpha}=\cup_{\alpha<\omega_{1}} v_{\alpha}$ is in \mathcal{C}.

So let μ, w be as in the claim. Let w^{*} be a name such that $\mu \Vdash w^{*} \in \mathcal{C}$ and $w \subset w^{*}\left(\mathcal{C}\right.$ is cofinal). First, let μ^{\prime} be a pure extension of μ such that there is an antichain $\left\langle a_{n}\right\rangle_{n<\omega}$ of $\mathbb{B}_{\mu^{\prime}}$ and cardinals $\lambda_{n}<\sigma$ such that $\mu^{\prime} \| a_{n} \Vdash\left|w^{*}\right|=\lambda_{n}$; for every n, let $\left\langle x_{i}^{n}\right\rangle_{i<\lambda_{n}}$ be a list of names such that $\mu^{\prime} \| a_{n} \Vdash w^{*}=\left\{x_{i}^{n}: i<\lambda_{n}\right\}$. We now construct a pure sequence μ_{i} for $i<\lambda=\sup _{n} \lambda_{n}$; for each $i<\lambda$ and each n such that $i<\lambda_{n}$, the collection of $b \in \mathbb{B}_{\mu_{i}}$ such that $b \subset a_{n}$ and for some $a \in A$, $\mu_{i} \| b \Vdash a=x_{i}^{n}$ is dense below a_{i}; there are only countably many such a. Then $\mu_{<\lambda}$ forces that w^{*} is contained in w^{\prime}, the collection of all such a 's which appeared in the construction (σ is regular, so $\lambda<\sigma$ and so w^{\prime} has size $<\sigma$).

In fact, for every $w \in[A]^{<\sigma}$ and such μ, there is a pure extension forcing that some w^{\prime} containing w is in \mathcal{C}. This is immediate from the proof, or from the fact that $\{v \in \mathcal{C}: v \supset w\}$ is also a noncountable club of $[A]^{<\sigma}$ (in the extension).
4.2.3. Approximating measures by pure measures. The following is an easy fact which follows from regularity of our measures:

Lemma 4.11. Let μ be a pure measure, and let $B \in \mathbb{B}_{\mu}$. Then for all $\epsilon<1$ there is some pure measure ν which is a localization of μ such that $\nu(B)>\epsilon$.

Proof. This follows from regularity of μ. There is some open set $U \supset B$ such that $\mu(U-B)<(1-\epsilon) \mu(B) / \epsilon$; so $\mu(B) / \mu(U)>\epsilon$. We can present U as a disjoint union of cylinders U_{n}; for some n we must have $\mu\left(U_{n} \cap B\right) / \mu\left(U_{n}\right)>\epsilon$. Then $\mu \| U_{n}$ is a pure measure and is as required.

We need a certain degree of uniformity.
Lemma 4.12. Let $B \subset \mathbb{R}^{2}$ be a positive Borel set. Then there is some positive $A \subset$ \mathbb{R} such that for all $\epsilon<1$ there is some positive $C \subset \mathbb{R}$ such that $m_{2} \|(A \times C)(B)>\epsilon$.

Proof. Let $X \prec V^{2}$ be countable such that $B \in X$. Let C_{0} be the measure-theoretic projection of B onto the y-axis (of course $C_{0} \in X$). C_{0} is positive, so we can pick some $r^{*} \in C_{0}$ which is random over X. Let $A=B^{r^{*}}=\left\{x \in \mathbb{R}:\left(x, r^{*}\right) \in B\right\}$ be the section defined by r^{*}; since $r^{*} \in C_{0}, A$ is positive. Note that in X there is a name for $B^{r^{*}}$, where r^{*} is a name for the generic random real.

Let $\delta>0$ be in X. By regularity of Lebesgue measure, there is some clopen set $U \subset \mathbb{R}$ such that $m(U \triangle A)<\delta .^{3}$ Of course $U \in X$. Then there is some positive $C \subset C_{0}$ in X such that $C \Vdash_{\mathbb{B}_{m}} m\left(U \triangle B^{r^{*}}\right)<\delta$.

