
Topics in Algorithmic
Randomness and

Computability Theory

by

Michael McInerney

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Mathematics.

Victoria University of Wellington
2016

Abstract
This thesis establishes results in several different areas of computability theory.

The first chapter is concerned with algorithmic randomness. A well-known
approach to the definition of a random infinite binary sequence is via effective
betting strategies. A betting strategy is called integer-valued if it can bet only
in integer amounts. We consider integer-valued random sets, which are infinite
binary sequences such that no effective integer-valued betting strategy wins ar-
bitrarily much money betting on the bits of the sequence. This is a notion that
is much weaker than those normally considered in algorithmic randomness. It is
sufficiently weak to allow interesting interactions with topics from classical com-
putability theory, such as genericity and the computably enumerable degrees. We
investigate the computational power of the integer-valued random sets in terms of
standard notions from computability theory.

In the second chapter we extend the technique of forcing with bushy trees. We
use this to construct an increasingω-sequence xany of Turing degrees which forms
an initial segment of the Turing degrees, and such that each an`1 is diagonally
noncomputable relative to an. This shows that the DNR0 principle of reverse
mathematics does not imply the existence of Turing incomparable degrees.

In the final chapter, we introduce a new notion of genericity which we call
ω-change genericity. This lies in between the well-studied notions of 1- and 2-
genericity. We give several results about the computational power required to
compute these generics, as well as other results which compare and contrast their
behaviour with that of 1-generics.

ii

Acknowledgments

I would like to thank my supervisors Rod Downey and Noam Greenberg for their
guidance. I would also like to thank my other coauthors Mingzhong Cai and
George Barmpalias, and Dan Turetsky and Sasha Melnikov for helpful comments
and discussions.

iii

iv ACKNOWLEDGMENTS

Contents

Acknowledgments iii

1 Introduction 1

2 Integer-valued randomness 7
2.1 Introduction . 7

2.1.1 Martingales and randomness 8

2.1.2 Why integer-valued martingales? 11

2.1.3 Integer randomness notions and computability 12

2.1.4 Our results, in context 16

2.2 Genericity and partial integer-valued randoms 22

2.2.1 Proof of Theorem 2.1.3 23

2.2.2 An integer-valued random which is not partial integer-
valued random . 24

2.2.3 Integer-valued randoms not computing partial integer-valued
randoms . 32

2.3 Computable enumerability and IVRs 33

2.3.1 Degrees of left-c.e. integer-valued randoms 34

2.3.2 Array computable c.e. degrees do not compute integer-
valued randoms . 37

2.4 Jump inversion for integer-valued randoms 43

2.4.1 A low c.e. degree containing an integer-valued random . . 44

2.4.2 The full jump inversion theorem for integer-valued randoms 54

v

vi CONTENTS

2.4.3 Degrees of left-c.e. partial integer-valued randoms 62

2.5 C.e. degrees not containing IVRs 68

2.5.1 C.e. array noncomputable degrees not containing IVRs . . 69

2.5.2 A high2 c.e. degree not containing integer-valued randoms 73

3 DNR and incomparable Turing degrees 95
3.1 Introduction . 95

3.1.1 Fast-growing functions 98

3.1.2 Other notation and conventions 101

3.1.3 Compactness, splittings and computability 101

3.1.4 Forcing with closed sets 103

3.1.5 Simplified iterated forcing 106

3.1.6 The plan . 107

3.2 A DNC minimal degree . 108

3.2.1 Trees and forests . 108

3.2.2 Bushy notions of largeness 110

3.2.3 The notion of forcing and the generic 113

3.2.4 Totality . 116

3.2.5 Minimality . 118

3.3 A relatively DNC SMC of a DNC minimal degree 124

3.3.1 Length 2 tree systems . 125

3.3.2 Bushiness for forest systems 129

3.3.3 The notion of forcing and the generic 135

3.3.4 Minimal cover . 140

3.3.5 Strong minimal cover . 145

3.4 The general step . 150

3.4.1 Length n forest systems 150

3.4.2 The notion of forcing and restriction maps 158

3.4.3 Minimality . 162

3.5 Proof of the main theorem . 166

CONTENTS vii

4 Multiple genericity 169
4.1 Introduction . 169
4.2 Definitions . 174
4.3 Computing ω-change generics 175

4.3.1 Forcing arguments . 175
4.3.2 A c.e. permitting argument 181

4.4 Degrees computable in generics 193
4.4.1 Computable in a 1-generic 193
4.4.2 Computable in an ω-change generic 207

4.5 Downward density of generics in the ∆0
2 degrees 214

4.5.1 Downward density of 1-generics 214
4.5.2 Failure of downward density for ω-change generics 226

viii CONTENTS

Chapter 1

Introduction

This thesis is divided into three parts, each in an area of computabil-

ity theory.

The first part, which is joint work with George Barmpalias and

Rod Downey, concerns algorithmic randomness, which uses ideas

from computability theory to give a mathematically rigorous defini-

tion of a random binary sequence.

Early approaches to the definition of a random binary sequence

were concerned with statistical properties. One such property is the

law of large numbers. Suppose that we repeatedly flipped a fair coin.

We would expect that the ratio of heads to tails would tend to 1 as

the number of coin flips increased. The sequence 01010101... obeys

the law of large numbers, but is certainly not random according to

our intuition. Von Mises ([45]) suggested that a sequence should be

considered random if it obeys the law of large numbers, and further-

more that certain subsequences obey the law of large numbers. He

did not however specify which subsequences should be considered.

1

2 CHAPTER 1. INTRODUCTION

The first satisfactory definition of a random binary sequence was

given by Martin-Löf ([36]) using ideas from computability theory.

The statistical tests here are certain kinds of computable sets of mea-

sure zero. Since then, many variations on this idea have produced a

range of randomness notions.

We might also consider a binary sequence to be random if it is

unpredictable. Suppose that we begin with some amount of money,

and we bet on the bits of the sequence. The sequence is revealed

to us one bit at a time, and we bet on what the next bit will be. If

the sequence is random, then we should not be able to win arbi-

trarily much money in this way. The idea of a betting strategy can

be formalised with the notion of a martingale. Schnorr ([41]) ef-

fectivised the notion of a martingale, and showed that this approach

was equivalent to the approach using statistical tests that had already

been developed.

The martingale approach is especially useful in considering ran-

domness notions that are weaker than Martin-Löf’s. The particu-

lar type of martingale associated with Martin-Löf randoms is quite

complicated. The amount that we bet on a particular finite binary

sequence can be a left-c.e. real number. This number is given by

enumerating, in some computable way, the set of rational numbers

less than it. In particular, this may be an infinite process. If we in-

stead require that the number be a computable number (that is, there

is an algorithm that on input n, returns the nth bit in the binary ex-

pansion), we arrive at the notion of a computably random sequence.

3

We can further weaken this notion by restricting the kind of bets

we can make. The weakest such notion considered so far is known

as integer-valued randomness. Here, we can only bet in integer

amounts. This was introduced by Bienvenu, Stephan, and Teutsch

in [5], where its interactions with all other commonly studied ran-

domness notions were described. In Chapter 2, we establish several

results relating integer-valued randomness to classical measures of

computational power from classical computability theory. Integer-

valued randomness seems sufficiently weak for there to be signif-

icant interaction in ways that have not been observed before with

stronger notions of randomness. In particular, we establish connec-

tions between integer-valued randomness and genericity (which is

the subject of Chapter 4), and obtain several results about integer-

valued randomness and the computably enumerable degrees, which

are certainly the most well-studied objects in classical computability

theory.

The second part of the thesis, which is joint work with Mingzhong

Cai and Noam Greenberg, concerns a technique known as forcing

with bushy trees. This particular technique has been used in the last

few years to exhibit sets with interesting computational properties.

As is standard, our abstract model of computation is the Turing

machine. A set of natural numbers A is said to be Turing reducible

to a set of natural numbers B if there is a Turing machine, which

when equipped with information about membership in B, can decide

membership in A. We also say that B computes A. Two sets A and

4 CHAPTER 1. INTRODUCTION

B are said to be Turing equivalent if each is Turing reducible to the

other. This gives an equivalence relation on the set of all subsets of

natural numbers. The equivalence classes are called Turing degrees.

We then say that a Turing degree a is Turing reducible to a Turing

degree b if for some A P a and B P b, A is Turing reducible to B.

Turing degrees are designed to capture information content; all sets

with the same information are in the same Turing degree.

The Turing degree 0 is the degree containing the empty setH. We

consider the sets in 0 to contain no information, since membership

in such a set can be easily determined using a Turing machine. A

Turing degree a is minimal if it is not equal to 0, and the only Turing

degrees reducible to a are 0 and a itself. Then a is minimal in the

sense that if it contained any less information, it would be 0. Of

course, these degrees are considered computationally weak.

There are many ways in which we may consider a Turing de-

gree to be computationally strong. One such way is if it is able to

compute a function which is so called diagonally noncomputable

(whose definition we give in Chapter 3). One question is whether a

Turing degree can be both minimal, and compute a diagonally non-

computable function. This was answered affirmatively by Kumabe

and presented in [32], using forcing with bushy trees. In Chapter 3

we extend this result.

This result has an application in reverse mathematics, which is a

programme in the foundations of mathematics which asks, given a

theorem ordinary classical mathematics, which set existence axioms

5

are necessary in its proof. One system, DNR0, ensures the existence

of a diagonally noncomputable function. A slightly stronger system,

WWKL0, ensures the existence of a Martin-Löf random set. Conidis

([15]) showed that the system WWKL0 implies Turing incompara-

bility. That is, in every collection of sets satisfying WWKL0, there

are sets A and B such that neither is Turing reducible to the other.

However, our result shows that DNR0 does not imply Turing incom-

parability. In fact, it does not imply the existence of a pair of Turing

incomparable sets.

The final part of the thesis concerns genericity. We may consider

random sets as typical, in that almost all sets, in the sense of mea-

sure, are random. If instead we look at what it means for a set to

be typical with respect to category, we arrive at the generic sets; the

generic sets are comeager in the set of all subsets of natural num-

bers. In [26], Jockusch introduced restricted forms of genericity.

For every n P N, we have the n-generic sets. These form a proper

hierarchy: every n`1-generic set is n-generic, but the converse does

not hold.

The greater the n, the more typical we consider an n-generic set

to be. In many cases, typical behaviour starts with the 2-generic

sets, and will fail for 1-generic sets. As an example, the collection

of sets computing a 2-generic set has measure 0, whereas the col-

lection of sets computing a 1-generic set has measure 1. Thus it is

of great interest to determine exactly when typical behaviour starts,

and we may use notions of genericity intermediate between 1- and

6 CHAPTER 1. INTRODUCTION

2-genericity to more finely specify this.

Several such notions have already been defined. The most well-

known is pb-genericity, which was introduced by Downey, Jockusch,

and Stob in [20]. To highlight the difference, we consider what we

must do in order to construct generic sets. In computability theory,

we often construct a set with a certain property by satisfying in-

finitely many requirements. To construct a 1-generic set, we need to

act only once to satisfy each requirement. To construct a pb-generic

set, we may need to act many times to satisfy a requirement, but the

number of times we must act is known to us before the construction

begins.

In Chapter 4 I introduce a new notion of genericity intermedi-

ate between 1- and 2-genericity, which I call ω-change genericity.

Here, in order to construct an ω-change generic, we may need to

act many times, but the number of times is only revealed to us

during the course of the construction. This introduces a more dy-

namic flavour to the constructions. I establish several results which

quantify the level of computational power required to compute an

ω-change generic set. These are related to a hierarchy recently in-

troduced by Downey and Greenberg in [17]. I also extend a result of

Chong and Downey from [13] to give a characterisation of those sets

which are computable in an ω-change generic. I finally comment on

the downward density of ω-generics below 01.

Chapter 2

Integer-valued randomness

This chapter is joint work with George Barmpalias and Rod Downey

and has appeared in [3].

2.1 Introduction

An interesting strategy for someone who wishes to make a profit by

betting on the outcomes of a series of unbiased coin tosses, is to

double the the amount he bets each time he places a bet. Then, inde-

pendently of whether he bets on heads or tails, if the coin is fair (i.e.

the sequence of binary outcomes is random) he is guaranteed to win

infinitely many bets. Furthermore, each time he wins he recovers all

previous losses, plus he wins a profit equal to the original stake. This

is a simple example from a class of betting strategies that originated

from, and were popular in 18th century France. They are known

as martingales. The “success” of this strategy is essentially equiva-

lent to the fact that a symmetric one-dimensional random walk will

7

8 CHAPTER 2. INTEGER-VALUED RANDOMNESS

eventually travel an arbitrarily long distance to the right of the start-

ing point (as well as an arbitrarily long distance to the left of the

starting point).

So what is the catch? For such a strategy to be maintained, the

player needs to be able to withstand arbitrarily large losses, and such

a requirement is not practically feasible. In terms of the random

walk, this corresponds to the fact that, before it travels a large dis-

tance to the right of the starting point, it is likely to have travelled a

considerable distance to the left of it.

2.1.1 Martingales and randomness

Martingales have been reincarnated in probability theory (largely

though the work of Doob), as (memoryless) stochastic processes

pZnq such that the conditional expectation of each Zn`1 given Zn re-

mains equal to the expectation of Z0. The above observations on

a fair coin-tossing game are now theorems in the theory of martin-

gales. For example, Doob’s maximal martingale inequality says that

with probability 1, a non-negative martingale is bounded. Intuitively

this means that, if someone is not able (or willing) to take credit (so

that he continues to bet after his balance is negative) then the proba-

bility that he makes an arbitrarily large amount in profit is 0.

Martingales in probability rest on a concept of randomness in or-

der to determine (e.g. with high probability) or explain the outcomes

of stochastic processes. In turns out that this methodology can be

turned upside down, so that certain processes are used in order to

2.1. INTRODUCTION 9

define or explain the concept of randomness. Such an approach was

initiated by Schnorr in [41], and turned out to be one of the standard

and most intuitive methods of assigning meaning to the concept of

randomness for an individual string or a real (i.e. an infinite binary

sequence, a point in the Cantor space). This approach is often known

as the unpredictability paradigm, and it says that it should not be

possible for a computable predictor to be able to predict bit n` 1 of

a real X based on knowledge of bits 1, . . . , n of X, namely X � n. The

unpredictability paradigm can be formalized by using martingales,

which (for our purposes) can be seen as betting strategies. We may

define a martingale to be a function f : 2ăω Ñ R>0 which obeys the

following fairness condition:

f pσq “
f pσ0q ` f pσ1q

2
.

If f is partial, but its domain is downward closed with respect to

the prefix relation on finite strings, then we say that f is a partial

martingale.

In probability terms, f can be seen as a stochastic process (a se-

ries of dependent variables) Zs where Zs represents the capital of a

player at the end of the sth bet (where there is 50% chance for head

or tails). Then the fairness condition says that the expectation of

f at stage s ` 1 is the same as the value of f at stage s. In other

words, the fairness condition says that the expected growth of f at

each stage of this game is 0. If we interpret f as the capital of a

player who bets on the outcomes of the coin tosses, the fairness con-

dition says that there is no bias in this game toward the player or the

10 CHAPTER 2. INTEGER-VALUED RANDOMNESS

house. Moreover note that our definition of a martingale as a bet-

ting strategy requires that it is non-negative. Recalling our previous

discussion about gambling systems, this means that we do not allow

the player to have a negative balance. This choice in the definition is

essential, as it prevents the success of a ‘martingale betting system’

as we described it. Continuing with our definition of martingales as

betting strategies, we say that f succeeds on a real X if

lim sup
nÑ8

f pX � nq “ 8.

Schnorr [41] was interested in an algorithmic concept of random-

ness. Incidentally, Martin-Löf [36] had already provided a math-

ematical definition of randomness based on computability theory

and effective measure theory. But Schnorr wanted to approach this

challenge via the intuitive concept of betting strategies. He proved

that a real (i.e. an infinite binary sequence) X is Martin-Löf ran-

dom if and only if no effective martingale can succeed on it. Here

“effective” means that f is computably approximable from below.

Schnorr’s result is an effective version of the maximal inequality

for martingales in probability theory, which says that with probabil-

ity 1 a non-negative martingale is bounded. There is a huge liter-

ature about the relationship between martingales and effective ran-

domness, and variations on the theme, such as computable martin-

gales and randomness, partial computable martingales, nonmono-

tonic martingales, polynomial time martingales, etc. We refer the

reader to Downey and Hirschfeldt [18] and Nies [37] for some de-

tails and further background.

