Spreadsheet Visualisation to Improve End-user Understanding

Daniel Ballinger

Robert Biddle

James Noble

School Mathematical and Computer Sciences
Victoria University of Wellington,
PO Box 600, Wellington 6001, New Zealand

Email: {db, robert, kjx}@mcs.vuw.ac.nz

Abstract

Spreadsheets are an extremely common form of end-user pro-
gramming that have many applications, from calculating stu-
dent marks to accounting for global multinationals. Ways of
studying the structure of a spreadsheet itself are normally con-
strained to the tools provided in the spreadsheet software. This
paper explores new ways to visualise spreadsheets in a manner
that is independent of the program they were created in, ex-
plains the technology involved, and presents examples of the
visualisations that can be produced. The techniques involved
in reading the spreadsheets also facilitate larger scale analysis
of spreadsheets for performing corpus analysis.

Keywords: spreadsheets, visualisation, end-user pro-
gramming

1 Introduction

Since spreadsheets made an entrance into the world of
computing they have found extensive use in a diverse
range of disciplines, as well as throughout the general
population. Professionals in commerce, mathematics,
engineering, science, medicine, the arts, social science,
and education find the spreadsheet to be a natural
tool for modelling, implementing and analysing algo-
rithms, constructing laboratory reports, carrying out
statistical analysis, and producing graphical displays.

The high uptake of spreadsheet usage can be at-
tributed to their ability to allow end-users to model
problems in a layout that is natural to them. The
simplicity and popularity of spreadsheets makes them
one of the most common forms of end-user program-
ming currently in use. When first interacting with
a spreadsheet, however, the user has to process a
daunting amount of information in terms of layout
and hidden inter-cell dependencies created by formu-
las. This problem with the organisation of code has
been observed by users for some time and has been
commented on by Bonnie Nardi:

It is difficult to get a global sense of the
structure of an individual formula that may
have dependencies spread out all over the
spreadsheet table. Users have to track
down individual cell dependencies one by
one, tacking back and fourth all over the
spreadsheet.(Nardi 1993)

In this paper we explore visualisations that aid
the end-user in understanding the underlying data
flow structures that are present in spreadsheets. We
investigate the creation of a set of images that could
represent the contents at a more abstract level than is

Copyright ©2003, Australian Computer Society, Inc. This paper
appeared at The Australasian Symposium on Information Visu-
alisation, Adelaide, 2003. Conferences in Research and Prac-
tice in Information Technology, Vol 24. Tim Pattison and Bruce
Thomas, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

possible with the spreadsheet software. The user can
start with very general information and then progress
towards the actual details present in the spreadsheet.
As the user progresses through these visualisations
they are learning about the layout and dependency
structures without being exposed to actual values and
other lower level properties in the spreadsheet.

Spreadsheet software itself provides a limited abil-
ity to achieve such abstract views of the information
they contain. Our design goal was to have the ability
to quickly implement new visualisations in a manner
independent from the application they were created
in. To create these abstract diagrams, access to the
internals of the spreadsheet, at the same level acces-
sible by the user, is required. To avoid the limitations
present in the spreadsheet software the information is
extracted to a more versatile programming environ-
ment, which is Java in the case of this project. The
greater flexibility achieved outside the application is
a trade-off with the benefits that could be achieved
by having visualisations directly integrated with the
information in the spreadsheet.

Taking into account the strong market dominance
and the potential resources, both in the size of the
user base and relevance with other research, Microsoft
Excel was chosen as the specific spreadsheet applica-
tion to focus on. Excel is the most utilised example
of a spreadsheet application. Based on data sourced
from the analysts at Gartner Group, Excel’s position
as the market leader in terms of revenue share of-
ten tops more than 90% (Liebowitz 1999, Blackwood
2002, Krazit 2002), resulting in a vast potential user
base.

The rest of this paper is organised as follows. Sec-
tion 2 presents background information on Excel’s
current support for visualisation of these structures
and the related research. Section 3 presents some of
the visualisations we created and section 4 contains
the conclusions drawn from the use of these visuali-
sations.

2 Background

2.1 Current support for visualisation

Modern versions of Microsoft Excel provide two tech-
niques to help visualise the invisible dataflow model
of a spreadsheet.

The first is called the “Range Finder”, which is
invoked by selecting a cell containing a formula and
clicking in the formula bar. An example usage is
shown in figure 1. This results in Excel colouring
all the addresses in the formula and the respective re-
gions in the spreadsheet with a rectangle of the same
colour. The user can then directly manipulate the for-
mula by moving and adjusting the rectangles. This
technique is limited to showing the dataflow for a sin-
gle, user selected, cell with no way of displaying the

40,000 | $ 25,000
100,000 (§ 75,000
350,000 | § 300,000
310,000 250,000
B00,000 50,000
300000) § 325,000

Marketable securities

Accounts recievable
Inventories
Total Curtent Assets

Flxad Assals
Property, plant, and equipment

" 2,000,000 | % 1,800,000
Less-accumulated depreciation

{300.000| § (00,0003
11000001 % 1,400,000

500001 % 25,000
+B12+811 |§ 2,100,000

Figure 1: Using Excel’s Range Finder to examine a
formula.

overall structure of the spreadsheet. It is also of lim-
ited use when the dependencies span large distances,
as the user will need to hunt round to find the high-
lighted boxes.

40,000 | 5 ——757000 |
FOO0000 5 75,000
3E0,000 | § 300,000

arketable securities

¥
b
i |Accounts recievable]
i {Inventaries $] 310,000 | 250,000
ne
k]

ttal Current Assets 800000 1§ RAQ 000

200,000 | § 325,000

rapery, plant, and equipment

r 2,000,000 | § 1,900,000
| Less-accumulated depraciation

{800,000y & (BO0,000)

1,100,000 [§ 1,100,000
oodwill 50000 | § 25,000
otal Assets 2,250,000 | § 2,700,000

race Dependents

Figure 2: Excel’s built-in auditing tools. Note how
the reference to a cell is not fully visible and a sheet
icon is the only indication of the link between sheets.