For almost all $r \in C$ (those that are random over X), we have $m\left(U \triangle B^{r}\right)<\delta$. For such $r, m\left(A-B^{r}\right) \leqslant m(A-U)+m\left(U-B^{r}\right) \leqslant 2 \delta$. So by Fubini's theorem, $m(A \times C-B)=\int_{C} m\left(A-B^{r}\right) d r \leqslant 2 \delta m(C)$; we get that $m \|(A \times C)(\neg B) \leqslant$ $2 \delta / m(A) .{ }^{4}$

Corollary 4.13. Let $\varrho, \mu \in \mathbb{Q}_{\kappa}$ and let μ be pure; assume $u^{\varrho} \cap u^{\mu}=0$. Let $B \in \mathbb{B}_{\varrho \mu}$. Then there is a localization ϱ^{\prime} of ϱ such that for all $\epsilon<1$ there is some pure μ^{\prime} which is a localization of μ and such that $\varrho^{\prime} \mu^{\prime}(B)>\epsilon$.

Proof. What we need to note is that the proof of the previous lemma holds for $\varrho \times \mu$ (in place of $m \times m$) (we just use the relevant measure algebra); we get a set $A \in \mathbb{B}_{\varrho}$ such that for all $\delta>0$ there is some $C \in \mathbb{B}_{\mu}$ such that $\varrho \mu \|(A \times C)(B)>1-\delta$.

Fix some $\delta>0$. Get the appropriate C; we have

$$
\frac{\varrho \mu(A \times C-B)}{\varrho \mu(A \times C)}<\delta
$$

Again by the nonuniform version of regularity (Lemma 4.11), we can find some cylinder $\tilde{C} \in \mathbb{B}_{\mu}$ sufficiently close to C so that both $\mu \| \tilde{C}(C)>1-\delta$ and $\mu(C) / \mu(\tilde{C})<$ $1+\delta$; from the first we get

$$
\frac{\mu(\tilde{C}-C)}{\mu(\tilde{C})}<\delta
$$

Note that $A \times \tilde{C}-B \subset A \times(\tilde{C}-C) \cup(A \times C-\tilde{C})$. Combining everything, we get

$$
\begin{gathered}
\frac{\varrho \mu(A \times \tilde{C}-B)}{\varrho \mu(A \times \tilde{C})} \leqslant \frac{\varrho \mu(A \times(\tilde{C}-C))+\varrho \mu(A \times C-B)}{\varrho \mu(A \times \tilde{C})}= \\
\frac{\varrho(A) \mu(\tilde{C}-C)}{\varrho(A) \mu(\tilde{C})}+\frac{\varrho \mu(A \times C-B)}{\varrho \mu(A \times C)} \cdot \frac{\varrho(A) \mu(C)}{\varrho(A) \mu(\tilde{C})} \leqslant \delta+\delta(1+\delta) .
\end{gathered}
$$

[^2]We can thus let $\varrho^{\prime}=\varrho \| A$ and $\mu^{\prime}=\mu \| \tilde{C}$; the latter is pure because \tilde{C} is a cylinder. We get $\varrho^{\prime} \mu^{\prime}(B) \geqslant 1-2 \delta-\delta^{2}$ which we can make sufficiently close to 1 .

4.3. In the new model.

Theorem 4.14. Suppose that κ is Mahlo for inaccessible cardinals, and that $\sigma \geqslant \aleph_{2}$ is at most the least inaccessible (and is regular). Then in $V^{\mathbb{Q}_{\kappa}}$, there are no σ general sequences.

In fact, we prove something stronger:
Theorem 4.15. Suppose that κ is Mahlo for inaccessible cardinals, and that $\sigma \geqslant \aleph_{2}$ is regular, and is at most the least inaccessible. Then there is a κ-null sequence \bar{B} of length σ such that in $V^{\mathbb{Q}_{\kappa}}$, no κ-sequence of reals \bar{r} escapes \bar{B}.
(We have here identified \bar{B} as it is interpreted in V and in $V^{\mathbb{Q}_{\kappa}}$. Of course, for every κ-null B, if $B=\cup_{i<i^{*}} B_{i}$ for some $i^{*}<\kappa$ then for any $W \supset V$ we let $B^{W}=\cup_{i<i^{*}} B_{i}^{W}$.)
Proof. Work in V. We define \bar{B} as follows: for $i<\sigma$, an increasing ω-sequence $\bar{j}=\left\langle j_{n}\right\rangle_{n<\omega}$ from i, and $k<2$, we let

$$
B_{\bar{j}, k}^{i}=\cap_{n<\omega}[\langle k\rangle]^{j_{n}}=\left\{\bar{x} \in \mathbb{R}^{i}: \forall n<\omega\left(\bar{x}\left(j_{n}\right)(0)=k\right)\right\} ;
$$

and we let B_{i} be the union of the $B_{\bar{j}, k}^{i}$ for all increasing \bar{j} from i and $k<2$. Each $B_{\bar{j}, k}^{i}$ is null, and κ is inaccessible, so B_{i} is κ-null. As κ remains a cardinal in $V^{\mathbb{Q}_{\kappa}}$, $B_{i}^{V^{\mathbb{Q}_{k}}}$ is also κ-null in $V^{\mathbb{Q}_{\kappa}}$.