2.1. INTRODUCTION 11

2.1.2 Why integer-valued martingales?

Recall the standard criticism of martingale betting systems, i.e. that

their success depends on the ability of the player to sustain arbitrar-

ily large losses. This criticism lead (for the purpose of founding

algorithmic randomness) to defining a martingale as a function from

the space of coin-tosses to the non-negative reals (instead of all the

reals) which represent the possible values of the capital available

to the player. There is another criticism on such betting strategies

that was not taken into account in the formal definition. Schnorr’s

definition of a martingale (as a betting strategy) allows betting in-

finitesimal (i.e. arbitrarily small) amounts. Clearly such an option is

not available in real gambling situations, say at a casino, where you

cannot bet arbitrarily small amounts on some outcome. It becomes

evident that restricting the betting strategies to a discrete range re-

sults in a more realistic concept of betting. Such considerations led

Bienvenu, Stephan and Teutsch [5] to introduce and study integer-

valued martingales, and the corresponding randomness notions. In-

terestingly, it turns out that the algorithmic randomness based on

integer-valued martingales is quite different from the theory of ran-

domness based on Martin-Löf [36] or Schnorr [41] (as developed

in the last 30 years, see [18, 37] for an overview). The reason for

this difference is that most of the classical martingale arguments in

algorithmic randomness make substantial use of the property of be-

ing able to bet infinitesimal amounts (thereby effectively avoiding

bankruptcy at any finite stage of the process).

12 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Quite aside from the motivations of examining the concept of

integer-valued martingales for its own sake, if we are to examine the

randomness that occurs in practice, then such discretised random-

ness will be the kind we would get. The reason is evident: we can

only use a finite number of rationals for our bets, and these scale to

give integer values. Additionally, at the more speculative level, if

the universe is granular, finite, and not a manifold, then if there is

any randomness to be had (such as in quantum mechanics) it will be

integer-valued for the same reason.

2.1.3 Integer randomness notions and computability

We formally introduce and discuss the notions of integer-valued ran-

domness in the context of computability theory. For the purposes

of narrative flow, we will assume that the reader is familiar with

the basics of algorithmic randomness. Schnorr based algorithmic

randomness on the concept of effective strategies. Along with this

foundational work, he introduced and philosophically argued for a

randomness notion which is weaker than Martin-Löf randomness

and is now known as Schnorr randomness. Further notions, like

computable randomness, are quite natural from the point of view of

betting strategies and have been investigated extensively (see for ex-

ample Chapter 7 of [18] and Chapter 7 of [37]). Integer-valued mar-

tingales induce randomness notions with properties that are quite a

different in flavour from those of, for instance, Martin-Löf random-

ness, computable randomness and the like. Our goal in the present

2.1. INTRODUCTION 13

chapter is to clarify the relationship between integer-valued random-

ness and classical degree classes which measure levels of computa-

tional power.

Definition 2.1.1 (Integer-valued martingales). Given a finite set F Ď

N, we say that a martingale f is F-valued if f pσiq “ f pσq ˘ k for

some k P F. A martingale is integer-valued if it is N-valued, and is

single-valued if F “ ta, 0u for some a , 0.

Note that a martingale is F-valued if at any stage we can only bet k

dollars for some k P F on one of the outcomes i P t0, 1u, and must

lose k dollars if 1 ´ i is the next bit. We note that partial integer-

valued martingales are defined as in Definition 2.1.1, only that the

martingales can be partial. In the following we often say that, given

a string σ, the string σ0 is the sibling of σ1 (and σ1 is the sibling of

σ0).

If we restrict our attention to the countable class of computable or

partial computable martingales, we obtain a number of algorithmic

randomness notions. For example, a real is [partial] computably

random if no [partial] computable martingale succeeds on it. Similar

notions are obtained if we consider integer-valued martingales.

Definition 2.1.2 (Integer-valued randomness). A real X is [partial]

integer-valued random if no [partial] computable integer-valued mar-

tingale succeeds on it. Moreover X is finitely-valued random if for

each finite set F Ď N, no computable F-valued martingale succeeds

on it, and is single-valued random if no computable single-valued

martingale succeeds on it.

14 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Integer-valued Computable

Finite-valued Single-valued

Partial integer-valued Partial computable

Table 2.1: Randomness notions based on effective martingales

We list these randomness notions in Table 2.1, along with the tradi-

tional randomness notions computable and partial computable ran-

domness. Note that partial integer-valued randomness is stronger

than integer-valued randomness, just as partial computable random-

ness is stronger than computable randomness. Bienvenu, Stephan

and Teutsch [5] clarified the relationship between integer-valued,

single-valued and a number of other natural randomness notions.

Figure 2.1 illustrates some of the implications that they obtained.

We already know (see [18]) that computable randomness implies

Schnorr randomness, which in turn implies Kurtz randomness (with

no reversals) and that Schnorr randomness implies the law of large

numbers. Bienvenu, Stephan and Teutsch proved that if we add the

above notions to the diagram in Figure 2.1, no other implications

hold apart from the ones in the diagram and the ones just mentioned.

In addition, we may add a node for ‘partial computably random’ and

an arrow from it leading to the node ‘computably random’. Nies

showed in [37, Theorem 7.5.7] that the converse implication does

not hold, i.e. there are computably random reals which are not partial

computably random. A strong version of this fact holds for integer-

2.1. INTRODUCTION 15

computably random integer-valued random

finitely-valued random single-valued random

Kurtz random

bi-immune

Figure 2.1: Implications between randomness notions obtained in [5].

valued randomness. We show that there are integer-valued random

reals which not only are not partial integer-valued random, but they

do not contain any partial integer-valued random reals in their Tur-

ing degree.

One interesting observation of Bienvenu, Stephan and Teutsch

[5], was that integer-valued randomness was a meeting point of gener-

icity (and hence category) and measure since weakly 2-generic sets

are integer-valued random. Hence the integer-valued randoms are

co-meager as well as having measure 1. The reader should recall

that a subset of N is called n-generic if it meets or avoids all Σ0
n sets

of strings, and is weakly n-generic if it meets all dense Σ0
n sets of

strings. The reason that highly generic reals are integer-valued ran-

dom is that there is a finitary strategy to make a set integer-valued

random, since we can force an opponent who bets to lose. The point

here is that if the minimum bet is one dollar and he has k dollars to

spend, then he can lose at most k times, so we can use a finite strat-

egy to force the opponent into a cone (in Cantor space) where he can-

not win. This finite strategy is not available if arbitrarily small bets

are allowed. Naturally the question arises as to what level of gener-

icity is needed for constructing integer-valued randoms. Bienvenu,

16 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Stephan and Teutsch [5] proved that it is possible to have a 1-generic

which is not integer-valued random. So the answer they gave to this

question is ‘somewhere between weak 2 and 1-genericity’. As we

see in the next section, we give a more precise answer.

2.1.4 Our results, in context

Bienvenu, Stephan and Teutsch [5] showed that the class of integer-

valued random is co-meager, so sufficient genericity is a guarantee

for this kind of randomness. They also quantified this statement

via the hierarchy of genericity, showing that the genericity required

lies somewhere between weak 2-genericity and 1-genericity. We

show that a notion of genericity from [20] which is known as pb-

genericity, implies (partial) integer-valued randomness. Recall from

[20] that set of strings S is pb-dense if it contains the range of a

function f : 2ăω Ñ 2ăω with a computable approximation p fsq such

that f pσq < σ for all strings σ and |ts | fs`1pσq , fspσqu| 6 hpσq

where the function h : 2ăω Ñ ω is primitive recursive. A real X is

pb-generic if every pb-dense set of strings contains a prefix of X.

Theorem 2.1.3 (Genericity for integer-valued randoms). Every pb-

generic real is (partial) integer-valued random.

This result might suggest that integer-valued randomness and partial

integer-valued randomness are not easily distinguishable. In Section

2.2.2 we present a rather elaborate finite injury construction of a

real which is integer-valued random but not partial integer-valued

2.1. INTRODUCTION 17

random. In Section 2.2.3 this construction is modified into a 02 tree

argument, which proves the following degree separation between the

two randomness notions.

Theorem 2.1.4 (Degree separation of randomness notions). There

exists an integer-valued random X ăT 01 which does not compute

any partial integer-valued random.

We are interested in classifying the computational power that is

associated with integer-valued randomness. Computational power

is often represented by properties of degrees, which in turn define

classes like the degrees which can solve the halting problem, or the

array non-computable degrees from [20]. The reader might recall

that A is array noncomputable if and only if for all f 6wtt H
1, there

is a function g 6T A such that gpnq ą f pnq for infinitely many n.

This class has turned out to be ubiquitous and characterized classes

defined by many distinct combinatorial properties. Recall that a pre-

sentation of a real A is a c.e. prefix-free set of strings representing

an open set of Lebesgue measure α. The c.e. array noncomputable

degrees are exactly the c.e. degrees that

(a) contain c.e. sets A of infinitely often maximal (i.e. 2 log n) Kol-

mogorov complexity; (Kummer [33])

(b) have effective packing dimension 1; (Downey and Greenberg

[16])

(c) compute left-c.e. reals B ăT A such that every presentation of

A is computable from B; (Downey and Greenberg [17])

18 CHAPTER 2. INTEGER-VALUED RANDOMNESS

(d) compute a pair of disjoint c.e. sets such that every separating set

for this pair computes the halting problem; (Downey, Jockusch,

and Stob [19])

(e) do not have strong minimal covers; (Ishmukhametov [25])

Also by Cholak, Coles, Downey, Herrmann [11] the array noncom-

putable c.e. degrees form an invariant class for the lattice of Π0
1

classes via the thin perfect classes.

Theorem 2.1.3 can be used to show that a large class of de-

grees compute (partial) integer-valued randoms. By [20], every ar-

ray noncomputable degree computes a pb-generic. Therefore Theo-

rem 2.1.3 has the following consequence.

Corollary 2.1.5 (Computing integer-valued randoms). Every array

noncomputable degree computes a (partial) integer-valued random.

Note however that an integer-valued random need not be of array

noncomputable degree. Indeed, it is well known that there are array

computable Martin-Löf randoms. A converse of Corollary 2.1.5 can

be obtained for the c.e. degrees, as Theorem 2.1.7 shows.

While genericity is an effective tool for exhibiting integer-valued

randomness in the global structure of the degrees (as we demon-

strated above) it is incompatible with computable enumerability. Since

generic degrees (even 1-generic) are not c.e., investigating integer-

valued randomness in the c.e. degrees requires a different analysis.

Already the fact that randomness can be exhibited in the c.e. degrees

is quite a remarkable phenomenon, and restricted to weak versions

2.1. INTRODUCTION 19

of randomness. Martin-Löf randomness is the strongest standard

randomness notion that can be found in the c.e. degrees. A c.e. de-

gree contains a Martin-Löf random set if and only if it is complete

(i.e. it is the degree of the halting problem). Furthermore, the com-

plete c.e. degree contains the most well-known random sequence—

Chaitin’s Ω—which is the measure of the domain of a universal

prefix-free machine, the universal halting probability. An interest-

ing characteristic of this random number is that it is left-c.e., i.e. it

can be approximated by a computable increasing sequence of ratio-

nals. Weaker forms of randomness—like computable and Schnorr

randomness—can be found in incomplete c.e. degrees, even in the

form of left-c.e. sets. For example, Nies, Stephan and Terwijn [38]

showed that the c.e. degrees which contain computably and Schnorr

random sets are exactly the high c.e. degrees. Moreover each high

c.e. degree contains a computably random left-c.e. set and a Schnorr

random left-c.e. set. We prove an analogous result for integer-valued

randomness and partial integer-valued randomness.

Theorem 2.1.6 (C.e. degrees containing integer-valued random left-c.e.

sets). A c.e. degree contains a (partial) left-c.e. integer-valued ran-

dom if and only if it is high.

This result is pleasing, but this is where the similarities between

computable randomness (based on computable betting strategies)

and integer-valued randomness (based on integer-valued computable

betting strategies) end, at least with respect to the c.e. degrees. We

20 CHAPTER 2. INTEGER-VALUED RANDOMNESS

note that
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

In the c.e. degrees, the following classes are equal to

the high degrees:

(i) degrees containing computably random sets;

(ii) degrees containing left-c.e. computably random

sets;

(iii) degrees computing computably random sets.

(2.1)

This characterization follows from the following facts, where (a) is

by Schnorr [41], (c) was first observed by Kučera [30], and (b), (d)

are from [38].

(a) computable randomness implies Schnorr randomness;

(b) a Schnorr random which does not have high degree is Martin-

Löf random;

(c) a Martin-Löf random of c.e. degree is complete;

(d) every high c.e. degree contains a computably random left-c.e.

set.

In the case of integer-valued randomness (2.1) fails significantly. In

particular, the c.e. degrees that compute integer-valued randoms are

not the same as the c.e. degrees that contain integer-valued randoms.

In fact, we provide the following characterization of the c.e. degrees

that compute integer-valued randoms.

2.1. INTRODUCTION 21

Theorem 2.1.7 (C.e. degrees computing integer-valued randoms).
A c.e. degree computes an integer-valued random if and only if it is

array noncomputable.

In view of this result it is tempting to think that that every c.e. array

noncomputable might contain an integer-valued random. We will

see however in Section 2.5.1 that there are array noncomputable c.e.

degrees which do not contain integer-valued randoms. In fact, The-

orem 2.1.8 is an extreme version of this fact, which is tight with

respect to the jump hierarchy.

We have seen that high c.e. degrees are powerful enough to con-

tain integer-valued randoms, even left-c.e. integer-valued randoms.

However, while we know that left-c.e. integer-valued randoms nec-

essarily have high degree, the question arises as to whether a weaker

jump class is sufficient to guarantee that a c.e. degree contains an

integer-valued random, if we no longer require that the set is left-

c.e. We give a negative answer to this question by the following

result, which we prove in Section 2.5.2 by a 03-argument.

Theorem 2.1.8. There is a high2 c.e. degree which does not contain

any integer-valued randoms.

Note that this result shows the existence of array noncomputable

c.e. degrees which do not contain integer-valued randoms, in stark

contrast to Theorem 2.1.7.

Furthermore, the c.e. degrees that contain integer-valued randoms

are not the same as the c.e. degrees that contain left-c.e. integer-

valued randoms. In fact, in contrast with Theorem 2.1.6, there exists

22 CHAPTER 2. INTEGER-VALUED RANDOMNESS

a low c.e. degree containing an integer-valued random set. More

generally, we can find c.e. degrees containing integer-valued random

sets in every jump class. Section 2.4 is devoted to the proof of this

result.

Theorem 2.1.9 (Jump inversion for c.e. integer-valued random de-

grees). If c is c.e. in and above 01 then there is an integer-valued

random A of c.e. degree with A1 P c.

There are a number of open questions and research directions

pointed by the work in this chapter. For example, is there a c.e.

degree which contains an integer-valued random but does not con-

tain any partial integer-valued randoms? More generally, which de-

grees contain partial computable randoms? Algorithmic randomness

based on partial martingales is a notion that remains to be explored

on a deeper level.

2.2 Genericity and partial integer-valued randoms

Bienvenu, Stephan, and Teutsch [5, Theorem 8] showed that every

weakly 2-generic set is integer-valued random. In Section 2.2.1 we

give a proof of Theorem 2.1.3, i.e. that pb-genericity is sufficient for

(partial) integer-valued randomness.

Hence a certain notion of genericity (pb-genericity) is a source

of integer-valued randomness. In fact, by Theorem 2.1.3, every pb-

generic is not only integer-valued random but also partial integer-

valued random. We do have concrete examples of reals that are

2.2. GENERICITY AND PARTIAL INTEGER-VALUED RANDOMS 23

integer-valued random but not partial integer-valued random. Sec-

tion 2.2.2 is dedicated to constructing such an example. We give the

basic construction of a ∆0
2 real which is integer-valued random but

not partial integer-valued random. We give this in full detail, as it is

based on an interesting idea.

In Section 2.2.3 we provide the necessary modification of the pre-

vious construction in order to show that the degrees of integer-valued

randoms and partial integer-valued randoms can also be separated,

even inside ∆0
2. In particular, we are going to prove Theorem 2.1.4,

i.e. that there is a ∆0
2 integer-valued random which does not compute

any partial integer-valued randoms. These modifications are essen-

tially the implementation of the main argument of Section 2.2.2 on

a tree, which results from the additional requirements that introduce

infinitary outcomes that need to be guessed (i.e. the totality of the

various functionals with oracle the constructed set). Given the orig-

inal strategies and construction, the tree argument is fairly standard.