The second built in auditing tool has the ability to
display interconnections between cells by tracing cell
precedents and dependents using arrows. An exam-
ple is given in figure 2. For a cell A, precedent arrows
will point to A from all cells that are referenced in A’s
formula, showing the location of the source data, or
the ancestors, for A. Dependent arrows show the flow
for data subsequently calculated using the data in the
selected cell, that is, a cell B will have dependent ar-
rows to all cells that reference it in their formulas (the
descendants). These arrows also serve to allow the
user to move between spatially disjoint, but logically
connected, cells by double-clicking the arrowheads.
This technique is referred to as semantic navigation
by Takeo Igarashi et al. (Igarashi, Mackinlay, Chang
& Zellweger 1998) who observe that it provides cues
about the relations among cells rather than the su-
perficial spatial continuity, serving to make the hid-
den dataflow patterns more transparent. They also
remark that “complicated spreadsheets can create a
tangle of arrows, making it difficult to see the rela-
tionship among cells.”

An additional limitation of the current auditing
tools is the treatment of ranged references, with Excel
only depicting a minimal containing box and a single
reference arrow. This is particularly an issue with
intersection references, where the dependencies may
be potentially greater than those cells immediately
referenced. For example, a change in value of a remote
cell could cause the intersection region to expand.

Another function of the auditing tools is for high-
lighting circular references to users, which are typi-
cally the result of an addressing error. Excel gener-
ally has acyclic relationships between cells (Yoder &
Cohn 2002, Chadwick, Knight & Rajalingham 2002),
which creates a tree like dependency structure (or a
forest of trees due to multiple roots). It should be
noted that this is not always the case as Excel also
provides a bound iterative calculation mode for work-
ing with specialised circular reference problems.

Multiple trees can share common branches, and in
such cases it can be difficult to trace all the connected
trees using the inbuilt auditing functions. This is pri-
marily due to Excel only tracing dependencies in one
direction at a time, requiring multiple traversals by
the user to trace the entire structure.

2.2 Related Work

Spreadsheets and other visual programming lan-
guages are currently an active area of research, with
many fields of focus being addressed. These range
from devising new ways to interact with applications,
theoretical models to describe the underlying princi-
ples, methods for detecting and correcting errors, and
the cognitive issues of programming.

Jorma Sajaniemi presented a theoretical model
of spreadsheets along with a description of vari-
ous spreadsheet auditing mechanisms employing the
model (Sajaniemi 2000). Brad Myers created C32
(Myers 1991), which uses graphical techniques along
with inference to specify constraints in user interfaces.
These constraints are relationships that are declared
once and then maintained by the system. Burnett
makes the following observation about C32: “Un-
like the other spreadsheet languages described, C32
is not a full-fledged spreadsheet language; rather, it
is a front-end to the underlying textual language Lisp
used in the Garnet user interface development envi-
ronment.” (Gottfried & Burnett 1997, pg 2) Wilde’s
work on the WYSIWYC spreadsheet (Wilde 1993)
aims to improve traditional spreadsheet programming
by making cell formulas visible and by making the
visible structure of the spreadsheet match its compu-
tational structure.

2.2.1 Igarashi and fluid visualisation

Takeo Igarashi et al. describe spreadsheets as aug-
menting “a visible tabular layout with invisible for-
mulas” (Igarashi et al. 1998). They observe that while
the transparent nature of formulas allows the cells to
be used for both presentation purposes and as pro-
gramming variables, the access to the formulas and
their resulting dataflow structure is often difficult, re-
sulting in significant cognitive overhead for users. In
1998 they published a paper (Igarashi et al. 1998) doc-
umenting the creation of a set of fluid visualisations
that help the user address the hidden dataflow graphs
and superficial tabular layouts of spreadsheets. They
were designed to improve the users understanding of
the dataflow structure by enabling them to visually
interact with the obscured structures, while maintain-
ing the original appearance of the spreadsheet. An
example image taken from the paper is shown in fig-
ure 3.

240 |” 500 |7 860

Figure 3: Static global view produced by Takeo
Igarashi et al. to visualise the entire dataflow graph
at once.

The invisible formulas can affect both the users
who create the spreadsheet and those who may later
try to understand and modify it. To fully understand
a spreadsheet, Takeo Igarashi et al. observe that a
new “user must repeatedly select a cell, read the for-
mula, and move on to the next cell, until he has seen
enough formulas to get an overview of the spread-
sheet. As spreadsheets get larger and more compli-
cated, the overhead of understanding shared spread-
sheets increases dramatically.” (Igarashi et al. 1998)

This cognitive overhead is undesirable for any user,
who will typically be more interested in solving the
problem at hand rather than tracking the exact struc-
ture of the spreadsheet.

The diagrams produced use a range of techniques
to display the information of interest. Selections of
them are static and can display large amounts of in-
formation at any one time. The drawback of these
diagrams is that they can develop many overlapping
features, resulting in a sometimes cluttered appear-
ance. As such, Igarashi only suggests their use for
gaining a general overview of the entire structure.
More advanced visualisations make use of animation
to reveal the structure as the user interacts with
the spreadsheet. These visualisations can allow the
user to navigate and edit the dataflow structure more
effectively, and perform interactive graphical induc-
tion that is more expressive than the regular patterns
achievable using the $ symbols. It is also noted that
users often make errors when using absolute refer-
ences, mainly due to not knowing where to place the
$ symbol. Igarashi et al. make the following com-
ment:

A related problem occurs when a formula is
used to fill a region of a spreadsheet. Cur-
rent spreadsheet applications adjust the cell
addresses in the formulas by the distance
from the source formula, which again may
or may not be what the user desires. To in-
hibit these adjustments, the user can spec-
ify a cell in the formula to be an absolute
reference (by using the “$” symbol), but it
is difficult to place the $ symbol correctly,
which means the filled formulas must also
be checked to make sure they are correct.
(Igarashi et al. 1998)

Although the techniques presented showed poten-
tial in many areas, Takeo Igarashi et al. mention that
in future work there is a need to integrate these dia-
grams into a more realistic spreadsheet program. This
is one area that our project addresses, by creating
many of the visualisations independently of the appli-
cation vendor while still working with actual spread-
sheets. It will however share the same limitations for

visualisations that need to be used interactively at
runtime.