Let $\mu^{*} \in \mathbb{Q}_{\kappa}$ force that $\bar{r}=\left\langle r_{\alpha}\right\rangle_{\alpha<\kappa}$ is a sequence of reals and that \mathcal{C} is a noncountable club on $[\kappa]^{<\sigma}$.

For every $\gamma<\kappa$, find some μ_{γ} extending μ^{*} and some $k(\gamma) \in 2$ such that $\mu_{\gamma} \Vdash r_{\gamma}(0)=k(\gamma)$.

Suppose that $\gamma>\sup u^{\mu^{*}}$. Then we can find $\varpi_{\gamma} \in \mathbb{Q}_{\gamma}$ which is an extension of μ^{*}, a pure measure $\nu_{\gamma} \in \mathbb{Q}_{[\gamma, \kappa)}$, and some Borel B_{γ}, such that $\mu_{\gamma}=\left(\varpi_{\gamma} \nu_{\gamma}\right) \| B_{\gamma}$. Let $u_{\gamma} \subset u^{\mu_{\gamma}}$ be a countable support for B_{γ}.

We now winnow the collection of μ_{γ} 's. Let S_{0} be the set of inaccessible cardinals below κ (but greater than $\sup u^{\mu^{*}}$); for $\gamma \in S_{0}$ we have $\mathbb{Q}_{\gamma} \subset V_{\gamma}$. Thus on some stationary $S_{1} \subset S_{0}$, the function $\gamma \mapsto \varpi_{\gamma}$ is constant. Next, we find $S_{2} \subset S_{1}$ such that on S_{2} :

- $u_{\gamma} \cap \gamma$ and otp u_{γ} are constant;
- Under the identification of one $\mathbb{R}^{u_{\gamma}-\gamma}$ to the other by the order-preserving map, $\nu_{\gamma} \upharpoonright\left(u_{\gamma}-\gamma\right)$ is constant;
- Under the identification of one $\mathbb{R}^{u_{\gamma}}$ to the other by the order-preserving map, B_{γ} is constant;
- $k(\gamma)$ is a constant k^{*}.

By these constants, we can find some $\mu^{* *}$, a localization of ϖ_{γ} for $\gamma \in S_{2}$, such that for all $\epsilon<1$ and all $\gamma \in S_{2}$, there is some pure ς which is a localization of ν_{γ}, such that $\left(\mu^{* *} \varsigma\right)\left(B_{\gamma}\right)>\epsilon$.

We now amalgamate countably many μ_{γ} 's in the following way. Pick an increasing sequence $\left\langle\gamma_{n}\right\rangle_{n<\omega}$ from S_{2}. For each $n<\omega$, let ς_{n} be a pure measure, which is a localization of $\nu_{\gamma_{n}}$, such that $\mu^{* *} \varsigma_{n}\left(B_{\gamma_{n}}\right)>q_{n}$, where $\left\langle q_{n}\right\rangle$ is a sequence of rational numbers in $(0,1)$ chosen so that $\sum_{n<\omega}\left(1-q_{n}\right)<1$. We note that $u^{\varsigma_{n}}$ are
pairwise disjoint, and so we can take their product $\varsigma^{*}=\mu^{* *} \varsigma_{0} \varsigma_{1} \ldots$. We now let $\varsigma^{* *}=\varsigma^{*} \| \cap_{n<\omega} B_{\gamma_{n}}$; the ς_{n} were chosen so that this is indeed a measure.

The point is that for all $n, \varsigma^{* *} \leqslant\left(\mu^{* *} \varsigma_{n}\right)\left\|B_{\gamma_{n}} \leqslant\left(\mu^{* *} \nu_{\gamma_{n}}\right)\right\| B_{\gamma_{n}} \leqslant \mu_{\gamma_{n}}$. Thus for all $n, \varsigma^{* *} \Vdash r_{\gamma_{n}}(0)=k^{*}$.