2.2.1 Proof of Theorem 2.1.3

For every partial computable integer-valued martingale m with ef-

fective approximation pmsq we define a function m̂ : 2ăω Ñ 2ăω

with uniformly computable approximation pm̂sq. Let m̂0pσq “ σ

for all strings σ. Inductively in s, suppose we have defined m̂s.

At stage s ` 1, if ms`1pm̂spσqq is defined and there exists an ex-

tension τ of it of length 6 s ` 1 such that ms`1pτq is defined and

ms`1pτq ă ms`1pm̂spσqq, then we define m̂s`1pσq to be the least

24 CHAPTER 2. INTEGER-VALUED RANDOMNESS

such string τ (where strings are ordered first by length and then lex-

icographically). Otherwise let m̂s`1pσq “ m̂spσq.

Since m is an integer-valued martingale we have |ts | m̂s`1pσq ,

m̂spσqu | 6 mpσq ` 1 and mpσq 6 2|σ| ¨ mpHq. Note that given any

partial computable martingale m, the range of m̂ is dense. So every

pb-generic intersects the range of m̂ for every partial computable

martingale m. Moreover given any partial computable martingale m,

the range of m̂ is a subset of

Wm “ tσ | mpσ1q » mpσq for all extensions σ1 of σu.

So every pb-generic intersects Wm for each partial computable mar-

tingale m. This means that every pb-generic is partial integer-valued

random.

2.2.2 An integer-valued random which is not partial integer-
valued random

It suffices to construct an integer-valued random set A 6T H
1 and a

partial integer-valued martingale m which succeeds on A. We will

define a computable approximation pAsq which converges to a set A

which has the required properties. Let xneyePω be an effective list of

all partial computable integer-valued martingales. For each e > 2

we need to satisfy the requirements

Re: If ne is total, then ne does not succeed on A.

Qe: m wins (at least) $e on A.

2.2. GENERICITY AND PARTIAL INTEGER-VALUED RANDOMS 25

We first see how we might meet one requirement R0. We begin by

setting A0 “ 1ω and defining m to start with $2 and wager $1 on

every initial segment of A0. If we later see that n0 has increased

its capital along A0, then we would like to move our approximation

to A so that n0 decreases in capital. In changing As to decrease n0’s

capital we may also decrease m’s capital along As. If ne had, say, $10

in capital at some point, then as it loses at least a dollar every time

it decreases in capital, it can lose at most 10 times. Our martingale,

if it bets in $1 wagers, can withstand losing $10 only if its capital at

that point is at least $11.

If m does not have sufficient capital for us to start attacking imme-

diately, we must find a way to increase its capital. We can increase

m’s capital to $k as follows. We have not yet defined m on any string

extending 0. We therefore wait until n0 has halted on all strings of

length k. If this never happens, then n0 is not total, and R0 is met. If

n0 does halt on all strings of length k, we pick a string τ of length k

extending 0 such that n0pτq 6 n0p0q. Such a string must exist since

n0 is a (partial) martingale. We are then free to define m to wager $1

on every initial segment of τ and set As “ τ ˆ1ω. We will then have

mpτq ą n0pτq. If n0 later increases its capital along As we will be

able to change the approximation to A to decrease n0’s capital. As

m now has greater capital than n0, we will be able to decrease n0’s

capital to $0 while ensuring that m does not run out of money.

When dealing with multiple requirements, we must take care in

defining m as it is a global object. We set a restraint re for every

26 CHAPTER 2. INTEGER-VALUED RANDOMNESS

e P ω. We arrange things so that only Re will be able to define m

on a string extending As � re,s ˆ 0. Suppose Re has not required at-

tention since it was last injured. When we see ne increase its capital

above nepAs � req, rather than starting to attack immediately, even

if possible, we choose a string τ1 extending As � re,s ˆ 0 and define

m such that mpτ1q ´ mpAs � re,s ˆ 0q ą nepAs � re,s ˆ 0q. We in-

jure requirements of weaker priority by lifting their restraints. We

may then decrease ne’s capital to $0 and still have m left with some

capital. We now turn to the formal details of the construction.

We have for every requirement Re a restraint re. At every stage

a requirement will either be declared to be waiting for convergence

at some length, or declared to not be waiting for convergence at any

length. As usual, this will stay in effect at the next stage unless

otherwise mentioned. We say that Re requires attention at stage s if

either

(i) Re was declared to not be waiting for convergence at any length

at stage s, and there is l such that

(a) l ą re,s,

(b) ne,spσq Ó for all strings σ of length l, and

(c) nepAs � lq ą nepAs � pl´ 1qq, or

(ii) Re was declared to be waiting for convergence at length h at

stage s, and ne,spσq Ó for all strings σ of length h.

In Case (i) we say that Re requires attention through l. We say that

2.2. GENERICITY AND PARTIAL INTEGER-VALUED RANDOMS 27

Qe requires attention at stage s if mpAs � re,sq ă e. We order the

requirements as R0,R1,R2,Q2,R3,Q3,

Construction

Stage 0: Set A0 “ 1ω and mpλq “ 2, and let m wager $1 on every

initial segment of A0. Set re,0 “ e for all e P ω. For all e P ω, declare

that Re is not waiting for convergence at any length at stage 1.

Stage s, s > 1: Find the requirement of strongest priority which

requires attention at stage s. (If no such requirement exists, go to the

next stage.) There are several cases.

Case 1: Re requires attention at stage s in Case (i). Has Re re-

quired attention since it was last injured?

Subcase 1a: No. Declare Re to be waiting for convergence at

length neppAs � re,sqˆ0q ` 1` pre,s ` 1q at stage s` 1.

Subcase 1b: Yes. Suppose l is least such that Re requires attention

through l at stage s. Let As`1 “ pAs � pl´ 1qqˆp1´ Aspl´ 1qqˆ1ω.

Define m to wager $1 on every initial segment of As`1 of length at

least l`1. For all e1 ą e, let re1,s`1 be a fresh large number such that

for all e1 ă e2 we have re1,s`1 ă re2,s`1, and declare that Re1 is not

waiting for convergence at any length at stage s` 1.

Case 2: Re requires attention at stage s in Case (ii). Suppose Re

was declared to be waiting for convergence at length h at stage t.

Choose a string τ above As � re,s ˆ0 of length h such that nepτq 6

nepAs � re,s ˆ0q. Define m to wager $1 along every initial segment of

τ with length in pre,s ` 1, |τ|s. Set As`1 “ τˆ1ω. Define m to wager

28 CHAPTER 2. INTEGER-VALUED RANDOMNESS

$1 on every initial segment of As`1 of length at least |τ| ` 1. For all

e1 ą e, let re1,s`1 be a fresh large number such that if e1 ă e2 then

re1,s`1 ă re2,s`1. For all e2 > e, declare that Re2 is not waiting for

convergence at any length at stage s` 1.

Case 3: Qe requires attention at stage s. Let τ be the least string

extending As � re,s for which mpτq “ e. Set As`1 “ τˆ1ω and for all

e1 ą e, let re1,s`1 be a fresh large number such that if e1 ă e2 then

re1,s`1 ă re2,s`1. For all e2 ą e, declare that Re2 is not waiting for

convergence at any length at stage s` 1.

Verification

Before we demonstrate the satisfaction of requirements Re,Qe, we

need to show that the partial martingale m is well-defined, and for

all n, s P ω,

if mpAs � nq Ó then mpAs � nq > 1. (2.2)

We clarify that in this statement, m denotes the state of the partial

martingale at stage s. We prove this statement by induction on the

stages s. We first claim that if Re requires attention in Case (ii) at

stage s, then m has not been defined on any string extending As �

re,s ˆ 0. Suppose Re requires attention in Case (ii) at stage s. Let

s˚ ´ 1 ă s be the last stage at which Re was initialised. We choose

re,s˚ to be some fresh large number. In particular, m has not been

defined on any string extending As˚ � re,s˚ ˆ0. Note that re,s “ re,s˚

and As˚ � re,s “ As � re,s. If Rk for k ą e acts at stage t ą s˚ it may

2.2. GENERICITY AND PARTIAL INTEGER-VALUED RANDOMS 29

define m on At � rk,t ˆ0, but as rk,t ą re,t > re,s, it cannot define m on

any string extending As˚ � re,s ˆ0. No Ri for i ă e may act between

stages s˚ and s as this contradicts the choice of s˚. Therefore m has

not been defined on any string extending As � re,s ˆ0 at stage s.

By the definition of A0 and m at stage 0, we have mpA0 � nq > 2

for all n. Furthermore, m is at least 1 on the sibling of any initial

segment of A0 (recall the definition of the sibling of a string, just

after Definition 2.1.1). Suppose that mpAs � nq > 1 for all n and m

is at least 1 for any sibling of an initial segment of As. If we act for

Qe at stage s, then it is easy to see that mpAs`1 � nq > 1 for all n.

So suppose that we act for Re at stage s. If we act in Case 2 for Re

at stage s, then we will choose a string τ extending As � re,s ˆ 0 of

some length h. By assumption, mpAs � re,sˆ0q > 1. We then let As`1

extend τ and define m such that mpτq ´ mpAs � re,s ˆ 0q ą nepAs �

re,s ˆ0q. Then mpAs`1 � nq > 1 for all n.

Now suppose that we act for Re in Subcase 1b through length l at

stage s. Our martingale m wagers at most $1 at a time, and so loses

at most $1 at a time. We decrease ne by at least $1 while decreasing

m by at most $1. As mpAs � lq ą nepAs � pl ´ 1qq, we may reduce

ne’s capital to $0 while m has capital remaining. Now requirements

of stronger priority than Re may start to act. Suppose that Re1 with

e1 ă e requires attention. If Re1 requires attention in Case (ii) then

we will act as in the previous paragraph and m will still have capital

left. Otherwise, Re1 may act in Subcase 1b at stage t after having

acted in Case 2 before stage s. However, in this case, we would have

30 CHAPTER 2. INTEGER-VALUED RANDOMNESS

increased m’s capital by ne1pAs � re1,sˆ0q previously. Therefore, after

having reduced ne’s capital to 0, we may then reduce ne1’s capital

to 0 as well, while ensuring that m still has capital remaining. This

concludes the induction on the stages and the proof of (2.2).

Note that we have not yet shown that the approximation pAsq con-

verges to a set A. This is a consequence of the use of restraints in

the construction, and the following lemma which says that each re-

quirement Re receives attention only finitely often.

Lemma 2.2.1. For all e P ω, Re receives attention only finitely often,

and is met.

Proof. Suppose by induction that s˚´ 1 is the last stage at which Re

is injured (i.e. the least stage after which no requirement of stronger

priority than Re receives attention). If Re never requires attention at

some later stage in Case (i), then either ne is not total, or nepAq 6

nepAs˚ � re,s˚q. In either case Re is met. Therefore suppose that Re

requires attention through l at some stage s1 > s˚. We will act in

Subcase 1a and declare Re to be waiting for convergence at length

neppAs1 � re,s1q ˆ 0q ` 1 ` pre,s1 ` 1q “: h0. As no requirement Re1

for e1 ă e receives attention after stage s˚, Re will be waiting for

convergence at length h0 until, if ever, Re requires attention in Case

(ii). If Re never requires attention after stage s1 then ne is not total. So

suppose that Re requires attention in Case (ii) at stage t1. We choose a

string τ of length h0 above At1 � reˆ0 such that nepτq 6 nepAt1 � reˆ0q.

Since ne is a (partial) martingale, nepσq 6 nepAt1 � re ˆ0q for at least

one string σ of length h0 above At1 � re ˆ0. Therefore such a string

2.2. GENERICITY AND PARTIAL INTEGER-VALUED RANDOMS 31

must exist.

We set At1`1 “ τ ˆ 1ω and define m so that mpτq ą nepτq. If Re

receives attention after stage t1 then it must do so in Subcase 1b. Our

martingale m wagers at most $1 at a time, and so loses at most $1 at

a time. If Re requires attention through some l ą h0 at a stage t2 ą t1

then we will again act in Subcase 1b and force ne to lose at least

$1 while m loses at most $1. This can happen at most nepτq many

times before ne loses all its capital and can no longer bet. Thus the

induction can continue, and Re is met. �

It remains to show that m succeeds on A. For this, it suffices to

show that all requirements Qe, e > 2 are met.

Lemma 2.2.2. For all e > 2, Qe receives attention only finitely often,

and is met.

Proof. Suppose by induction that s˚ is the least stage after which

no requirement of stronger priority than Qe receives attention. As

no requirement of stronger priority than Qe receives attention after

stage s˚, the restraint re,s˚ will never again be increased unless Qe

acts. If Qe requires attention at stage s ą s˚ then we must have

mpAs � re,sq ă e. As no requirement of stronger priority receives

attention after stage s˚, we must have that Qe´1 is satisfied, and so

mpAs � re,sq “ e ´ 1. We have defined m to wager $1 on all initial

segments of As and so there is τ such that mpτq “ e. We let As`1 “

τ ˆ 1ω and increase the restraints re1,s`1 for all e1 > e. We then have

that τ ă A and Qe is satisfied. �

32 CHAPTER 2. INTEGER-VALUED RANDOMNESS

2.2.3 Integer-valued randoms not computing partial integer-
valued randoms

The construction of Section 2.2.2, non-trivial as it is, admits some

modifications. For example, it is not hard to add the requirement that

A is 1-generic and still successfully perform the argument. This re-

quirement can be canonically split into an infinite sequence of condi-

tions, with corresponding strategies in the constructions which will

occasionally change the approximation to A. Since the 1-genericity

sub-requirements are finitary, their effect will be similar to (in fact,

more benign than) the Re requirements.

There is a 1-generic IVR which is not partial IVR.

Note that 1-generics are generalized low, so since A is ∆0
2, it follows

that

There is a low IVR which is not partial IVR.

The next modification of the construction of Section 2.2.2 results in

the proof of Theorem 2.1.4 and requires more explanation. We can

replace the requirements Qe with

Q˚e,k: If ΦA
e is total and non-computable then m wins (at least) $k on ΦA

e .

Note that now m will bet on ΦA
e rather than A. For this reason, the

family of requirements Q˚e,k need to act under the hypothesis that

ΦA
e is total. This means that we need to implement the argument of

Section 2.2.2 on a tree, where the family of requirements Q˚e,k lies

below a ‘mother-node’ Q˚e which has two outcomes, a Π0
2 outcome i

2.3. COMPUTABLE ENUMERABILITY AND IVRS 33

and a Σ0
2 outcome f . The outcome i corresponds to the fact that ΦA

e

has infinitely many expansionary stages (i.e. stages where the least

n such that ΦA
e pnq is undefined is larger than every before) while

outcome f corresponds to the negation of this statement. Moreover

the construction guarantees that if i is a true outcome, then ΦA
e is

total. Requirements Q˚e,k act as the Qk of Section 2.2.2 while Re are

the same in the two constructions. Moreover these two requirements

have a single outcome in the tree argument. The crucial point here

is that if ΦA
e is total and non-computable then Φe will have splitting

along A, i.e. for each prefix τ of A there will be two finite extensions

τi of τ and an argument x such thatΦτ0
e pxq , Φ

τ1
e pxq. This means that

before strategy Q˚e,k starts operating, it can secure a splitting which

it can use to move away from versions of ΦA
e on which m has not

bet appropriately. In the construction of Section 2.2.2 this happened

automatically as m bet on the real itself, and not its image under a

Turing functional. Other than these points, the construction and ver-

ification are entirely similar to those of Section 2.2.2. Since there is

no novelty in this extension of the argument of Section 2.2.2 (given

the standard machinery for tree arguments and the above remarks)

we leave the remaining details to the motivated reader.

2.3 Computable enumerability and IVRs

Nies, Stephan and Terwijn [38] showed that a c.e. degree is high if

and only if it contains a computably random c.e. real. Moreover an

34 CHAPTER 2. INTEGER-VALUED RANDOMNESS

analogous statement holds for partial computably random c.e. reals.

In Section 2.3.1 we show that the same is true for integer-valued

random c.e. reals. In other words, we give the proof of the first part

of Theorem 2.1.6 that we discussed in the introduction. The proof

of the remaining part of Theorem 2.1.6 (regarding partial integer-

valued randoms) is deferred to Section 2.4.3, since the required ma-

chinery is similar to the one we use for the jump inversion theorems.

In Section 2.3.2 we give the proof of Theorem 2.1.7. Note that by

Corollary 2.1.5, for this proof it suffices to show that array com-

putable c.e. degrees are not integer-valued random.