2.2.2 Clermont and automated spreadsheet
auditing

Markus Clermont has written papers discussing the
conceptual differences between traditional program-
ming practices and those undertaken with spread-
sheets, and is currently researching techniques for
debugging excel-spreadsheets (Clermont, Hanin &
Mitt()armeir 2002, Ayalew, Clermont & Mittermeir
2000).

At the crux of the difference discussion is the as-
sertion that “Software is written in a professional
manner by Professionals; Spreadsheets are written by
End-Users!” (Ayalew et al. 2000). This indicates the
contrasting backgrounds between those who write tra-
ditional software, and those who write spreadsheet
programs. People trained in software engineering
should develop traditional software systems from a
well-founded design. Those who write spreadsheets
require no such training and possibly no formally de-
scribed design.

Often this lack of training and design is a non-
issue, as only a quick and dirty solution to a small
problem is required. However, such write-and-throw-
away spreadsheets, or “scratch pads”, only contribute
to a small portion of the actual spreadsheets created.
Clermont points out that:

there is a rather neglected proportion of
spreadsheets that are periodically used, and
submitted to regular update-cycles like any
conventionally evolving valuable legacy ap-
plication software. However, due to the very
nature of spreadsheets, their evolution is
particularly tricky and therefore error prone.
(Clermont et al. 2002, pg 3)

While it is clear that most end-users have different
background to software engineers, spreadsheets help
level the playing field in some respects. One of the
most useful abilities of a spreadsheet is the ability
for users to enter raw data and formulas while be-
ing shielded from the low-level details of traditional
programming (Ayalew et al. 2000). Clermont et al.
reason that this allows the users to utilise the skills
from their profession when expressing themselves on
the spreadsheet without having to first relate their
concepts to a corresponding programming concept.
In many ways, the two-dimensional tabular arrange-
ments of numbers interspersed with explanatory text
seems familiar, and similar to how they would express
the problem using pen, paper and a calculator.

In more recent work on errors, Clermont et al.
have developed a classification system for the types
of equivalence between different formulas (Clermont
et al. 2002). As they have presented this system,
when comparing two formulas they find either no-
equivalence or:

e Copy-Equivalence, which exists if “the formu-
las are absolutely identical (i.e. the cell contents
has been copied from one cell into the other, ei-
ther by copy and paste, or by retyping the same
formula.)”

¢ Logical-Equivalence, which exists if “the for-
mulas differ only in constant values and absolute
references.”

e Structural-Equivalence, which exists if “the
formulas consist of the same operators in the
same order, but the operators may be applied
to different arguments.”

This classification system has significance for our
project when looking for patterns through visualisa-
tion. Different types of equivalence can be used to
conceptually group sets of formulas together before
visualisation.

One particular form of error from this recent work,
that also has significance to this project, is the result
from the replication feature. If a user detects an er-
ror in a replicated block of values, rather then track
down the source of the bug, they may opt to perform
a quick fix by entering the correct value or a new
formula only for the effected cells. This erroneous
correction will only aggravate the problem, because
the formula is showing an incorrect value due to an
error in another cell and this relationship is destroyed
by “this pseudo-corrective act in the value domain”
(Clermont et al. 2002). The error detection method-
ology suggested in the research will help auditors de-
tect such a pseudo-correction using the equivalence
classes, as the irregularities are not based on causes
of errors. Clermont et al. suggest that this technique
allows correction to be focused and is thus easier to
perform.

2.2.3 Panko and spreadsheet errors

Since the late eighties Raymond Panko has writ-
ten numerous papers relating to the spreadsheet
paradigm and end-user programming in general. The
focus ranges from introducing basic rules for creating
spreadsheets, to detailed explanations of the causes
of errors and methods for detecting them.

The methodologies Panko and others are using to
find these errors are developing in maturity and ver-
ifiability. In the earlier cases, much of the discussion
was only speculation using anecdotal evidence. Now
most research relies on empirical data derived from
“the realm of systematic field audits and laboratory
experiments” to back up their claims (Panko 1998).

Panko collected the data from a range of such re-
search projects conducted before 2000, and collated
the data in a table with comments on the method-
ology used, along with the cell error rates and per-
centage of models with errors. Across the diversity of
techniques present in the complied data, he found a
common pattern: “every study that has attempted to
measure errors has found them and has found them
in abundance.” (Panko 1998)

He has observed that errors have a tendency to
occur in a few percent of all cells, resulting in a ques-
tion of not if errors exist, but rather how many errors
there are in larger spreadsheets (Panko 1998). The
percentage can vary considerably depending on the
auditing methodology used and particular application
the spreadsheet is being used for. Through practical
experience most consultants gave the conservative es-
timate that between 20 and 40% of spreadsheets con-
tain errors (Panko 1997b), with the number rising as
high as around 90% for larger spreadsheets.

These errors are generally attributed to human
error, with errors during programming typically oc-
curring for 5% of all actions performed by the user.
This number is itself derived from a series of empiri-
cal studies that Panko presents on “The Human Error
Website” (Panko 19974).

Many of the studies on spreadsheets involve using
laboratory data, but a portion also involved the use
of operational data from real world problems. This
can be important for obtaining results that are more
representative of current practices.