Finally, let ϱ be some extension of $\varsigma^{* *}$ which forces that some $w \in \mathcal{C}$, where $w \in V$ and $w \supset\left\{\gamma_{n}: n<\omega\right\}$. Let $i=\operatorname{otp} w$ and let $h: w \rightarrow i$ be the collapse. Define \bar{j} by letting $j_{n}=h\left(\gamma_{n}\right)$. Then ϱ forces that $\bar{r} \upharpoonright w \in B_{\bar{j}, k^{*}}^{i}$ so that $\bar{r} \upharpoonright w \in \bar{B}$. Thus μ^{*} could not have forced that \mathcal{C} witnesses that \bar{r} escapes \bar{B}.

References

[AK82] S. Argyros and N. Kalamidas. Property $k_{\alpha, n}$ on spaces with strictly positive measures. Canad. J. Math., 34(5):1047-1058, 1982.
[BJ95] Tomek Bartoszyński and Haim Judah. Set theory. A K Peters Ltd., Wellesley, MA, 1995. On the structure of the real line.
[Fre93] D. H. Fremlin. Real-valued-measurable cardinals. In Set theory of the reals (Ramat Gan, 1991), volume 6 of Israel Math. Conf. Proc., pages 151-304. Bar-Ilan Univ., Ramat Gan, 1993.
[GS01] Moti Gitik and Saharon Shelah. More on real-valued measurable cardinals and forcing with ideals. Israel Journal of Mathematics, 124:221-242, 2001. math.LO/9507208.
[Pri75] Karel Prikry. Ideals and powers of cardinals. Bull. Amer. Math. Soc., 81(5):907-909, 1975.
[Sil71] Jack H. Silver. Some applications of model theory in set theory. Ann. Math. Logic, 3(1):45110, 1971.
[Sol71] Robert M. Solovay. Real-valued measurable cardinals. In Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pages 397-428. Amer. Math. Soc., Providence, R.I., 1971.
[Ula30] Stanislaw Marcin Ulam. Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math., 16:140-150, 1930.
E-mail address: fuchino@math.cs.kitami-it.ac.jp
Departement of Natural Science and Mathematics, College of Engineering, Chubu University, Kasugai Aichi 487-8501, Japan

E-mail address: erlkoenig@nd.edu
School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, Kelburn, Wellington 6005, New Zealand

E-mail address: shelah@math.huji.ac.il
The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel

Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

[^0]: The first author is supported by Chubu University grant S55A. The second and third authors were supported by the United States-Israel Binational Science Foundation (Grant no. 2002323) and NSF grant No. NSF-DMS 0100794. Publication no. 763 in the list of Shelah's publications.

[^1]: ${ }^{1}$ Let \mathcal{N} be the ideal of null sets. If κ is real-valued measurable, we have non $(\mathcal{N})=\aleph_{1}$ and $\operatorname{cov}(\mathcal{N}) \geqslant \kappa([F r e 93])$. Hence, for a real-valued measurable κ, κ-null sets form a proper ideal extending \mathcal{N} properly. By the inequality above we have $\operatorname{cov}(\mathcal{N})=\kappa$ in Solovay's model as well as in the new model. The existence of a σ-general sequence, which separates between the models, can be viewed as a strengthening of the equation $\operatorname{cov}(\mathcal{N})=\kappa$.

[^2]: ${ }^{2}$ Yes, we mean $X \prec H(\chi)$. Complaints are to be lodged with set models of ZFC.
 ${ }^{3}$ Let $V \supset A$ be open such that $m(V-A)<\delta / 2$; and recall that every open set is an increasing union of clopen sets.
 ${ }^{4}$ We glossed over uses of the forcing theorem over X, which is not transitive. We really work with X 's collapse and use absoluteness. For example, we got $C \in X$ such that $C \vdash_{\mathbb{B}_{m}}$ $m\left(U \triangle B^{r^{*}}\right)<\delta$. Let $\pi: X \rightarrow M$ be X 's transitive collapse. Then in $M, \pi(C)$ forces (in $\left.\mathbb{B}_{m}^{M}\right)$ that $m\left(\pi(U) \triangle \pi(B)^{r^{*}}\right)<\delta$. If $r \in C$ is random over M, then in $M[r], m\left(\pi(U) \triangle \pi(B)^{r}\right)<\delta$. But $\pi(B)^{M[G]}=B \cap M[G]$ and similarly for U. Thus indeed $m\left(U \triangle B^{r}\right)<\delta$ as we claimed.