2.3.1 Degrees of left-c.e. integer-valued randoms

In this section we prove the part of Theorem 2.1.6, i.e. that the high

c.e. degrees are exactly those c.e. degrees which contain integer-

valued random left-c.e. reals. (We prove the rest of the theorem in

Section 2.4.3.) The ‘if’ direction is a consequence of [38]. For the

‘only if’ direction it suffices to show that every integer-valued ran-

dom left-c.e. real has high degree. Let α be an integer-valued ran-

dom left-c.e. real, and xαsysăω a computable increasing sequence of

rationals converging to α. We know that α has infinitely many 1s as

it is integer-valued random, and so by speeding up the enumeration

we may ensure that αs has at least s 1’s. Let Tot“ te | ϕe is totalu be

the canonical Π0
2 complete set. We build a Turing functional Γ such

that for all e, limk Γ
αpe, kq “ Totpeq. Then H2 6T α1 and so α is

high. We also construct for each e P ω a computable integer-valued

2.3. COMPUTABLE ENUMERABILITY AND IVRS 35

martingale Me. Let

de,s “ derss “ maxtk | p@σ P 2k
qpMepσqrss Óqu

le,s “ maxtk | p@ j ă kqpϕep jqrss Óqu.

We proceed in stages s, each consisting of two steps.

Construction at stage s` 1 For each xe, ky 6 s do the following

(a) If Γαpe, kqrss Ò, define it as follows. If le,s`1 > k let Γαpe, kqrs`

1s “ 1 with use γpe, kqrs ` 1s “ 0; otherwise let Γαpe, kqrs `

1s “ 0 with use the maximum of γpe, kqrss, γpe, k ´ 1qrs` 1s,

and h, where h is the position of the first 1 of αs after αs � de,s.

(b) If le,s`1 ą le,s, Define Me to wager 1 dollar on pαs � hq ˆ 1,

and bet neutrally on all other strings with length in pde,s, h`1s,

where h is the position of the first 1 of αs after αs � de,s.

Verification Since α is a left-c.e. real, it follows from the construc-

tion that Γ is well defined, i.e. it is consistent. We show that Γα is

total by showing that lims γpe, kqrss exists for all pairs pe, kq, and

that limk Γ
αpe, kq “ Totpeq. We say that a stage t is e-expansionary

if le,t ą le,t´1.

First suppose that e < Tot. Then lims le,s and lims de,s both exist.

Let lims le,s “ l and lims de,s “ d, and suppose these limits are

36 CHAPTER 2. INTEGER-VALUED RANDOMNESS

reached by stage s0. Let s1 > s0 be the least stage where αs1 �

d “ α � d. Then for all k and all stages s where xe, ky > s > s1,

Γαpe, kqrss is set to 0 and γpe, kqrss is set to be the position of the

first 1 after αs � d. As α is left-c.e., the position of the first 1 of αs

after αs � d at any stage s > s1 is at most the position of the first 1

of αs1 after αs1 � d. Therefore lims γpe, kqrss exists. For all k such

that xe, ky ă s1, lims γpe, kqrss is at most maxsăs1 he,s where he,s is

the position of the first 1 of αs after αs � de,s.

Now suppose that e P Tot. Then there is a sequence of stages

xsiy and a sequence xhiy such that we define Me to wager 1 dollar on

pαsi � hiq ˆ1 at stage si. Note that si is least such that le,si “ i. The

real α is left-c.e., so αs � phi`1q can only move lexicographically to

the left as s increases. Moreover, the approximation to α will never

extend pαsi � hiq ˆ0, and so Me cannot lose capital along α. As α is

integer-valued random, Me does not succeed on α. If α � phi` 1q “

αsi � phi`1q then Me increases in capital by 1 dollar. Therefore there

are only finitely many hi for which α � phi`1q “ αsi � phi`1q. Let

i0 be least such that α � ph j ` 1q , αs j � ph j ` 1q for all j > i0. We

show that Γαpe, kq “ 1 for all k > i0, thus concluding the proof.

Suppose by induction that Γαpe, iq “ 1 for all i0 6 i ă k. At stage

sk´1 we have le,sk´1 “ k ´ 1. For any stage t with sk´1 6 t ă sk, if

Γαpe, kq becomes undefined we set Γαpe, kqrts “ 0 and set γpe, kqrts

to be the maximum of γpe, kqrt´1s, γpe, k´1qrts, and the position of

the first 1 of αt after αt � de,t. Let h be the position of the first 1 in αsk

after αsk � de,sk´1. At stage sk we see le,sk “ k and define Me to wager

2.3. COMPUTABLE ENUMERABILITY AND IVRS 37

1 dollar on pαt1 � hqˆ1. If α changes below γpe, kqrsk´1s at stage sk

then γpe, kqrsks will be set to at least h. Otherwise, γpe, kqrsk ´ 1s >

h. Then as k > i0, α changes below h at some stage t1 ą sk. At stage

t1, Γαpe, kq will become undefined. At the next e-expansionary stage

we set Γαpe, kq “ 1 with use 0. This concludes the verification and

the proof of part of Theorem 2.1.6.

2.3.2 Array computable c.e. degrees do not compute integer-
valued randoms

A natural class of c.e. degrees that do not contain integer-valued

randoms is the class of array computable degrees. In this section we

sketch the proof of this fact, which along with Corollary 2.1.5 gives

Theorem 2.1.7 that was presented in the introduction.

By [25, 44] (also see [18, Proposition 2.23.12]) if A is array

computable and c.e., h is a nondecreasing unbounded function and

f 6T A, then there exists a computable approximation p f rssq of f

such that

|ts | f pxqrss , f pnqrs` 1su| 6 hpxq for all x. (2.3)

Hence given an integer-valued random B and a c.e. set A such that

B 6T A, it suffices to define an order function h and a function

f 6T A such that any computable approximation p f rssq to f does

not satisfy (2.3). Let B be integer-valued random and suppose A is

c.e. and ΓA “ B. We assume that at stage s, Γ has computed s many

bits of ΓArss. We define an order function h and a Turing functional

38 CHAPTER 2. INTEGER-VALUED RANDOMNESS

∆ such that the function f “ ∆A does not satisfy (2.3) for any com-

putable approximation p f rssq of it. Let xψey be an effective list of all

binary partial computable functions. We meet the requirements

Re: pDxqp f pxq , lims ψepx, sq _ |ts | ψepx, sq , ψepx, s ` 1qu| >

hpxqq.

We define for each e P ω an integer-valued martingale me. First, let

us describe the strategy for R0. We will have hp0q “ 1. At stage 1

we define f p0q “ 1 with use δ1p0q “ γ1p0q. We wait until a stage

s where we see ψ0p0, sq “ f p0qrss “ 1. If this happens, we will

want to define m0 to put pressure on A to change so that we may

redefine f p0q. We define m0 to start with $1 in capital and wager $1

on ΓArss � 1. If ΓA � 1 changes then we get a change in A below

γ1p0q, and so a change in A below δ1p0q. We may therefore redefine

f p0q and so meet R0. We assume that there will be no change in

ΓA � 1, and so we immediately look to see whether we can start

attacking R0 again by trying to redefine f p1q. At stage 2 we define

f p1q “ 2 with use δ2p1q “ γ2p1q. If we see no change in ΓA � 1,

then the martingale m0 has $2 on ΓA � 1. We will have hp1q “

1. We wait until a stage s1 where we see ψ0p0, s1q “ f p0qrs1s and

ψ0p1, s1q “ f p1qrs1s. If this happens, we define m0 to wager $1 on

ΓArs1s � 2. If A changes below γs1p1q then we may redefine f p1q and

meet R0.

We would like m0 to be total. Therefore whenever we let m0

wager some of its capital on a string σ, we extend m0 by letting it

bet neutrally on all other strings of length at most |σ|. Now suppose

2.3. COMPUTABLE ENUMERABILITY AND IVRS 39

that none of our previous attempts to redefine f p0q, . . . , f px´1q have

been successful. We wait until a stage s where we have ψepy, sq “

f pyqrss for all y 6 x. The use δspxq will be equal to γsplq for some

l. Suppose we have defined m0 up to strings of length l´ 1 and that

m0 has $k on ΓA � pl ´ 1q. Suppose hpxq “ n. Then we require n

changes in A to redefine f pxq as many times as we would like. If

we let m0 wager $1 on ΓA � l and see A change below γsplq, we

can redefine f pxq once. Suppose that we see this change at stage t.

We lift δtpxq “ γtpl ` 1q. The martingale m0 has been defined up

to strings of length l, and we have m0pΓ
A
t � lq “ k ´ 1. We again

wait until a stage t1 where ψepy, t1q “ f pyqrt1s for all y 6 x. If this

occurs, we now define m0 to wager $2 on ΓA
t1 � pl`1q. We do this so

that if we do not see a change in this instance, m0’s capital becomes

$k ` 1. When we set δtpxq “ γtpl ` 1q this caused f px1q to become

undefined for all x1 ą x. At stage t1 ` 1 we define f px` 1q “ x` 2

with use δt1`1px` 1q “ γt1`1pl` 2q. Therefore, if necessary we may

start attacking R0 by trying to redefine f px ` 1q. If every time we

see a change for f pxq we increase our wager by $1, after n´1 many

changes we are left with $k´p1`2` . . .`n´1q “ $k´ 1
2pn´1qn.

In attempting to get the nth change, we wager all remaining capital

and require that if we do not see another change, then we end up

with more than $k. So we want 2pk ´ 1
2pn ´ 1qnq ą k. That is,

k ą pn´ 1qn. We therefore set hp0q “ 1 and let hpnq be the greatest

m such that pm ´ 1qm ă hpn ´ 1q ` 1. If we define m0 as above

then either we see all required changes, or m0’s capital increases to

40 CHAPTER 2. INTEGER-VALUED RANDOMNESS

at least k ` 1. As B is integer-valued random, we eventually do see

all changes to redefine some f pxq, and satisfy R0.

Multiple requirements and interactions

In order to to deal with multiple requirements, we proceed as fol-

lows. The function f “ ∆A is a global object which must be defined

on all inputs. As in the strategy above, the values f pxq are changed

by the action of the requirements. Suppose we satisfy R0 by redefin-

ing f p0q once. We could attempt to satisfy R1 by further redefining

f p0q, but at some point we must stop. We choose a fresh large num-

ber x1, and have the strategy for R1 try to redefine f px1q as many

times as necessary. As we saw above, the strategy for R1 may at

any one time be wanting to redefine f pyq for possibly many y. We

formalise this by associating to each requirement Re at stage s an

interval Ie,s of natural numbers, so that Re at stage s is wanting to

redefine f pxq for x P Ie,s. When we are successful in redefining

x P Ie,s, we remove all y ą x from Ie,s. If we have not already satis-

fied Re at some later stage s1 and we see ψepz, s1q “ f pzqrs1s for all

z 6 x` 1, then we add x` 1 to Ie,s1 and attempt to redefine f px` 1q

as well.

Consider the requirements Re and Re1, with Re of stronger priority

than Re1. We are defining martingales me for Re and me1 for Re1. It is

possible that when ΓA moves and we redefine some f pkq for the sake

of Re that the martingale me1 also loses capital, even though we do

not redefine some f p jq for the sake of Re1. We will therefore want

2.3. COMPUTABLE ENUMERABILITY AND IVRS 41

to start a new version of me1 every time a requirement of stronger

priority than Re1 acts. We say that Re requires attention at stage s if

one of the following holds:

1. Ie,s “ H.

2. for all x 6 max Ie,s we have ψepx, sq “ f pxqrss and

|tt ă s : f pxqrts , f pxqrt ` 1su| ă hpxq,

and Aspzq , As´1pzq for some z P pδspmin Ie,s´1q, δspmax Ie,sqs.

3. for all x 6 max Ie,s we have ψepx, sq “ f pxqrss and

|tt ă s : f pxqrts , f pxqrt ` 1su| ă hpxq,

and ψepmax Ie,s ` 1, sq “ f pmax Ie,s ` 1qrss.

We are ready to produce the construction.

Construction

At stage 0, define mepλq “ 1 for all e P ω. Let f pxqr0s “ ∆Apxqr0s “

1 with use δ0pxq “ x for all x P ω. Let Ie,1 “ H for all e P ω. Each

stage of the construction after stage 0 consists of three steps. At

stage s, s > 1 proceed as follows:

Step 1: For all e 6 s, if a requirement of stronger priority than

Re has acted since Re last acted, we start a new version of me, and

define mepλq “ 1. Otherwise, we continue with the previous version

of me. Let de,s denote the length of the longest string for which the

current version of me is defined.

42 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Step 2: Let x be least such that f pxq is undefined at the beginning

of stage s. (If there is no such x, proceed to the next step.) Let

l “ maxe6s de,s. Define f pxqrss “ s` 1 with use δspxq “ γspl` 1q.

Step 3: Let Re be the requirement of strongest priority which re-

quires attention at stage s. Choose the first case by which Re requires

attention.

If case 1 holds, choose a fresh large number xe and let Ie,s`1 “

txeu.

If case 2 holds, then let x P Ie,s be least such that Aspzq , As´1pzq

for some z P pδspx´ 1q, δspxqs. Let f pxq “ s` 1 with use δs`1pxq “

γs`1pde,s ` 1q. We have that

mepΓ
A
rss � de,sq ă mepΓ

A
rss � pde,s ´ 1qq.

If mepΓ
Arss � de,sq , 0, let ne “ maxi6de,s hpmepΓ

Arss � iq).

Suppose that j is such that ne “ hpmepΓ
Arss � jq and let n1e “

|tmepΓ
Arss � iq : j 6 i 6 de,su|. Then we have received n1e of the

ne permissions required to redefine f pxq at least hpxq many times. If

n1e “ ne ´ 1, then define me to wager ΓArss � de,s dollars on ΓArss �

pde,s`1q. Otherwise let w “ mepΓ
Arss � pde,s´1qq´mepΓ

Arss � de,sq

and define me to wager $pw` 1q on ΓArss � pde,s` 1q. If mepΓ
Arss �

de,sq “ 0, let me bet neutrally on all other strings of length de,s ` 1.

Let Ie,s`1 “ rmin Ie,s, xs.

If case 3 holds, then let Ie,s`1 “ Ie,s Y tmax Ie,s ` 1u. Define me

to wager $1 on ΓArss � pde,s ` 1q.

In any case, let Ie1,s`1 “ H for all e1 ą e.

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 43

Verification

We need to show that for all e P ω, Re is satisfied. Assume by

induction that stage s˚ is the last stage at which a requirement of

stronger priority than Re acts. Assume for all s > s˚ that ψepx, sq “

f px, sq for all x 6 max Ie,s. At stage s˚ ` 1 we will define a new

version of me, which will be the final version. At every stage after

s˚`1, we define more of me. Therefore me is total. As ΓA is integer-

valued random, mepΓ
Aq “ sup tmepΓ

A � iq : i P ωu ă 8. Let

suptmepΓ
A � iq : i P ωu “ k and i0 be such that mepΓ

A � i0q “ k.

Suppose s0 is least such that s0 > s˚ ` 1 and ΓArs0s � i0 “ ΓA � i0,

and x is such that δs0pxq “ γs0pde,s0`1q. Then f pxq is redefined hpxq

many times and Re is satisfied.

2.4 Jump inversion for integer-valued randoms

Jump inversion for Martin-Löf randoms was discovered in [30, 21]

and was generalized in [4]. Every degree which is c.e. in and above

01 contains the jump of some Martin-Löf random ∆0
2 set. Hence the

same holds for the integer-valued randoms. However in this case we

can obtain a stronger jump inversion theorem by requiring that the

‘inverted’ degrees are c.e. Note that this stronger theorem does not

hold for Martin-Löf randoms since 01 is the only c.e. degree con-

taining a Martin-Löf random. Moreover it does not hold for com-

putable randomness or Schnorr randomness, since by [38] the only

c.e. degrees that contain such randoms are high. integer-valued ran-

44 CHAPTER 2. INTEGER-VALUED RANDOMNESS

domness is the strongest known randomness notion for which jump

inversion holds with c.e. degrees.

Since the argument is somewhat involved, we present it in two

steps. In Section 2.4.1 we discuss the strategy for controlling the

jump of an integer-valued random of c.e. degree. This argument

gives a low c.e. degree which contains an integer-valued random. It

is a finite injury construction, and the hardest of the two steps. Our

argument actually shows the stronger result that there is a low c.e.

weak truth table degree which contains an integer-valued random.

We can then add coding requirements in order to prove the full jump

inversion theorem, which we present in full detail in Section 2.4.2.