Despite the wealth of information that Panko and
others have found to indicate the alarming error rates
in spreadsheets, they have also found that many users
are still overconfident of their abilities to program er-
ror free spreadsheets. As a result, a significant portion

of the human errors go undetected due to program-
mers not taking steps to reduce the risk of errors.
Panko reasons that this behaviour is partially due to
the reluctance of people to do formal testing, and fol-
low other tedious disciplines, allowing them to save
time and avoid onerous practices. This is followed by
the observation that the errors that are caught only
serve to further convince the users of their efficiency
(Panko 1997b, pg 14). More still may dismiss errors,
as many syntactic errors are automatically detected
and brought to the users’ attention by the program.

One of the most interesting observations that
Panko has made is that spreadsheets probably con-
tribute the largest portion to the development of
large-scale end-user applications in current times
(Panko 1997b, pg 2). This view is important as many
regard spreadsheets as tools for solving “small and
simple scratch pad applications” by single individu-
als that are disposed of shortly after computation is
complete. The truth is that there are a sizeable num-
ber of spreadsheets that are both large and complex,
with their development involving multiple people and
often spanning significant periods of time.

Another interesting result from surveys that Panko
and others have undertaken with companies is that,
although it is agreed that the error rate numbers
are too high, there is a general consensus that com-
prehensive code inspection is simply impractical.
Which Panko summarises as implying that compa-
nies “should continue to base critical decisions on bad
numbers.”

One conclusion that can be drawn from the high
level of errors, but general reluctance to check for
them, is the need for easier methods of reducing most
causes of errors without consuming time and other
valuable resources. Increasing user awareness of the
structure and meaning of a spreadsheet through visu-
alisation holds promise as one technique to partially
address this need.

2.2.4 Burnett and spreadsheet visualisation

Margaret Burnett is an active researcher in the field
of visual programming languages. Of particular rel-
evance to this project is her work as the principal
architect of the Forms/3 visual language. Forms/3 is
a tabular form based visual language that has several
features similar to spreadsheets, such as the parallel
between its form linking mechanism and spreadsheet
formulas. Using this language it has been possible
to research areas and methodologies that would not
have been possible, or at least difficult, with many
closed source commercial spreadsheets due to the re-
quirement for seamless integration.

The importance of seamless integration is to main-
tain the consistency of the spreadsheet paradigm.
Burnett takes this requirement to mean that any ap-
proach “follows the declarative, one-way constraint
paradigm of spreadsheets, emphasizing that it should
follow the value rule for spreadsheets” (Gottfried &
Burnett 1997, pg 1). The definition she gives for the
value rule is taken from Kay (Kay 1984) and states
“that a cell’s value is defined solely by the formula
explicitly given to it by the user”.

Many of the additions that were made are related
to a hypothesis about the spreadsheet model. This
hypothesis is:

that spreadsheet reliability can be improved
if the spreadsheet users work collaboratively
with the system to communicate more infor-
mation about known relationships. Spread-
sheet users know more about the pur-
pose and underlying requirements for their
spreadsheets than they are currently able to

communicate to the system, and our goal is
to allow end users to communicate this in-
formation about requirements. (Beckwith,
Laura, Burnett & Cook 2002, pg 1)

Motivated by the high degree of errors present in
spreadsheets and the desire to reduce the cognitive
load on the user, Burnett and others have developed
a testing methodology that applies software visuali-
sation techniques to support testing of Forms/3 pro-
grams (Rothermel, Cook, Burnett, Schonfeld, Green
& Rothermel 2000). This testing methodology was
designed to help end users with the correctness of
their spreadsheet programming by allowing them to
incrementally edit, test, and debug their spreadsheets
in a visual way as the model evolved. The approach,
referred to as WYSIWYT (“What You See Is What
You Test”), augments the spreadsheets interface with
additional information that provides visual feedback
through several techniques about the degree a spread-
sheet has been tested.

One of the additions to the spreadsheet interface
were dataflow arrows that show dataflow paths among
cells and, when formulas are showing, they also show
the interactions between formula sub-expressions and
the “testedness” of each cell via colour. These arrows
are an optional part of the interface, and to avoid
adding to much clutter, each cell’s arrows are tran-
sient and appear/disappear when the user clicks on
the ce)ll (Burnett, Sheretov, Ren & Rothermel 2002,
pg 23).

Early research undertaken on the WYSIWYT
methodology worked at the granularity of individual
cells. This approach worked well for smaller spread-
sheets, as demonstrated by studies conducted on test-
ing, debugging, and maintenance tasks with the help
of WYSIWYT (Beckwith et al. 2002, pg 3). However,
this technique often put an unnecessarily large burden
on the user for more substantial spreadsheets, which
would often contain large grids that were fairly ho-
mogenous, i.e. “they consist of many cells whose for-
mulas are identical except for some of the row/column
indices” (Burnett et al. 2002, pg 4). This led Burnett
and her colleagues to address a matter of necessity for
real-world spreadsheets: “how to establish scalable
guard mechanisms that are viable for end-users when
programming spreadsheets.” (Burnett et al. 2002)

A research effort relevant to our project was the
creation of a cell relation graph in earlier testing work
(Burnett et al. 2002, pg 7). This model consists of a
collection of nodes that each form part of a larger
formula graph model. In the formula graphs an en-
try node models initiation of the associated formula’s
execution, an exit node models termination of that
formula’s execution, and one or more predicate nodes
and computation nodes, modelling execution of if-
expressions, predicate tests and all other computa-
tional expressions, respectively. Edges in this graph
control the flow between pairs of formula graph nodes.
Out edges from predicate nodes are labelled with the
value to which the conditional expression in the as-
sociated predicate must evaluate for that particular
edge to be taken.

Cells also form an integral part of this model be-
cause of their role as variables. Each cell has a corre-
sponding node in the formula graph that represents
the expression defined in that cell. This node also con-
tains details that the cell is either for computational
use Ea non-predicate node refers to it) or a predicate
use (an out-edge from a predicate node that refers to
it) (Burnett et al. 2002, pg 8).

3 Toolkit

Spreadsheet processing for this project utilises an ap-
plication toolkit that collectively provides the func-
tionality to extract low level structures from spread-
sheet files, analyse these structures, produce visual-
isations displaying the information analysed, and to
find, download, and persistently store spreadsheets
located around the Internet. The code for these ap-
plications resides in 6 core Java packages. Each pack-
age concentrates on providing a distinct function of
interest, such as finding the spreadsheets on the In-
ternet or producing the diagrams from the processed
data.

The most essential component in the toolkit in-
volved reading the binary Excel files and reconstruct-
ing the data present as Java objects. This is done
by the Extractor application, which provides trans-
parency between the binary forms of Excel files stored
on disk and the toolkit’s internal representation.

The main artifact of interest for extraction was the
cell. For all the occupied cells found, it was necessary
to extract its value and formula if present (both in a
string format that matches that shown to the user).
In addition to this data, it is also important to obtain
row and column position as well as the worksheet that
it resides in.

Further details on the extraction process are avail-
able in a prior paper on low level structure access and
visualisation (Ballinger, Biddle & Noble 2003).

For the entire corpus, or a subset, the Analyser ap-
plication examines a set of files for a feature of inter-
est and collates the information in an output format
suitable for the form of analysis undertaken. Within
corpus linguistics such a tool is referred to as a con-
cordance program.

With the representation of Excel files stored in the
toolkit’s easily handled Java format, it is possible to
analyse and perform aggregation operations on any
observable spreadsheet component. In the simplest
cases this can be the position of occupied cells and the
value they contain. In more complex cases the details
of interest might be the results of running the formula
parser to extract referencing operators, functions, and
primitive components. The data obtained can then be
combined using various methods to create the source
information for the construction of visualisations.

4 Visualisations

In the previous sections, we have seen how studies
show the effects of hidden structure in spreadsheets
can be significant, and further show that there are
strategies to address these effects. In this section, we
demonstrate how our toolkit can be used to access the
structure of spreadsheets and generate visualisations
to show the otherwise hidden structure. We have de-
veloped a number of specific visualisations, based on
the spatial structure of spreadsheets, the structure
of logical dependencies within spreadsheets, the way
these two structures work together, and the way these
aggregate in corpus analysis. Together, these demon-
stration visualisations show the feasibility of using ex-
ternal visualisation to assist end-users.

4.1 Visability of spreadsheet layout

Understanding where the information is located is the
first step in acquiring a greater depth of knowledge
about what structures and patterns are present in a
spreadsheet. It also provides a stable foundation for
building new knowledge. When a user is first pre-
sented with an unfamiliar spreadsheet they will often

scroll around the various sections looking for larger
blocks of data and cells that output final results.

At any one time only a portion of the entire grid
is displayed on the screen. The actual number of
cells that are present in any one screen varies due
to the width and height of the columns and rows
respectively. One technique Excel supports to help
this process is to use the zoom tool to increase the
number of cells visible on the screen. Although gen-
erally effective for smaller sheets, this approach can
miss data that has been deliberately positioned to-
wards corners of a spreadsheet. Generally the tech-
nique doesn’t scale well for larger spreadsheets, as the
required zoom level can make it difficult to identify
occupied cells.

During this early process of discovery most users
are more interested in obtaining a general orientating
view of the layout than the exact values and formulas
present in each cell, which only become relevant for
later tasks.

=g

P

(64.0)

A

Figure 4: Real-estate utilisation diagram in 2D

An example of the 2D real-estate diagrams pro-
duced by the toolkit is shown in figure 4. This visu-
alisation is produced using the Java Swing library’s
primitive components, such as lines and circles. Any
coordinate with a cell count greater than zero is as-
signed a coloured circle. The colour for this circle
is determined as to create a heat-map effect for all

the data. Grid coordinates where a large number of
cells occur will be coloured towards the red end of the
colour spectrum while those with lower counts will be
coloured towards the violet/blue end.

Doodler, using VisAD

Figure 5: Real-estate utilisation diagram in 3D

To create an alternative view for this information,
the data was projected into 3D to create a surface
map. This transformation from discrete data to con-
tinuous surface can benefit the viewer by smoothing
out the effects of any one cell and aiding understand-
ing. It is possible to maintain hints of the discrete na-
ture of the data by colouring the surface as a square
grid rather than a continuous colour gradient.

The 3D rendering was produced using Java3D
(Sun 2002) and VisAD (Hibbard 2002), a visualisa-
tion tool for numerical data. These tools had the ben-
efit of allowing the user to interact with the image by
rotating and zooming via the mouse and keyboard.
Through this interaction the true benefit of the 3D
model is gained, giving the image the feeling of so-
lidity, continuity, and real existence. An example of
this type of diagram is figure 5. In this figure the left
axis contains the rows and the upper (obscured) axis
the columns. The altitude represents the occupancy
level and is coloured to create a topological terrain
map appearance.

4.2 Applying clustering to layout

Both the layout images mentioned above rely on the
user to observe the blocks of data themselves. Al-

©000) colty @0 0000 colto)

i | «

Figure 6: Two variations on rectangular clustering in
a single worksheet.

|- (O]]
Col{ (9.0

E%%Basic Cell Clustering
(0.0,0.0%

(25.0)

Figure 7: Circular clustering in a single worksheet.

though this technique is generally effective, it is also
possible to highlight certain spatial relationships pro-
grammatically.

Clustering is a technique that partitions records
into clusters (groups) that are similar according to
two or more common attributes. Conversely, records
in separate clusters are dissimilar according to the
same attributes. To determine if an instance is part
of a cluster a distance function is used to calculate
similarity and a user defined cut-off value determines
membership. Generally, as the cut-off value gets
larger the clusters become bigger and engulf more in-
stances.