This construction is a tree argument which uses the strategies of Sec-

tion 2.4.1 for ensuring that the jump of the constructed set is below

the given Σ0
2 set, combined with standard coding requirements which

deal with the remaining requirements.

2.4.1 A low c.e. degree containing an integer-valued random

We build an integer-valued random A of low c.e. degree. In fact, we

build an integer-valued random A and a c.e. set B such that A ”wtt B.

Let xmey be an effective list of all partial integer-valued martingales.

In order to ensure that A is integer-valued random it suffices to sat-

isfy the following requirements:

Re: if me is total, then me does not succeed on A;

Ne: pD8sq pΦA
e peqrss Óq “ñ ΦA

e peq Ó.

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 45

We order the requirements as R0 ą N0 ą R1 ą N1 ą . . . and

begin by setting A1 “ 1ω. To meet R0, we observe the values of the

martingale m0. If m0 increases its capital along A, we change A to

force m0 to lose capital. As m0 is integer-valued, if it loses capital, it

must lose at least $1. Thus if we can force m0 to lose capital every

time we act, we need only act for R0 finitely many times. As we are

building reductions Γ and ∆ such that ΓB “ A and ∆A “ B, to change

A we will need to change B. Once we have changed B, we will then

need to change A again to record this fact. To satisfy the requirement

Ne we use the usual strategy of preserving the restraint ϕA
e peqrss at

all but finitely many stages. As the strategy for an R-requirement is

finitary, this can be done easily.

The finite injury construction

In order to help with the definition of the reductions, we make use of

levels xliyiăω and xdiyiăω. We calculate the size of the levels below.

We set γpliq “ di and δpdiq “ li`1. We say that we act for require-

ment Re at level li`1 at stage s if we change A to decrease me’s capital

from A � li to A � li`1. That is, mepAs � li`1q ą mepAs � liq and

mepAs`1 � li`1q ă mepAs`1 � liq. We act at level li`1 only for the

sake of the requirements R0, . . . ,Ri. Once we have acted at level

li`1, we enumerate an element from rdi, di`1q into B. To record this

change in B, we let A extend a string of length li`2 which has not

yet been visited. So that the reduction ∆ is consistent, we must not

let A extend a string which is forbidden, that is, a string σ such that

46 CHAPTER 2. INTEGER-VALUED RANDOMNESS

∆σ ⊀ Bs`1. We carefully define the levels li so that the action from

the requirements never forces us to extend a forbidden string.

Before we define xliyiăω and xdiyiăω, we lay out the construction

(in terms of these unspecified parameters and a function d defined

below). Later in this section we discuss the various properties that

these parameters need to satisfy in order for the construction to be

successful (i.e. produces sets A, B which satisfy the requirements

Re,Ne).

We have for every e P ω and every stage s a restraint re,s. We say

that Re requires attention at level li`1 at stage s if

1. mepσqrss Ó for all strings σ of length 6 li`1,

2. li`1 > re,s

3. mepAs � li`1q ą mepAs � liq.

We say that Re requires attention at stage s if it does so at some level.

We say that Ne requires attention at stage s if ΦA
e peqrss Ó. Recall the

definition of the sibling of a string, just after Definition 2.1.1.

Construction Let γpliq “ di and δpdiq “ li`1. At stage 0, let A1 “ 1ω

and re,1 “ le for all e.

Stage s, s > 1: Find the requirement of strongest priority which re-

quires attention at stage s. (If there is no such requirement, proceed

to the next stage.)

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 47

Case 1: If this is Re, let li`1 be least such that Re requires attention

at level li`1 at stage s. Let l P pli, li`1s be least such that mepAs �

lq ą mepAs � liq. Choose a string τ of length li`1 which extends the

sibling of As � pl ´ 1q such that the minimum of all dpτ, µq, where

µ is any forbidden string of length li`1 extending As � li, is as large

as possible. Enumerate an element of rdi, di`1q into B. Choose a

string ρ of length li`2 extending τ such that ρ ⊀ At for all t ă s,

and the minimum of all dpρ, µq, where the minimum is taken over

forbidden strings µ of length li`2 extending τ, is as large as possible.

Set As`1 “ ρ1ω. For all e1 > e with re1,s 6 li`1, let re1,s`1 “ li`1.

Case 2: If this is Ne, for all e1 ą e with re1,s 6 ϕA
e peqrss, let

re1,s`1 “ ϕA
e peqrss.

In the following section we give the remaining specifications and

analysis of the construction, as well as the verification.

The calculation of the levels li and di for a successful construction

In the following we calculate the levels li, di, and depict this process

in Figure 2.2. Suppose that we act at level li`1 for Re and naively

let A extend a string τ of length li`1 whose sibling is forbidden.

Consider the situation where m0 increases its capital on the very last

bit of As � li`1, loses capital on τ, and is neutral on all other strings

of length li`1. We will not be able to change A to extend τ’s sibling,

as this string is forbidden. However, we do not want to change A so

that m0 is neutral, as we would like the action for R0 to be finitary. To

avoid such a situation we must be more careful in how we change A.

48 CHAPTER 2. INTEGER-VALUED RANDOMNESS

In particular, we must ensure that A is kept in some sense “far away”

from forbidden strings. This is made precise below.

We first calculate an upper bound on the number of forbidden

strings of length li`1 which can occur above a nonforbidden string of

length li. Our upper bound will not be strict. A string σ of length li`1

becomes forbidden if ∆σ is no longer giving correct B-information.

As δpdiq “ li`1, ∆σ will be incorrect only if we enumerate an ele-

ment into B below di, which occurs only when we act for a require-

ment at some level 6 li. We will act for Re at level li`1 only when

we see me halt on all strings of length li`1, and so if A no longer

changes below li, we will act for Re at level li`1 at most once. As we

act at level li`1 only for the sake of requirements R0, . . . ,Ri, if A no

longer changes below li, we can act at level li`1 at most i` 1 times.

After acting at a level l j for some j 6 i, we allow R0, . . . ,Ri to act

at level li`1 again. We begin with A1 “ 1ω. Suppose we act i ` 1

times at level li`1. We then act at level li. We act another i` 1 times

at level li`1 before we again act at level li. We can act at level li at

most i times. This can continue until we get to level l1, where we can

change A once below l1 for the sake of requirement R0. Therefore

we act at a level 6 li 2.3.4. . . . ¨ pi ` 2q “ pi ` 2q! many times, and

there are at most

fi`1 “
ři

j“0p j`1q!

many forbidden strings of length li`1. Note that for any k P ω

we may enumerate all partial integer-valued martingales with ini-

tial capital k. We therefore may assume that our list xmey of all

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 49

partial integer-valued martingales comes with a computable intial

capital, mepλq. As a martingale may at most double its capital in a

single bet, the upper bound on me’s capital at a string of length n is

2nmepλq.

We now show how a martingale can force us “closer” to a for-

bidden string. Suppose at stage s that As extends the string ν of

length li`1, and there is a forbidden string µ of length li`2 above.

For simplicity, suppose that As extends the leftmost string of length

li`2 which extends ν, and that µ is the rightmost string of length li`2

which extends ν. If R j requires attention at level li`2, we would like

to choose a string τ of length li`2 with m jpτq ă m jpνq. The problem

is the following. Suppose that m j increases its capital on all string

of length li`2 which extend ν0. We recall Kolmogorov’s inequality,

as stated in Theorem 6.3.3 of [18].

Theorem 2.4.1 (Kolmogorov’s inequality). Let d be a martingale.

For any string σ and any prefix-free set S of extensions of σ, we

have
ř

τPS 2´|τ|dpτq 6 2´|σ|dpσq.

By Kolmogorov’s inequality (with ν0 “ σ and S the set of strings

of length li`2 which extend ν0 in the above), this must mean that

m jpν0q ą m jpνq, and so m jpν1q ă m jpνq. If m j has sufficient capital

at ν1, it may then increase its capital above m jpνq on all strings of

length li`2 which extend ν10. Again by Kolmogorov’s inequality we

have m jpν10q ą m jpν1q and so m jpν11q ă m jpν1q ă m jpνq. Now m j

is an integer-valued martingale, and so after doing this finitely many

times, say n times, we have m jpν1nq ă 1
2m jpνq and so m j cannot

50 CHAPTER 2. INTEGER-VALUED RANDOMNESS

increase its capital above m jpνq on all strings of length li`2 which

extend ν1n0. If li`2 > li`1 ` n ` 1, then we can pick a string τ

extending ν1n0 with m jpτq ă m jpνq and which is not forbidden. For

two strings α and β of length l, let dpα, βq be l ´ b, where b is the

length of the longest common initial segment. Then in this situation,

we have dpAs, µq “ li`2´ li`1 and dpτ, µq 6 li`2´ li`1´n. Therefore

m j has forced A distance n closer to the forbidden string µ. Now R j

might not be the only requirement which can act at level li`2. We

will then need to calculate the distance that the other martingales

may move A, and ensure that li`2 is high enough.

We calculate a bound on how far an integer-valued martingale m

may move A. If mpνq “ k and m increases its capital to k ` 1 on

all strings extending ν0, then mpν1q “ k ´ 1. If mpν1q > 2 then m

can increase its capital to k ` 1 on all strings extending ν10. Then

mpν11q “ k ´ 1´ 2. If mpν1q > 4 then m can increase its capital to

k` 1 on all strings extending ν110. Then mpν111q “ k´ 1´ 2´ 4.

When mpν1nq “ k ´ 1 ´ 2 ´ . . . ´ 2n´1 ă 1
2k, m is not able to

increase its capital to k ` 1 on all strings extending ν1n0. We let

npkq “ pµnqpk ´ 1 ´ 2 ´ . . . ´ 2n´1 ă 1
2kq. Then m can move A

at most a distance npkq. In the case where As is not the leftmost

string extending ν and µ is not the rightmost string extending ν, a

similar argument shows that me can still move A a distance of at

most npkq. The only difference is that me would then need to bet

against the initial segments of µ which are of length greater than

li`2 ´ li`1 ´ dpAs, µq.

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 51

Suppose we act at level li`1 at stage s and let A extend the string

ν of length li`1 which has forbidden strings of length li`2 above.

We enumerate an element of rdi, di`1q into B. To record this change

in B, we choose a string ρ of length li`2 which has not been visited

before, and which is as far from any forbidden string as possible. We

have that there are at most fi`2 many forbidden strings of length li`2

above a nonforbidden string of length li`1. Let x “ pµxqp2x > fi`2q.

By the counting argument for fi`1 given above, if li`2´li`1 “ h ą x,

then there is a string of length li`2 which has not been visited yet, and

which is at least distance h´x from a forbidden string. Now suppose

that R j requires attention at level li`2. We know that there are no

forbidden strings above ρ � li`1 ` x` 1, and so if we can reduce m j

by moving to a string which is still above ρ � li`1 ` x ` 1, we will

do so. Otherwise, m j will move us closer to a forbidden string. The

bound on the capital of m j at As � pli`1` x`1q is 2li`1`x`1m jpλq. So

we know that m j may move us a distance at most np2li`1`x`1m jpλqq

towards a forbidden string. If li`2´li`1 ą x`np2li`1`x`1m jpλqq then

we will be able to choose a nonforbidden string ρ1 which decreases

m j. Suppose that Rk, which is of stronger priority than R j, requires

attention at level li`2 at stage s1. Our reasoning is similar to the

previous case. Let n0 “ np2li`1`x`1m jpλqq. We know that there

are no forbidden strings above ρ1 � li`1 ` x ` n0 ` 1, and so if

we can reduce mk by moving to a string which is still above ρ1 �

li`1 ` x` n0 ` 1, we will do so. Otherwise, mk will move us closer

to a forbidden string. The bound on the capital of mk at As1 � pli`1`

52 CHAPTER 2. INTEGER-VALUED RANDOMNESS

ν
`i`1

`i`2
As

`i`1,0

`i`1,1

`i`1,2

forbidden µ

Figure 2.2: Calculating the levels li and avoiding the forbidden strings.

x` n0` 1q is 2li`1`x`n0`1mkpλq. So we know that mk may move us a

distance at most np2li`1`x`n0`1mkpλqq towards a forbidden string. If

li`2 ´ li`1 ą x ` n0 ` np2li`1`x`n0`1mkpλqq then we will be able to

choose a nonforbidden string ρ2 which decreases mk. We will need

li`2 to be large enough so that we can always move in this way for

any requirement which might act at level li`2.

The requirements R0, . . . ,Ri can act at level li`1. We do not know

the order in which the requirements may act, so we will have to

take the maximum of the capitals of the martingales m0, . . . ,mi in

our calculation. We illustrate this definition in Figure 2.2 . We set

l0 “ 0. Given li, we set li`1,0 “ li`pµxqp2x > fi`1q and for 0 6 j 6 i,

li`1, j`1 “ li`1, j `max
k6i

np2li`1, j`1mkpλqq

and let li`1 “ li`1,i`1 ` 1. The levels di are chosen so that we can

enumerate an element into rdi, di`1q every time we act at level li`1.

This calculation is the same as that of fi`1. Let d0 “ 0. Given di, let

di`1 “ di `
ři

j“0p j` 1q!.

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 53

Verification of the finite injury construction

First, we show that A ”wtt B. As in the calculation of fi`1, we can

act at level li`1 at most
ři

j“0p j ` 1q! many times. We have that

di`1 “ di`
ři

j“0p j`1q! for all i. Every time we act at level li`1 and

change A below li`1, we enumerate an element from rdi, di`1q into B.

The uses γpliq are clearly computable, and so we have ΓB “ A via the

weak truth-table functional Γ. For the other reduction, note that the

consistency of ∆ is a consequence of A never extending a forbidden

string. Again the uses δpdiq are computable and so ∆A “ B via the

weak truth-table functional ∆.

Next we argue that all Ne requirements are met. Suppose induc-

tively that all requirements of stronger priority than Ne do not act

after a certain stage t. If at some stage s after stage t the computa-

tion in requirement Ne halts, then a restraint re,s will be erected so

that the use of the computation is protected from further enumera-

tions into A. Therefore in that case the computation actually halts.

Therefore Ne is met, and this concludes the induction step.

It remains to show that for every e P ω, Re is satisfied. Suppose

by induction that all requirements of stronger priority than Re do not

act after stage s˚. Let i0 be least such that li0 > re,s˚. We show that

mepAq 6 mepAs˚ � li0q. Suppose at stage s > s˚ we see me increase

its capital beyond mepAs˚ � li0q. Then Re will require attention at

stage s. Suppose that Re requires attention at level li`1 at stage s.

Let t ă s be the last stage at which we acted for some requirement

at a level below li`1. Suppose we acted at level l j`1. At stage t we

54 CHAPTER 2. INTEGER-VALUED RANDOMNESS

chose some string ρ of length l j`2 and let At “ ρ1ω. Then As´1 �

li “ At � li. If j “ i ´ 1 then we chose ρ which would have been

at least distance li`1 ´ li ´ x, where x “ pµxqp2x > fi`1q, from any

forbidden string of length li`1 (that is, ρ and any forbidden string

have a common initial segment of length at most li ` x). Otherwise

j ă i´1 and there is no forbidden string of length li`1 above As � li.

Suppose that between stages t and s ´ 1 inclusive we acted at level

li`1 k many times. We have that k ă i ` 1. Then As � li and any

forbidden string have a common initial segment of length at most

li`1,k. Let l P pli, li`1s be least such that mepAs � lq ą mepAs � liq.

If l ą li`1,k ` 1, then there is a string τ above As � li`1,k ` 1 with

mepτq ă mepAs � lq and which is not forbidden. Otherwise me

can move us at most distance np2li`1,k`1mepλqq closer to a forbidden

string. We have that li`1 ą li`1,k`np2li`1,k`1mepλqq, so we can find a

nonforbidden string τ with mepτq ă mepAs � lq. Restraints are then

imposed so that Re and no other requirement of weaker priority may

act at level li`1 after stage s. Therefore A � li`1 “ As`1 � li`1 and

so mepAq ă mepAs˚ � li0q.

2.4.2 The full jump inversion theorem for integer-valued ran-
doms

Given a set S >T 01 which is c.e. in 01 we show how to construct

an integer-valued random set A of c.e. degree such that A1 ”T S .

Along with A, we build a c.e. set B such that A ”T B, and show

that B1 ”T S . Let xmey be an effective enumeration of all partial

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 55

computable integer-valued martingales. So that A is integer-valued

random, we meet the requirements

Re: If me is total, then me does not succeed on A.