When the clusters are graphed they provide a use-
ful visual cue as to the relationship between several in-
stances of some type, perhaps further simplifying the
process of identifying blocks of data. Figures 6 and 7
are examples of the clustering visualisations that the
toolkit can produce. When the clusters are displayed
using rectangles only the minimal containing box is
shown. Alternatively, with circular depictions the in-
ner blue circle is the average instance radius for the
cluster and the outer circle is the maximum radius.

The main use of the clustering algorithms to date
has been looking at the spatial relationships between
cells using the Euclidean distance between them as
the similarity metric. Using alternative metrics in
defining a new distance function would allow the tech-
nique to be extended to look for non-spatial clustering
relationships.

4.3 Data Dependency Flow

In a similar fashion to Excel’s built in auditing tools,
it is possible to trace all inter-cell dependencies in a
single diagram. Due to the magnitude of each vector
such a diagram can become cluttered. To address this
two simple alterations to the vectors displayed can
reduce the volume of information displayed. Firstly,
the magnitude of each vector could be altered to the
equivalent unit vector. This removes the considera-
tion of spatial distance and instead concentrates of
flow direction. The second approach is to display
just the average outgoing vector for each cell. These
two techniques are combined to create a visualisa-

Column

0 40
L | |
0+ =
L : s
R =~ £y Pt
R R
BEUR TR g
[K
= K LAY .
BN = .
% .\'\ 'Q 3 :
5 3 i
« 3
‘% Q S
n n%x%qx;xx\\
i}
. 5 % A
o 1]
]| vy
ERAESTRERE:
! 0%
W
i
TR OERYRR
i
m st
thid by
P
231
ool L4

Figure 8: Data dependency flow using the average
unit vectors in 2D.

tion depicting the direction of dataflow. Figure 8 is
an interesting example of this technique and shows a
trend for the flow to curve back towards the origin.
This particular visualisation is created using VisAd.
As the inter-cell references can flow between spread-
sheets the unit vectors have 3 dimensions. This can
be made more apparent to the user by displaying all
the vectors in 3D, as shown in figure 9.

4.4 Data Dependency Direction

While the data flow diagrams involve the spatial po-
sitions of cells in the information, it is also possible
to concentrate purely on the directions on flow. This
is done using a visualisation referred to as compass
or radar view. This visualisation is applied to depen-
dency direction data contained in a series of buckets.
Each of the 36 buckets is created to store a count of
the number of outgoing vectors that occur in the cor-
responding angle, e.g. 0 to 10 degrees for the first
bucket.

Storing the bucket data in a comma separated
value file allows the data to be read by Excel. Ex-
cel’s graphing features can then be used to display the
data as either a radar or line graph, as the example
figure 10 demonstrates. It is clearly visible in these
graphs that the rectangular grid layout of a spread-
sheet encourages many of the inter-cell references to
be either vertical or horizontal. After the four main
axis the next significant measure occurs in the region
between 300 to 360 °.

4.5 Graph structure

It is possible to view the hidden graph structure for
each spreadsheet independently of spatial considera-
tions.

The first example of such a visualisation is a spring
view, which uses a 2D layout algorithm based on the
idea of spring forces to arrange the spatial positions

]

Ny o . Column) 43

FE

Figure 9: Data dependency flow using the average
unit vectors in 3D.

Figure 10: Radar graph of bucket data for 259 spread-
sheets from the corpus. The upper bucket count is
cropped at 150

of the cells, with an example given in figure 11. To
do this, cells and the edges between them, which rep-
resent the inter-cell dependencies, are automatically
arranged based on the internal structure of the graph.
If two cells are connected via dependencies they are
attracted to each other, otherwise they are pushed
apart. If the algorithm is iterated a few times, the
graph reaches a stable position and does not move
anymore.

This has several benefits, such as the ability to un-
tangle many complex dependency structures. When
the structure has untangled it is of interest to observe
if cells that were previously spatially related are still
spatially related, or if instead they have drifted apart.
If more than one tree structure is inserted into this
visualisation they will often separate completely, as
there are no attractive forces between them. Due to
its nature, this visualisation is dynamically manipu-
lable by the users, who can drag cells around to aid
in the untangling process or fix them in position to
enf())rce a particular structure (fixed cells are coloured
red).

Bl 5w

m J [label O Stress [0 Random

Figure 11: A spring view of the dependency structure
between cells. By disregarding the spatial bounds
usually enforced on cells, structures such as the chain
between cells 110 and H12 become clearer.

4.5.1 Fisheye view

Figure 12: The fisheye view of 4 dependency trees.

The tree structures resulting from formula depen-
dencies can span large numbers of cells over great
spatial distances, making it difficult to view all the
information and still derive useful patterns. The fish-
eye visualisation involves warping this tree over a hy-
perbolic lens that makes it possible to achieve both
focus on an aspect of interest near the centre of the
visualisation and the larger context for that aspect.
Figure 12 is an example of 4 trees in a single work-
sheet being arranged around a red artificial root node.
Alternative renderers are available for use with this
visualisation to add additional information, such as
the cell address.

4.6 Detailed inspection of formula

After examining the layout of the spreadsheet it is
useful to then focus on the dataflow through the

A3 = =|=SUMEBIE1T A10.C10)

=3UME3CT) AT

[of=leNE

[@ * 3| _auM@sErCseT) | A3
B 1 4
Jsﬁ 2 =)

=

A0
c =AUM(ES:B11 A10:C10)

Figure 13: Excel’s precedent trace auditing tool for
sheet 1. Note that we have added by hand boxes to
the right of each cell containing the relevant formula.

(0.0,0.0 Coli 4.0

E—F

—=]
F o
\EI- T8
—E1
(12.0)

Figure 14: Formula extracted and displayed by the
toolkit.

spreadsheets created by formula. As mentioned in
the background section, Takeo Igarashi et al. ob-
served that the process of dataflow discovery often
involved clicking on individual cells and tracing the
formula manually, putting an unreasonable strain on
the user. Excel does provide some assistance via the
range finder and auditing tools, but they were found
to be lacking for complex and large spreadsheets. It
is important that any process devised not put a heavy
load on the user to manually trace the dependencies
that exist.

The first stage in creating a visualisation for dis-
playing these dataflow structures is to consider all the
components individually. A formula can be consid-
ered to create both spatial and logical relationships
(dependencies) between cells, both in two and three
dimensions. Making these dependencies more acces-
sible to the user is the primary aim of many of the
following visualisations.

Figure 13 demonstrates the four main techniques
that Excel allows a user to use in a formula to refer-
ence other cells and the precedent trace arrows added
by Excel’s built in auditing tools. Notice how Excel’s

(0.0,0.01

[H B :
R F
Row
fH :
[H
O

(7.0

colis 5.0

Bl
.
(=
=
4

mul
=)

(mal
()
(]
[=n}

Figure 15: Using the summation operation on both
the columns and rows in a table.

trace is somewhat deceptive in the case of an inter-
section, in this case looking more like an individual
cell reference. In figure 14, created by the toolkit, a
precedent cell dependency is represented by a blue ar-
row in a similar fashion to that presented by Excel’s
auditing tools. As with the real-estate visualisations,
the layout is designed to mimic that of Excel. How-
ever, as the diagrams being presented here are uncon-
cerned with actual cell values, they are omitted from
the diagram, significantly reducing the amount of in-
formation that the user has to process. Any ranged
references are depicted using a shaded box. A single
range is shaded light grey while a union has the left
and right sub-ranges coloured blue and green respec-
tively. Intersections use yellow and red boxes for the
left and right sub-ranges. The actual resulting inter-
section is shaded dark blue. The use of shading and
transparency in these diagrams would not be as viable
within Excel as they would obscure the cell values.

An extremely common spreadsheet operation is to
sum the values in a range of cells. Figure 15 demon-
strates such an operation with a more realistic style of
worksheet where a series of columns are summed and
then cross-checked with the sum of the rows. The cir-
cles in the diagram are indications of the complexity
of the formula in those cells. Note how the bottom
right cell is significantly more complex than those that
just sum a single row or column. This style of image is
similar to the static global view presented by Igarashi
et al. (Igarashi et al. 1998).

A more specialised form of precedent tracing not
supported by Excel’s auditing tools involves exam-
ining the referencing syntax. Relative and absolute
referencing between cells creates two different forms
of dependency, those that change in a formula as the
replication commands are applied and those that re-
main constant in one or two dimensions. Using the
replication command in conjunction with combina-
tions of relative and absolute references explicitly en-
courages the user to create regular patterns in the
dependencies. Making these patterns more apparent
through visualisation was one of the focuses of our
project.

Figure 16 demonstrates the colouring of relative
and absolute cell references used by the toolkit. The
reference from B1, coloured blue, is a standard rel-
ative reference (Excel’s default reference). B3 has
a red absolute reference. A2 and C2 are both par-

ke |EER B1+5C2HBF5+ASZ

(1.01.0) ColGg (3.0

Figure 16: Both Excel’s and the toolkit’s trace of
simple absolute and relative inter-cell dependencies.

tially absolute references, in that only one axis is fixed
with the $ symbol, and are coloured yellow and green
respectively. When these colourings are applied to
complex real-world spreadsheets, the regular patterns
used in cell referencing can become more apparent.

One hypothesis that we had from an early stage is
that absolute cell references will be one of the main
causes of long and angled dependency vectors. The
first motivation for this hypothesis is that locality en-
courages regions where a large number of inter-cell
dependencies exist to be spatially close to each other.
This would imply that most cell references that refer
to a distance cell would in fact be referring to a single
parameter. The exception to this reasoning would be
caused by presentation considerations, which may en-
courage the programmer to duplicate or refer to large
ranges across some distance.

4.7 Corpus Analysis

WorkSheet Centre

Columns
il 5 10 15 il % £l E3 Il

Number of non-empty Worksheets: 227
Nurnber of empty Worksheets: 195

200 eafs: 1031
E Max Row: 1384
x Col; 82

a0 Local

Rows
5

500

800

700

Figure 17: Worksheet centre for a corpus of 259 work-
books. Data is plotted in Excel using data exported
from the toolkit.

In this section we briefly demonstrate visualisa-
tion of a corpus of spreadsheets. In figure 17 the
spatial centre for each worksheet in a corpus of 259
workbooks is plotted. Some interesting observations
include the trend towards a centre that has the col-
umn as the majority component. Also, the table con-
taining data about the run reports a large number of
orphan cells (no incoming or outgoing references).

After applying the toolkit’s parser to the formula
in each cell it is possible to count the functions utilised
in each worksheet. Using this data and the Excel de-
fined categorises for each function figure 18 is pro-
duced. This bar graph addresses the degree to which
each function is utilised in the corpus. Indications

Function groupings

800

751

700 —

600 —

400 —

300 —

200 —

100 —

Figure 18: Function utilisation in a corpus of 259
spreadsheets. Data is plotted in Excel using data ex-
ported from the toolkit.

from this graph are that users only utilise a relatively
small subset of commands. To draw reliable conclu-
sions the size of the corpus used to generate this im-
age will need to be greatly increased. Consideration
would also have to be made as to the abilities of the
extraction process to read certain functions and their
associated source data.

This diagram is motivated by the hypothesis that
large portions of users succeed in using spreadsheets
while only utilising a very small subset of available
functions, with the primitive operators and most ba-
sic functions, such as sum, average, and logical prim-
itives, making up the majority of cases.

5 Conclusions

Spreadsheets are by far the most significant form of
end-user programming. In this paper we have ex-
plored the subject of visualisation to assist end-users
in better understanding the structure of spreadsheets.
In particular, we addressed the issue of “hidden struc-
ture”. We first reviewed the literature to investigate
the implication of hidden structure on spreadsheet
users. We then used a toolkit we developed and
demonstrated the feasibility of externally accessing
the spreadsheet structure, and generating visualisa-
tions helpful to end-user understanding. We believe
this is a good foundation for future work on spread-
sheet visualisation, including detail user studies, do-
main specific visualisation, and spreadsheet corpus
analysis.