We also build wtt-reductions Γ and ∆ such that ΓB “ A and ∆A “ B.

For the requirement S 6T B1, we build a functional Λ and meet the

requirements

Pe: limtΛ
Bpe, tq “ S peq.

The basic strategy for a P-requirement is as follows. As S is c.e.

in and above 01, we know that S is Σ0
2. Therefore there is some

computable approximation tS iuiPω such that n P S if and only if

there is an s such that n P S t for all t ą s. We define ΛBpe, sq “ 1

for larger and larger s with some large use λpe, sq. If we see at

some stage u that e < S u and u ą t, then we enumerate λpe, tq into

B and redefine ΛBpe, tq “ 0 with use ´1, i.e. the axiom defining

ΛBpe, tq “ 0 does not depend on B.

For the requirement B1 6T S we attempt to meet the requirements

Ne: pD8sqpΦB
e peq Óq “ñ ΦB

e peq Ó.

We attempt to meet these as usual by restraining B below the use

ϕB
e peqrss whenever we see ΦB

e peqrss Ó. Although we will not actu-

ally meet these requirements (doing so would mean that B1 ”T H
1),

trying to meet the requirements will allow us to show that B1 6T S .

56 CHAPTER 2. INTEGER-VALUED RANDOMNESS

The priority tree

The construction will use a tree of strategies. To define the tree,

we specify recursively the association of nodes to requirements, and

specify the outcomes of nodes working for particular requirements.

To specify the priority ordering of nodes, we specify the ordering

between outcomes of any node. We order the requirements as

R0 ą P0 ą N0 ą R1 ą P1 ą N1 ą ¨ ¨ ¨

and specify that all nodes of length k work for the kth requirement on

the list. We will have nodes dedicated to R-, P-, and N-requirements.

A node dedicated to a P-requirement will have the 8 outcome, cor-

responding to enumerating infinitely many markers λpe, sq, and the f

outcome, for when only finitely many markers are enumerated. Sup-

pose that the node α works for Pe and β works for N f with α ă β.

If f is the true outcome of α and α ˆ f 4 β, then only finitely many

markers are enumerated, and β does not need to worry about the

computations it sees being destroyed infinitely many times. Now

suppose that 8 is the true outcome of α and α ˆ8 4 β. Then β

will be guessing that Pe will enumerate all its unrestrained mark-

ers λpe, sq into B. It will then not believe a computation ΦB
e peqrss

until it sees that all unrestrained markers below the use ϕB
e peqrss

have been enumerated. This is formalized with the definition of a

β-correct computation below. The outcomes of R- and N-nodes are

. . . ă n ă . . . ă 1 ă 0, corresponding to the restraint they impose

on B.

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 57

Making the sets A, B of the same degree

In Section 2.4.1 we discussed the proof that there is a low c.e. de-

gree containing an integer-valued random set. As in that argument,

we make use of levels in the definition of the reductions Γ and ∆.

We slightly adjust the definition of the levels because we now must

also enumerate the markers λpe, sq into B. We increase the size of

each interval rdi, di`1q to accommodate a coding marker. The coding

markers will be chosen to be di for some i P ω. Now that we are also

enumerating coding markers into B, we also adjust the definition

of the levels li. Enumerating the coding markers will cause more

strings to become forbidden. We recalculate the upper bound on the

number of forbidden strings of length li`1. As before, the require-

ments R0, . . . ,Ri may act at level li`1. We calculated in Section 2.4.1

that we may act at most pi ` 2q! many times at level li`1. When the

coding marker di is enumerated, the requirements R0, . . . ,Ri may act

again at level li`1. Therefore we may act at most 2pi` 2q!` 1 many

times at level li`1. So there are at most
ři

j“0p2p j ` 1q! ` 1q many

forbidden strings of length li`1. Letting f 1i`1 “
ři

j“0p2p j` 1q!` 1q,

we calculate the levels li as before. We let l0 “ 0, and given li, we

let li`1,0 “ li ` pµnqp2n > f 1i`1q and for 0 6 j 6 i we let

li`1, j`1 “ li`1, j `max
k6i

np2li`1, j`1mkpλqq

and li`1 “ li`1,i`1 ` 1. Set d0 “ 0. Given di, let di`1 “ di ` 2pi `

1q!` 1` 1.

58 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Coordination and restraint on the tree

The action for R-requirements will otherwise be identical with the

construction of Section 2.4.1. Nodes working for R-requirements

will also have to be wary of coding done by P-nodes above. Suppose

β, working for R f , is below the 8 outcome of α, which is working

for Pe. If we see the martingale m f increase its capital along As

and wish to enumerate an element of rdi ` 1, di`1q into B to change

A, we will wait until all unrestrained markers λpe, sq below di have

been enumerated into B before changing A for the sake of R f . If σ

is accessible at stage s, we let

rpσ, sq “ maxtσp|α|q | α ă σ is an N-node or an R-nodeu.

We say that a computation ΦB
e peqrss is σ-correct if for every P-

node α such that α ˆ8 4 σ, rpα, sq ă λpe, tq ă ϕB
e peqrss implies

λpe, tq P Bs. Recall the definition of the sibling of a string, just after

Definition 2.1.1.

Construction of the sets A, B

At stage 0 we set A1 “ 1ω, B1 “ H, and let re,1 “ le for all e.

Moreover we set ΛBp0, 0q “ 0 with use d1. Each stage s > 1 is

conducted in two steps:

Step 1: For e, t 6 s, if ΛBpe, tq is undefined at stage s, then let

ΛBpe, tq “ 1 with some fresh large use λpe, tq equal to di for some

i P ω.

Step 2: We let the collection of accessible nodes δs be an initial

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 59

segment of the tree of strategies. Let σ be a node which is accessible

at stage s. We describe the action that σ takes, and if |σ| ă s, then

we specify which immediate successor of σ is also accessible at

stage s; otherwise, we proceed to the next stage.

Suppose first that σ works for Re. Let k be least such that dk >

rpσ, sq. If

1. for all P-nodes α such that α ˆ8 4 σ, rpα, sq ă λpe, tq ă

dk “ñ λpe, tq P Bs, and

2. there is l ą lk`1, re,s such that

(a) me,spσq Ó for all strings σ of length l, and

(b) mepAs � lq ą mepAs � pl´ 1qq,

then let i be such that l P pli, li`1s (if there is more than one such l, we

choose the least). Choose a string τ of length li`1 which extends the

sibling of As � pl ´ 1q such that the minimum of all dpτ, µq, where

µ is any forbidden string of length li`1 extending As � li, is as large

as possible. Enumerate an element of rdi ` 1, di`1q into B. Choose

a string ρ of length li`2 extending τ such that ρ ⊀ At for all t ă s,

and the minimum of all dpρ, µq, where the minimum is taken over

forbidden strings µ of length li`2 extending τ, is as large as possible.

Set As`1 “ ρ1ω. For all e1 > e with re1,s 6 li`1, let re1,s`1 “ li`1. The

string σˆdi`1 is accessible at stage s.

Now suppose that σ works for Pe. For all e, t 6 s, if λpe, tq ą

rpσ, sq, e < S s and we have ΛBpe, tqrss “ 1, then enumerate λpe, tq

60 CHAPTER 2. INTEGER-VALUED RANDOMNESS

into B and define ΛBpe, tq “ 0 with use ´1. Suppose that λpe, tq “

di. Choose a string ρ of length li`1 extending As � li such that ρ ⊀ At

for all t ă s, and the minimum of all dpρ, µq, where the minimum

is taken over forbidden strings µ of length li`1 extending As � li, is

as large as possible. Set As`1 “ ρˆ1ω. If a marker was enumerated,

let σˆ8 be accessible at stage s. Otherwise let σˆ f be accessible at

stage s.

Finally suppose thatσworks for Ne. IfΦB
e peqrss Ó via aσ-correct

computation, then letσˆϕB
e peqrss be accessible at stage s. Otherwise,

let σˆ0 be accessible at stage s.

Verification of the construction

By the construction, the set B is c.e. We verify that A ”T B, that A

is integer-valued random, and that A1 ”T S . First, we establish the

existence of a ‘true path’.

The leftmost path which is visited infinitely often

exists.
(2.4)

As there are only finitely many outcomes of a P-node, we need

to verify that the restraint imposed by an N- or R-node comes to a

limit. Let σ work for Re, and suppose by induction that no node to

the left of σ is visited after stage s0, and that lims rpσ, sq exists. We

must have rpσ, sq “ rpσ, s0q and re,s “ re,s0 for all s > s0. Let k be

such that dk > rpσ, s0q. Whenever we act for Re at level li for i >

k` 1, me’s capital decreases by at least $1 and we increase restrains

for all R-requirements of weaker priority. The only elements which

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 61

may be enumerated below the restraints Re places on B are coding

markers belonging to P-requirements stronger than Re. However, if

Re is below the8 outcome of Pe, then Re waits until all unrestrained

markers below di enter B before acting at level li`1. Therefore the

only markers which enter below Re’s restraint belong to those P-

requirements with σ below the f outcome. By induction, we do not

visit any node to the left of σ after stage s0, and so no such strategy

may act after stage s0 and enumerate a coding marker below Re’s

restraint. Therefore we act for Re only finitely many times after

stage s0. Similarly, as we require the computations N-nodes observe

to be σ-correct, if σ works for Ne and is on the true path, it will

increase its restraints only finitely many times. This concludes the

proof of (2.4).

Let the true path, TP, be the leftmost path visited infinitely often.

The proof of (2.4) shows that we act only finitely often for any R-

requirement. Therefore mepAq ă 8 and Re is satisfied for all e P ω.

Therefore

the set A is integer-valued random. (2.5)

The use of the systems of levels li, di in the construction define Tur-

ing reductions A 6T B and B 6T A respectively, with computable

use. So that by an induction on the stages of the construction we

have
the sets A and B are in the same weak truth table

degree.
(2.6)

It remains to show that S ”T B1. First, we show that S 6T B1.

62 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Let σ ă TP be devoted to Pe, and suppose that no node to the left

of σ is visited after stage s0. As the restraints set by R- and N-

requirements are finite, rpσ, s0q is finite and rpσ, sq “ rpσ, s0q for

all s > s0. Therefore σ may enumerate all but finitely many markers

if it wishes. Therefore for all e P ω, limtΛ
Bpe, tq “ S peq. It remains

to show that B1 6T S . We have

e P B1 ô ΦB
e peq Óô pDtqpΦB

e peqrts Ó ^B � ϕB
e peqrts “ Bt � ϕ

B
e peqrtsq.

(2.7)

First use S to compute S � e. For i ă e, if S piq “ 1 then we will

want to eventually stop enumerating markers λpi, sq. If S piq “ 0,

then we will want to enumerate all unrestrained markers. Suppose

we see a computation ΦB
e peqrts Ó. We find the markers λpi, sq below

ϕB
e peqrts for i ă e. As we know the fate of every marker below the

use, we can computably determine whether this computation is B-

correct, that is, whether B will change below the use after stage t.

Therefore equation 2.7 is Σ0
1, and can be decided by H1. As H1 6T

S , we have B1 6T S .

2.4.3 Degrees of left-c.e. partial integer-valued randoms

Here we show that every left-c.e. real that is integer-valued ran-

dom is Turing (and in fact, weak truth table) equivalent to a par-

tial integer-valued random left-c.e. real. Hence along with the ar-

gument of the previous section, it proves Theorem 2.1.6. In order

to make the argument more concise, we will often refer to the ar-

gument of Section 2.4.1, which uses a similar machinery. Given

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 63

a left-c.e. integer-valued random set A we will construct a partial

integer-valued random set B such that A ”wtt B. Suppose we are

given A with a computable approximation xAsy. Let xϕey be an ef-

fective enumeration of all partial computable integer-valued martin-

gales. We build a set B and weak truth-table reductions Γ and ∆ such

that ΓA “ B and ∆B “ A to meet the requirements

Re: ϕe does not succeed on B.

We also build for each e P ω a partial integer-valued martingale me.

In the case that ϕe is defined along B, me will be total.

Strategy for the single requirement R0.

Let γpnqrss be the use of computing ΓApnqrss and δpnqrss the use of

computing ∆Bpnqrss. We begin by setting γpnqr0s “ n and δpnqr0s “

n for all n. We observe the values of ϕ0 along B. First we wait to see

ϕ0pλq. If we later see ϕ0 increase its capital along B, then we will

wish to change B to force ϕ0 to lose capital. We will need permission

from A to do so. We put pressure on A to change by defining the

martingale m0. If ϕ0 increases its capital on Bs by betting on Bs � n,

then we define m0 to start with capital ϕ0pλq, place the same bets as

ϕ0rss along As � n, and bet neutrally on all other strings up to length

n. We repeat this every time we see ϕ0 increase its capital along B

until we see a change in A. As A is integer-valued random, m0pAq ă

8 and so A must eventually move. This gives us a permission to

change B.

64 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Suppose that at stage s we have defined m0 up to length d, and

A changes below d. Let m be least such that As´1pmq , Aspmq. We

have defined δpmqrs ´ 1s “ m and so we must change B on its mth

bit. We let Bs “ Bs´1 � mˆp1´Bs´1pmqqˆ0ω. The partial martingale

ϕ0 might not be defined on any string extending Bs � m, whereas m0

has been defined to be neutral on all initial segments of Bs of length

between m and d. Later ϕ0 might increase its capital along these

strings, and we would not be able to define m0 to directly copy its

bets. We can however raise the use γpmqrss to be large. At stage s

we let γpmqrss “ 2d. If ϕ0 then bets along initial segments of B of

length between m and d, we copy the wagers that ϕ0 makes on these

strings by placing the same wagers along the initial segments of A of

length between d and 2d. We are then still putting pressure on A to

change. If A changes below 2d we can then change B below d and

force ϕ0 to lose money.

Multiple requirements

The interaction between multiple requirements will cause difficulty

in coding. We use levels xliy and xdiy in order to facilitate the coding.

We set γpliq “ di and δpdiq “ li`1 and let l1 “ 5 (the choice of l1 is

not significant). We attempt to change B above a string of length l

for l P pli, li`1s only for the sake of the requirements R0, . . . ,Ri.

We will attempt to change B below l1 only for the sake of de-

creasing ϕ0’s capital along B � l1. We would like γpl1q to be large

enough so that we can copy all the wagers that ϕ0 may place along

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 65

strings of length l1. There are 2l1 many such strings, and so if we

set d1 “ γpl1q “ 2l1.l1, this will certainly be large enough. As A is

left-c.e., A can change below d1 at most 2d1 many times. Therefore

there are at most 2d1 many forbidden strings. To calculate l2, we be-

gin by setting l2,0 “ l1 ` pµxqp2x > 2d1q “ l1 ` d1. We act at level

l2 for the sake of R0 and R1. The action for these requirements can

again move us closer to forbidden strings. The distance we can be

moved, is given in terms of the function d which is introduced in

the argument of Section 2.4.1. Therefore we define l2,1, l2,2 and l2 as

before.

Suppose A changes below d1 at stage s. Then we are free to

change B below l1. We choose a string τ of length l1 which min-

imises m0; if there is no reason to move, we do not move. In either

case, we then choose some string ρ of length l2 extending the cur-

rent version of B � l1 which has not been visited before, and let

Bs`1 “ ρ1ω.

We change B below l2 for the sake of requirements R0 and R1.

We define the total martingale m0 to copy the wagers that ϕ0 places

on B � l2, and we define the total martingale m1 to copy the wagers

that ϕ1 places on B � l2. We require d2 to be large enough so that m0

can copy all the wagers that ϕ0 may place along strings of length l2
beneath d2, and m1 can copy all the wagers that ϕ1 may place along

strings of length l2 beneath d2. Therefore, by the same reasoning as

the calculation of d1, we would like d2 to be at least 2l2.l2. We then

define l3 similarly, with l3,0 “ l2 ` d2, and l3,1, l3,2, l3,3 and l3 as in

66 CHAPTER 2. INTEGER-VALUED RANDOMNESS

the argument of Section 2.4.1.

Now suppose that A changes between d1 and d2 at stage s1. That

is, As1 � d1 “ As1´1 � d1, but there is m P rd1, d2q with As1pmq ,

As1´1pmq. We cannot change B below l1, but we can change B above

l1. We therefore choose a string τ of length l2 which minimises the

martingales ϕ0 and ϕ1. As R0 has stronger priority than R1, we first

look to minimise ϕ0. If we can, we change B to minimise ϕ0, and if

we cannot, we then look to minimise ϕ1. If we can, we change B to

minimise ϕ1, and if we cannot, we do not change B. In any case, we

then choose some string ρ of length l3 extending the current version

of B � l2 which has not been visited before, and let Bs1`1 “ ρ1ω.