References

Ayalew, Y., Clermont, M. & Mittermeir, R. T. (2000),
Detecting errors in spreadsheets, in ‘EuSpRIG
2000 Symposium: Spreadsheet Risks, Audit and
Development Methods’. University of Green-
wich, London. http://citeseer.nj.nec.com/
485147 .html.

Ballinger, D., Biddle, R. & Noble, J. (2003), Spread-
sheet strucuture inspection using low level access
and visualisation, Vol. 4, Australasian User In-
terface Conference, Adelaide. http://www.mcs.
vuw.ac.nz/"db/publications/.

Beckwith, Laura, Burnett, M. & Cook, C.
(2002), Reasoning about many-to-many re-
quirement relationships in spreadsheets, in
‘IEEE Symposium on Human-Centric Comput-
ing Languages and Environments, Arlington,
VA’. ftp://ftp.cs.orst.edu/pub/burnett/
hccO02.gridAssertions.pdf.

Blackwood, J. (2002), ‘Staroffice suite may
be bitter pill for ms to swallow’. 7ZD-
NET, CNET Networks, Inc. http:

//techupdate.zdnet.com/techupdate/
stories/main/0,14179,2865566,00.%html.

Burnett, M., Sheretov, A., Ren, B. & Rothermel,
G. (2002), Testing homogeneous spread-
sheet grids with the ”what you see is
what you test” methodology, in ‘IEEE
Trans. Software Engineering’ . 576-594.
ftp://ftp.cs.orst.edu/pub/burnett/TSE.
gridTesting.preprint.pdf.

Chadwick, D., Knight, B. & Rajalingham, K. (2002),
‘Quality control in spreadsheets: A visual ap-
proach using color codings to reduce errors in
formulae’. Information Integrity Research Cen-
tre, SCMS, University of Greenwich. http://
www.kamalasen.Com/chadwick—OO.pdf.

Clermont, M., Hanin, C. & Mittermeir, R. (2002),
A spreadsheet auditing tool evaluated in an in-
dustrial context, in ‘EuSpRIG 2002 symposium’.
http://www.sysmod.com/eusprig02.htm.

Gottfried, H. J. & Burnett, M. M. (1997), Graphical
definitions: Making spreadsheets visual through
direct manipulation and gestures, in ‘Visual Lan-
guages’, pp. 250-257. http://citeseer.nj.
nec.com/gottfried97graphical .html.

Hibbard, B. (2002), ‘Visad, java component library’.
Space Science and Engineering Center - Univer-
sity of Wisconsin - Madison. http://www.ssec.
wisc.edu/"billh/visad.html.

Igarashi, T., Mackinlay, J. D., Chang, B.-W. &
Zellweger, P. (1998), Fluid visualization for
spreadsheet structures, in ‘Visual Languages’,
pp. 118-125. http://citeseer.nj.nec.com/
igarashi98fluid.html.

Kay, A. (1984), Computer Software, Scientific Amer-
ican. 53-59.

Krazit, T. (2002), ‘Staroffice set to challenge
microsoft’s office’. IDG News Service.
http://www.pcworld.com/news/article/
0,aid, 99643, 00.asp.

Liebowitz, S. (1999), Rethinking the Network
Economy, American Management Associa-
tion. Chapter 8 Major Markets-WordProcessors
and Spreadsheets. http://www.utdallas.edu/
~“liebowit/book/sheets/sheet.html.

Myers, B. A. (1991), Graphical techniques in a
spreadsheet for specifying user interfaces, in
‘ACM CHI'91 Conference on Human Factors in
Computing Systems’, ACM Press, pp. 243-249.

Nardi, B. A. (1993), A Small Matter of Program-
ming: Perspectives on End User Computing,
MIT Press. http://www.darrouzet-nardi.
net/bonnie/ASmallMatter.html.

Panko, R. R. (19974), ‘Human error website’. Hon-
olulu, University of Hawaii. http://www.cba.
hawaii.edu/panko/papers/ss/humanerr.htm.

Panko, R. R. (1997b), ‘Spreadsheet research repos-
itory’. Honolulu, University of Hawaii. http:
//panko.cba.hawaii.edu/ssr/.

Panko, R. R. (1998), What we know about spread-
sheet errors, in ‘Journal of End User Com-
puting.’. http://panko.cba.hawaii.edu/ssr/
Mypapers/whatknow.htm.

Rothermel, K. J., Cook, C. R., Burnett, M. M.,
Schonfeld, J., Green, T. R. G. & Rothermel,
G. (2000), WYSIWYT testing in the spread-
sheet paradigm: an empirical evaluation, in
‘International Conference on Software Engi-
neering’, pp. 230-239. citeseer.nj.nec.com/
rothermel99wysiwyt.html.

Sajaniemi, J. (2000), ‘Modeling spreadsheet audit:
A rigorous approach to automatic visualiza-
tion’, Jouwrnal of Visual Languages and Com-
puting 11(1), 49-82. citeseer.nj.nec.com/
sajaniemi98modeling.html.

Sun (2002), ‘Java 3d(tm) api’. Sun Microsys-
tems, Inc. http://java.sun.com/products/
java-media/3D/.

Wilde, N. (1993), A WYSIWYC (What You See
Is What You Compute) spreadsheet, in ‘IEEE
Symp. on Visual Languages, Bergen, Norway,
Aug. 24-27, 1993, 72-76.".

Yoder, A. G. & Cohn, D. L. (2002), ‘Domain-specific
and general-purpose aspects of spreadsheet lan-
guages’. Distributed Computing Research Lab,
University of Notre Dame. http://www-sal.cs.
uiuc.edu/"kamin/dsl/papers/yoder.ps.