Construction

For every e P ω and at every stage s we have a restraint re,s. During

the construction we will say that “me has copied ϕe’s wager on σ”

for some e and string σ. Let de,s denote the length of longest string

for which we have defined me by the beginning of stage s. Set l0 “ 0,

d0 “ 0 and l1 “ 5. Given li, we set di “ 2li.li, and then given di, we

set li`1,0 “ li ` di and for 0 6 j 6 i,

li`1, j`1 “ li`1, j `max
k6i

np2li`1, j`1mkpλqq,

and let li`1 “ li`1,i`1` 1. Set γpliq “ di and δpdiq “ li`1 for all i. At

stage 0, we set B1 “ 1ω, mepλq “ ϕepλq for all e, and re,1 “ le for all

e. At stage s ą 0 do the following:

Case 1: there is l > re,s such that ϕepBs � pl ` 1qq ą ϕepBs �

lq, me has copied ϕe’s wagers on Bs � 1, . . . , Bs � l, and me has

2.4. JUMP INVERSION FOR INTEGER-VALUED RANDOMS 67

not already copied ϕe’s wager on Bs � pl ` 1q. Let e be the least

applicable, and l the least applicable for this e. Define me to wager

ϕepBs � pl ` 1qq ´ ϕepBs � lq on As � pde,s ` 1q and wager 0 on all

other strings of length de,s`1. We say that me has copied ϕe’s wager

on Bs � pl ` 1q. Let i be such that l P pli, li`1s. For all e1 ą e with

re1,s 6 li`1, let re1,s`1 “ li`2. Proceed to the next stage.

Case 2: Aspmq , As`1pmq. Let m be the least applicable, and let

i be such that m P pdi, di`1s. Choose the least e with re,s ă li`1 such

that there is τ of length li`1 extending Bs � li with max j6li`1 ϕe,s`1pτ �

jq ă max j6li`1 ϕe,s`1pBs � jq. For this e, choose an applicable string

τ with minµ dpτ, µq as large as possible, where the minimum is taken

over all forbidden strings of length li`1 extending Bs � li. If there is

no such e, then let τ “ Bs � li`1. Choose a string ρ of length li`2

extending τ such that ρ ⊀ Bt for all t 6 s. Let Bs`1 “ ρ1ω. Proceed

to the next stage.

If neither case applies, proceed to the next stage.

Verification of the construction

First, we observe that A ”wtt B. Indeed, the uses γpliq are clearly

computable, and so we have ΓA “ B via the weak truth-table func-

tional Γ. The consistency of ∆ is a consequence of B never extend-

ing a forbidden string. Again the uses δpdiq are computable and so

∆B “ A via the weak truth-table functional ∆.

It remains to show that for all e P ω, Re is satisfied. Suppose by

induction that all requirements of stronger priority than Re do not act

68 CHAPTER 2. INTEGER-VALUED RANDOMNESS

after stage s˚. We show that if ϕe succeeds on B, then me succeeds

on A, which is a contradiction to A being integer-valued random.

Let i0 be least such that li0 > re,s˚. By the restraints imposed, we

cannot change B below li0 for the sake of Re. Now suppose that at

stage s > s˚ we see ϕe,spBs � lq ą ϕe,spBs � li0q. Let l be the least

applicable, and suppose i is such that l P pli, li`1s. From stage s we

have me copy ϕe’s wagers, and at some stage s1 > s we define me to

wager ϕepBs1 � lq ´ ϕepBs1 � pl´ 1qq on As1 � de,s1 ` 1. If me copies

all of the wagers that ϕe makes on strings of length less than or equal

to l´ 1, then me is defined on strings of length at most 2l´1 ¨ pl´ 1q.

Therefore de,s1 6 2l´1 ¨ pl´ 1q ă di`1.

Suppose that at stage t ą s1 we see A change below di`1. Then

we will choose a string τ of length li`1 extending Bt � li with

max j6li`1 ϕe,tpτ � jq ă ϕe,tpBs � lq. Taking the contrapositive, we

see that if ϕe makes capital on B past li0, then me makes capital on

A. Therefore if ϕe succeeds on B then me succeeds on A.

2.5 C.e. degrees not containing IVRs

It is hardly surprising that there are c.e. degrees which do not con-

tain integer-valued randoms. After all, computable enumerability

hinders randomness, and indeed with respect to a sufficient level of

randomness, c.e. sets are not random. However integer-valued ran-

domness is sufficiently weak so that it has interesting interactions

with computable enumerability. In this section we look at the ques-

2.5. C.E. DEGREES NOT CONTAINING IVRS 69

tion of which c.e. degrees do not contain integer-valued randoms.

The first example of such degrees was given in Section 2.3.2 where

we showed Theorem 2.1.7. Perhaps more surprising is the fact that

there are c.e. degrees which are not array computable (so, by Corol-

lary 2.1.5 they compute an integer-valued random) yet they do not

contain integer-valued randoms. We prove this in Section 2.5.1, and

extend it to a much stronger result (namely Theorem 2.1.8) in Sec-

tion 2.5.2.

2.5.1 C.e. array noncomputable degrees not containing IVRs

We wish to construct an array noncomputable c.e. degree not con-

taining an integer-valued random set. We use the original definition

of array noncomputable from [19] in terms of very strong arrays.

Let pΓe,∆eqePω be an effective listing of all pairs of Turing function-

als, and let xDny be the very strong array with D0 “ t0u,D1 “

t1, 2u,D2 “ t3, 4, 5u,D3 “ t6, 7, 8, 9u, We build a c.e. set B to

satisfy the requirements

Re: pDnqpWe X Dn “ BX Dn)

Ne: ∆B
e “ Ae ^ Γ

Ae
e “ B “ñ Ae is not integer-valued random.

We build for each e P ω an integer-valued martingale me, and replace

the requirement Ne with the following requirements Ne,k for all k >

2:

Ne,k: ∆B
e “ Ae ^ Γ

Ae
e “ B “ñ me wins at least k dollars on Ae.

70 CHAPTER 2. INTEGER-VALUED RANDOMNESS

We effectively order the requirements, making sure that if k ă k1,

then Ne,k has stronger priority than Ne,k1. We say that Re requires

attention at stage s if

1. Re has no follower at stage s, or

2. Re has follower i at stage s and We,s X Di , Bs X Di.

For any e P ω, let de,s be the length of the longest string σ for which

mepσq is defined by stage s. We have for every e P ω a restraint

re. Let re,k,s “ max Di where i is the follower at stage s of any R-

requirement of stronger priority than Ne,k. Let lpe, sq be the length

of agreement between Γ∆
B
e

e and B at stage s,

lpe, sq “ maxtx | p@y ă xqpΓ∆
B
e

e pyqrss “ Bpyqrssu.

We say that Ne,k requires attention at stage s if

1. mepAe,s � de,sq “ k ´ 1,

2. lpe, sq ą re,k,s,

3. lpe, sq ą δepγepre,k,sqqrss

4. γeplpe, sqqrss ą de,s

Figure 2.3 illustrates the reductions involved in requirement Ne.

2.5. C.E. DEGREES NOT CONTAINING IVRS 71

Γe ∆e Γe ∆e

re,k,s

γepre,k,sqrss

δepγepre,k,sqqrss lpe, sq

γeplpe, sqqrss

δepγeplpe, sqqqrss
B

Ae

Figure 2.3: A visualization of the reductions in requirement Ne

Construction At stage 0, let B0 “ H. Let mepλq “ 1 for all e P ω.

At stage s, s > 1, find the requirement of strongest priority which

requires attention at stage s.

Case 1: this is Re. If Re has follower i, enumerate We,s X Di into

B. If Re does not have a follower, appoint a fresh large follower for

Re.

Case 2: this is Ne,k. Let τ “ Aerss � γeplpe, sqqrss. Define me to

wager $1 on τ, and bet neutrally on all other strings with length in

pde,s, |τ|s. Remove the followers of R-requirements of weaker prior-

ity than Ne,k.

Verification It remains to show that each requirement requires at-

tention only finitely often, and is met. Assume by induction that all

requirements of stronger priority than Re do not require attention af-

ter stage s. If Re does not have a follower at stage s then it will be

appointed one. This follower cannot be cancelled as requirements of

stronger priority can no longer act. Suppose that Re has follower i at

stage s. If we ever see that BtXDi , We,tXDi then we will enumer-

ate We,tXDi into B. As |Di| “ i`1, Re can require attention at most

72 CHAPTER 2. INTEGER-VALUED RANDOMNESS

i` 1 many times after stage s. Then we will have BXDi “ WeXDi

and Re is satisfied.

We claim that for all e, if ∆B
e “ Ae and ΓAe

e “ B, then me is

nondecreasing along Ae. Suppose we have mepσq “ k ´ 1 for some

string σ. Suppose Ne,k requires attention at stage t and we define

mepτq “ k. We remove the followers for R-requirements of weaker

priority, and so only requirements of stronger priority than Ne,k can

enumerate elements into B that are below δepγeplpe, tqqrts. Suppose

R j has stronger priority than Ne,k. Then R j can either enumerate

elements below re,k,t, or if it is later injured, enumerate elements

larger than δepγeplpe, tqqrts into B. Suppose that R j enumerates an

element below re,k,t into B. If Γe and ∆e later recover at stage t1,

τ1 :“ Aert1s � γepre,k,tqrts must be incomparable with τ “ Aerts �

γepre,k,tqrts; otherwise ∆e will not have recorded the B-change and

we could not have ∆B
e “ Ae and ΓAe

e “ B. In particular, τ1 must not

extend either τ or its sibling (recall the definition of the sibling of a

string, just after Definition 2.1.1). As me is defined to bet neutrally

on strings of length |τ| that are not either τ or its sibling, we will

have mepAert1s � |τ|q > k´ 1. By induction, this holds for all k. This

establishes the claim.

Now assume by induction that all requirements of stronger prior-

ity than Ne,k do not require attention after some stage s. As Ne, j for

any j ă k does not require attention, we must have mepAe,s � de,sq “

k´1. If Ne,k does not require attention at any stage t ą s then the hy-

pothesis of the requirement does not hold. Therefore Ne,k is satisfied

2.5. C.E. DEGREES NOT CONTAINING IVRS 73

vacuously. If Ne,k does require attention at stage t ą s then we define

mepτq “ k for τ “ Aerts � γeplpe, tqqrts. R-requirements of stronger

priority have finished acting, and so no numbers less than re,k,t en-

ter B after stage t. We remove the followers for R-requirements of

weaker priority. When they are appointed new followers they will

choose fresh numbers, and so all enumerations into B after stage

t will be larger than δepγeplpe, tqqrts. As B cannot change below

δepγeplpe, tqqqrts, Ae “ ∆
B
e cannot change below γeplpe, tqqrts. There-

fore τ ă Ae and mepAe � γeplpe, tqqrtsq “ k. By the previous claim,

mepAeq > k, and Ne,k is satisfied.

2.5.2 A high2 c.e. degree not containing integer-valued ran-
doms

In this section we prove Theorem 2.1.8. Nies, Stephan and Ter-

wijn showed that every high degree contains a computably random

set, and so a fortiori, an integer-valued random set. It is instructive

though to see why we cannot build a high degree that does not con-

tain an integer-valued random set. This will give us some insight as

to why the construction works when we only require our set to be

high2. So that the degree of A does not contain an integer-valued

random set, we meet the requirements

Ne: Γ
∆A

e
e “ A total “ñ ∆A

e is not integer-valued random

where pΓe,∆eq is an enumeration of pairs of Turing functionals. We

break the requirement Ne into the following subrequirements Ne,k.

74 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Γe ∆e Γe ∆e

p

γeppqrss

δepγeppqqrss lpe, sq

γeplpeqqrss

δepγeplpeqqqrss
A

∆A
e

Figure 2.4: Diagram with the uses and where we bet, for the proof of Theorem 2.1.8.

Ne,k: Γ
∆A

e
e “ A total “ñ me wins at least k dollars on ∆A

e

where me is an integer-valued martingale we build for the sake ofNe.

Suppose that the martingale me has won $k´1 on ∆A
e � n. The basic

strategy to win another dollar is to first pick a large location marker

p. Let lpeqrss be the length of agreement between A and Γ∆
A
e

e at stage

s. If we later see that lpeqrss ą p and lpeqrss ą δepγeppqqrss, then

we define me to wager $1 on ∆A
e rss � γeplpeqqrss and bet neutrally

elsewhere, and freeze A below δepγeplpeqqrss. If we are successful

in freezing A, then me wins $1 on ∆A
e . If A changes below p at

stage s1 ą s, then if we are to have Γ∆
A
e

e “ A, ∆A
e rs

1s � γeppqrss is

incomparable with ∆A
e rss � γeppqrss and me does not lose any capital

along ∆A
e . We can then try the basic strategy again.

To make A high we would define a functionalΛ such that limkΛ
Apx, kq “

Totpxq, where Tot is the canonical Π0
2-complete set. The basic strat-

egy for the highness requirement is to define ΛApx, sq “ 0 for larger

and larger s with some big use λpx, sq. When we see ϕxps1q Ó for

all s1 6 s, then for each s1 6 s we enumerate the current use λpx, s1q

into A (if currently ΛApx, s1q “ 0) and redefine ΛApx, s1q “ 1 with

use ´1, i.e. the axiom defining ΛApx, s1q “ 0 does not depend on A.

2.5. C.E. DEGREES NOT CONTAINING IVRS 75

This strategy will succeed as long as we are prevented from redefin-

ing ΛApx, sq from 0 to 1 at most finitely often.

Let us see how these strategies might interact. Suppose at stage s

we saw the lpeq computations converge and defined more of me. The

highness requirement, if unrestrained, can destroy the lpeq computa-

tions and cause me to lose capital if it enumerates a marker between

p and δepγeplpeqqrss. Therefore if me is to ever win money along ∆A
e

we must impose restraint on A. The problem is that the strategies

for Ne may gang up and impose restraint on all markers λpx, sq; ev-

ery time a marker is defined we may define me and impose restraint,

and never allow the marker to be enumerated. If Totpxq “ 1 we

will never be able to correct ΛApx, sq to be 1 and the limit will be

incorrect.

Another approach we might take would be to capriciously enu-

merate the markers which occur below δepγeplpeqqrss. If we do this

and always have some marker below the use, we will be able to con-

clude that Γ∆
A
e

e , A (this argument is given in full in the verification

below). However, the problem now is that we might not have wanted

to enumerate the markers. If Totpxq “ 0 and we capriciously enu-

merate all markers λpx, sq and redefine ΛApx, sq to be 1, the limit

will be incorrect.

To make A high2, we need to instead define a functional Λ such

that

lim
m

lim
t
ΛA
px,m, tq “ Cofpxq

where Cof “ tx | Wx is cofiniteu is the canonical Σ0
3-complete set.

76 CHAPTER 2. INTEGER-VALUED RANDOMNESS

The double limit means that we may be wrong on a finite number

of the m while still satisfying the requirement. This will allow us to

employ the capricious enumeration strategy successfully. We have

the requirements

Hx: limm limtΛ
Apx,m, tq “ Cofpxq

as well as the Ne from above. The construction will use a priority

tree. For each global requirementNe we have several nodes devoted

to meeting Ne, each equipped with a guess as to the outcomes of

stronger priority requirements. Such a node will be called a mother

node devoted to Ne. Each such node τ builds its own martingale

mτ. We argue in the verification that for every e P ω there is some

node τ such that mτ succeeds on ∆A
e . For each subrequirement Ne,k

we have several nodes devoted to meetingNe,k. Such a node will be

called a worker node devoted toNe,k, and will occur below a mother

node τ devoted toNe. For the longest such τ, we say that σ’s mother

node is τ. When we reach a node σ devoted to Ne,k, we choose a

fresh location marker p for σ, and place a link from σ back up to τ.

The link can be seen as testing the hypothesis of Ne. The length of

agreement between A and Γ∆
A
e

e will be measured at τ. When we next

arrive at τ and see the length of agreement computations converge,

this further confirms the hypothesis of Ne. We travel the link to σ,

define more of the martingale mτ, and then remove the link.

The requirement Hx will have nodes βx,m for m P ω. The node

βx,m tests whether rm,8q Ď Wx. Note that this is a Π2 test. Such

2.5. C.E. DEGREES NOT CONTAINING IVRS 77

a node will have outcomes 8, which corresponds to the Π2 test in-

finitely often looking correct, and f , corresponding to the finite out-

come. The βx,m nodes will be responsible for defining ΛApx,m, tq

for each t. As we do not know the true path in advance, each path

through the priority tree will have a βx,m node, which collectively

will define ΛApx,m, tq for all t.

The basic strategy for βx,m is to define ΛApx,m, tq “ 0 for larger

and larger t with some big use λpx,m, tq. If we see rm, ss Ď Wx then

for each s1 6 s we enumerate the current use λpx,m, s1q into A (if

currently ΛApx,m, s1q “ 0) and redefine ΛApx,m, s1q “ 1 with use

´1, i.e. the axiom defining ΛApx,m, s1q “ 0 does not depend on A.

It is important to note that the markers λpx,m, sq are shared by all

the βx,m nodes. Whether we succeed in enumerating the markers and

updatingΛ as needed will depend on how the construction proceeds.

We will now describe how these requirements interact and what

modifications we need to make to the priority tree as a consequence.

First we consider the situation where we have Hx of lower prior-

ity than Ne (which is associated with the mother node τ). The

problem is the following. Suppose we have a situation with nodes

τ ă βx,m ă σ where σ is devoted to Ne,k and τ is σ’s mother node.

That is, while σ has higher global priority than βx,m, its local prior-

ity is lower. Suppose at some stage σ picks a location marker ppσq

and creates a link back to τ at stage s0. At a later stage s1 we get

to τ, see the necessary computations converge, and would like to

travel the link and define the martingale. This causes no problem if

78 CHAPTER 2. INTEGER-VALUED RANDOMNESS

σ < βx,m ˆ f , but there are problems if σ < βx,m ˆ8. We will re-

quire the computations lpτqrss to be τ-correct; that is, all guesses τ

makes about the enumeration of markers below δepγeplpeqqqrss have

already occurred.

The trouble is that at stage s1 there now might be some marker

λ “ λpx,m, qq which is greater than ppσq, but below the use of

lpτqrs1s. We may not yet want to enumerate λ into A because the Σ2

outcome may now be looking correct at βx,m (that is, we might think

Cofpxq “ 0). If we did define the martingale, since βx,m has higher

priority than σ, any restraint imposed at s1 may not be successful

since βx,m might later put λ into A. This could potentially cause our

martingale mτ to lose all its capital, and it could never bet again.

The solution to this problem is as follows. When we hit τ, if

there is some link to a node σ and there is some λ as above, we

immediately enumerate any λ below the use of lpτqrss into A, but we

do not define the martingale. This means that βx,m cannot later use λ

to make mτ lose capital. If there is no such λ then we do define the

martingale, since we can be sure that σ is satisfied provided that it

is on the true path. This is the situation we would like, but failing

that, we would like to get a global win on Ne. In the case that such

a λ exists, we travel the link from τ to σ, enumerate all applicable

markers, but we do not delete the link. Because of this, we need

to add a new outcome to σ. Therefore σ will have outcomes g and

d. The outcome g will be played when we perform the capricious

enumeration of λ as above. The outcome d will be played when

2.5. C.E. DEGREES NOT CONTAINING IVRS 79

we define the martingale. Suppose we have some worker node σ

with location marker ppσq which always has some λ below the use

of lpτqrss. We will then define ΛApx,m, tq to have limit 1 for any

pair px,mq such that τ ă βx,m ă σ; note that there are only finitely

many pairs px,mq. We will also have a link from τ to σ for almost all

stages. This corresponds, however, to a global win onNe, since ppσq

is a witness to the fact that δepγeplpeqq does not exist and so Γ∆
A
e

e , A.

The permanent link may cause us to skip over other mother nodes,

which would mean we cannot meet their requirements. We therefore

restart all N-requirements of weaker priority than Ne under the g

outcome of σ. We do this by assigning the requirements Ne1 for

e1 ą e, as well as their subrequirements Ne1,k for k P ω, to nodes

below σ ˆ g in some fair way. We do not restart any β nodes, since

ΛApx,m, tq will be defined to be 1 for the finitely many x and m

with τ ă βx,m ă σ. This will mean that for a finite number of m,

limtΛ
Apx,m, tq may be incorrectly outputting 1 instead of 0. This

is fine though, since we will only lose on a finite number of the m

and still can satisfy Hx. The sacrifice of losing on an m will only

be made when we can ensure a global win on a τ node of stronger

priority.

We now come to the situation where we have an Hx of higher

global priority than the Ne associated with τ. We now cannot allow

τ to capriciously enumerate all the markers belonging to βx,m if f is

βx,m’s true outcome. We now describe our solution to this problem.

First suppose that βx,m and βx,n are worker nodes devoted to Hx

80 CHAPTER 2. INTEGER-VALUED RANDOMNESS

with m ă n. If βx,n occurs below βx,m ˆ8, then βx,n is guessing that

rm,8q Ď Wx. Therefore βx,n must also be guessing that rn,8q Ď Wx

as n ą m, and so βx,n will have only the8 outcome.

Suppose that τ is below the f outcome of any βx,m node with

m ă n. We will restart τ below βx,n ˆ8. Consider the situation

βx,n ˆ8 4 τ ă βx,n1 ă σ with n1 ą n. If there is a link from τ to σ

then capriciously enumerating the markers λpx, n1, tq into A will not

injure βx,n1 since this is what βx,n1 would like to do anyway. Therefore

Hx cannot be injured in this situation. We show in Lemma 2.5.1 that

such a τ can be restarted only finitely many times.

There is one last problem. Suppose we have τ ă βx,m ă σ with a

link pτ, σq. As σ’s mother is above βx,m, we must have βx,m ˆ f 4 σ.

If the link is permanent then βx,m will not be able to enumerate its

markers. As Hx has higher global priority than Ne, this is not a sit-

uation we want. We employ the following technique from Downey-

Stob [22]. When we hit τ, we realize that if there is a link from τ

down then this may be a potentially permanent link. We first per-

form a scouting report to see where we would go if there were no

link around. If we were to go to a node γ to the left of σ then we

will erase the link and actually go to γ instead. This ensures that if

βx,m ˆ8 is βx,m’s true outcome, then it will be able to enumerate its

markers.

2.5. C.E. DEGREES NOT CONTAINING IVRS 81

The Priority Tree

Our priority tree, PT, will have three types of nodes. The first type

are mother nodes τ, which have outcomes 8 and f , and will be

assigned to some global requirement Ne. We write epτq “ e. The

next type are worker nodes σwhich are devoted to a subrequirement

of some Ne, and hence will be assigned some e, k. We write epσq “

e, kpσq “ k. We form the tree so that such σ occur below some

τ with epτq “ e. For the longest such τ with epτq “ e, we will

write τpσq “ τ. This is to indicate that τ is σ’s mother. σ has

outcomes g and d with g ă d. Finally we have nodes β which are

devoted to some Hx, and hence will be assigned some x,m. We

write xpβq “ x,mpβq “ m, or simply βx,m. β will have outcomes 8

and f , with 8 ă f , unless β occurs below β1 ˆ8 for some β1 with

xpβ1q “ xpβq, in which case β has only the single outcome8.

We now assign requirements and subrequirements to nodes on

the tree. In a basic infinite injury argument we would have all nodes

of the same level working for the same requirement. However in

our case, as we must restart τ nodes, it is more complicated. We

use lists of, for example, Chapter XIV of [43] for this. We will have

three lists, L0, L1, and L2, which keep track of indices for τ, σ and β

nodes, respectively.

n “ 0. Let λ be devoted toN0, and let L0pλq “ L1pλq “ L2pλq “

ω.

For n ą 0, let γ P PT be of the form δ ˆ a. Adopt the first case

below to pertain, letting Lipγq “ Lipδq unless otherwise mentioned.

82 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Case 1. δ is devoted to Ne.

Case 1a. a “ f . L0pγq “ pL0pδq ´ teuq Y te1 | e1 ą eu

L1pγq “ pL1pδq ´ txe, ky | k P ωuq Y txe1, ky | e1 ą e, k P ωu.

Case 1b. a “ 8. L0pγq “ L0pδq ´ teu.

Case 2. δ is devoted to Ne,k.

Case 2a. a “ g. Define the lists as in Case 1a.

Case 2b. a “ d. Let L1pγq “ L1pδq ´ txe, kyu.

Case 3. δ is devoted toHx with mpδq “ m.

Case 3a. a “ f . L2pγq “ L2pδq ´ txx,myu.

Case 3b. a “ 8. Let L0pγq be the union of L0pδq with

te | pDτqp@βqpepτq “ e^xpβq “ x^x ă e^β ă τ ă δ “ñ βˆ f 4 τqu

and let L1pγq be the union of L0pδq with

txe, ky | pDτqp@βqpepτq “ e^xpβq “ x^x ă e^β ă τ ă δ “ñ βˆ f 4 τq, k P ωu.

Also let L2pγq “ L2pδq ´ txx,myu.

Having defined the lists, we now assign requirements to nodes of

the priority tree as follows. Let γ P PT and i be the least element

of L0pγq Y L1pγq Y L2pγq. If i P L0pγq, let γ be a mother node

devoted to Ni. If i P L1pγq ´ L0pγq and i “ xe, ky, let γ be a worker

node devoted to Ne,k. Otherwise i “ xx,my P L2pγq and we let γ be

worker node devoted toHx with mpγq “ m.

Lemma 2.5.1 (Finite injury along any path lemma). For every path

h P rPT s and every e, k P ω,

2.5. C.E. DEGREES NOT CONTAINING IVRS 83

1. pDă8α ă hqpepαq “ e^ hp|α|q “ gq,

2. pDă8α ă hqpα devoted to Neq,

3. pDă8α ă hqpα devoted to Ne,kq.

Proof. (1) and (3) are straightforward. For (2), a node τ devoted to

Ne is restarted below β ˆ8 if xpβq ă e and τ has been below only

the f outcomes of nodes devoted to Hx. Once restarted, it can no

longer be restarted below any other β1 with xpβ1q “ xpβq. Thus τ is

restarted finitely many times. �

The construction below will proceed in substages. We will ap-

pend a subscript t to a parameter G, so that Gt denotes the value of

G at substage t of the construction. As usual all parameters hold

their value unless they are initialized. When initialization occurs

they become undefined, or are set to zero as the case may be. We

will append a parameter rss, when necessary, to denote stage s. We

may write ps, tq to denote substage t of stage s.

If we visit a node ν at stage ps, tq we will say that ps, tq is a gen-

uine ν-stage. It might be that we do not visit ν at stage ps, tq, rather

we visit some ν1 extending ν. In this case we say that ps, tq is a

ν-stage, and hence a ν-stage may not be genuine. In fact, should

we put in place some permanent link pτ, σq with τ ă ν ă σ, then

ν might only ever be visited finitely often. However, this is when

σ ˆ g is the true outcome for some higher priority τ, and we would

claim that a new version of ν would live below outcome g of σ. We

will eventually define the genuine true path as those nodes that are

84 CHAPTER 2. INTEGER-VALUED RANDOMNESS

on the leftmost path visited infinitely often, and for which there are

infinitely many genuine stages.

We have for each node on the priority tree γ and for all x,m P ω

a restraint cγpx,mq. These restraints will be initially set to zero in

the construction, and will only be increased when γ is a mother node

devoted to someNe. We say that a computation ΞApxqrss is τ-correct

if p@q 6 sqp@βq the condition

pβˆ8 4 τ^xpβq “ x^mpβq “ m^max
τ16β

cτ1px,mqrss ă λpx,m, qq ă ξA
pxqrssq

implies λpx,m, qq P Arss. If τ is a mother node devoted to Ne, then

let

l1pτqrss “ maxtx | p@y ă xqpΓ∆
A
e

e pyqrss “ Arsspyqq via a τ-correct computationu.

Let m1pτqrss “ maxtl1pτqrs1s | s1 ă s is a genuine τ-stageu. If τ is a

node devoted toHx with mpτq “ m, then let l2pτqrss “ maxty | rm, ys Ď

Wxrssu. Let

m2pτqrss “ maxtl2pτqrs1s | s1 ă s is a genuine τ-stageu.

For τ a mother node devoted to some Ne, let dτrss denote the length

of the longest string for which mτ is defined by stage s.

Construction At stage 0 set ΛAp0, 0, 0q “ 0 with choose some use

λp0, 0, 0q. Set cγpx,mqr0s “ 0 for all x,m P ω and all nodes γ on

the priority tree. Set mτpλq “ 1 for all nodes τ devoted to some

requirement Ne. Stage s ` 1 will proceed in substages t 6 s. As

2.5. C.E. DEGREES NOT CONTAINING IVRS 85

usual, we will generate a set of accessible nodes, TPrs ` 1st, and

will automatically initialize nodes α to right of TPrs ` 1st. A node

is initialized by removing its location marker and removing any link

to or from the node.

Substage 0. Define TPrs ` 1s0 “ λ, the empty string. Let

ΛApx,m, s ` 1q “ 0 with some large use λpx,m, s ` 1q for all

x,m 6 s` 1.

Substage t` 1 6 s` 1. We will be given a string γ “ TPrs` 1st.

Adopt the first case to pertain below.

Case 1. γ is a mother node devoted to Ne.

Subcase 1a. There is a link pγ, σq for some node σ. We perform

the scouting report by computing the string γ1 that would be TPrs`

1s were there no link. If γ1 ăL σ, remove the link pγ, σq, let TPrs`

1st`1 “ γ1 � p|γ| ` 1q, and go to substage t ` 2. If γ1 ≮L σ, see

whether l1pγqrs`1s ą ppσq, δepγepppσqqqrs`1s with γepppσqqrs`

1s ą dγrs` 1s.

Subcase 1a.1. No. Set TPrs ` 1st`1 “ τ ˆ f and go to substage

t ` 2.

Subcase 1a.2. Yes and for some node β devoted to Hx with

mpβq “ m and γ ă β ˆ8 4 σ, there is a marker λpx,m, qq with

ppσq 6 λpx,m, qq 6 δepγepl1pγqqqrs ` 1s. Our action is to set

TPrs ` 1st`1 “ σ. We refer to this action as traveling the link.

Go to substage t ` 2.

Subcase 1a.3. Otherwise, set TPrs`1st`1 “ σ and go to substage

t ` 2.

86 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Subcase 1b. There is no link from γ. Let TPrs` 1st`1 “ γˆ8.

Case 2. γ is a worker node devoted to Ne,k.

Subcase 2a. We were in subcase 1a.2 in the previous substage.

Enumerate all markers as in the previous substage into A. Let TPrs`

1st`1 “ γˆg.

Subcase 2b. We were in subcase 1a.3 in the previous substage.

Define mτpγq to wager $1 on ∆A
e rs ` 1s � γepl1pτpγqqqrs ` 1s and

bet neutrally on all other strings up to and including that length.

For all x,m such that there is β ą γ with xpβq “ x,mpβq “ m,

let cτpγqpx,mqrs ` 1s “ δepγepl1pτpγqqqrs ` 1s. Remove the link

pτpγq, γq. Let TPrs` 1st`1 “ γˆd.

Subcase 2c. We did not travel a link to arrive at γ. If mτpγqpAs �

dτpγqrs`1sq > k, let TPrs`1st`1 “ γˆd, and go to substage t`2. If

not, choose a fresh large follower ppγq for γ, place a link pτpγq, γq,

and go to stage s` 2.

Case 3. γ is a node devoted to Hx with mpγq “ m. Consider the

immediate successors of γ on the priority tree.

Case 3a. The immediate successors of γ are γ ˆ8 and γ ˆ f . See

whether l2pγqrs` 1s ą m2pγqrs` 1s.

Case 3a.1. Yes. For all q 6 m2pγqrs ` 1s, if λpx,m, qq ą

maxτ6γ cτpx,mqrs ` 1s and ΛApx,m, qq “ 0, enumerate λpx,m, qq

into A and define ΛApx,m, qq “ 1 with use ´1. Set TPrs ` 1st`1 “

γˆ8.

Case 3a.2. No. Set TPrs` 1st`1 “ γˆ f .

2.5. C.E. DEGREES NOT CONTAINING IVRS 87

Case 3b. The immediate successor of γ is γ ˆ8. For all q 6

m2pγqrs` 1s, if

λpx,m, qq ą max
τ6γ

cτpx,mqrs` 1s and ΛA
px,m, qq “ 0

enumerate λpx,m, qq into A and define ΛApx,m, qq “ 1 with use´1.

Set TPrs` 1st`1 “ γˆ8.

Verification We define TP, the true path, to be the leftmost path vis-

ited infinitely often. This clearly exists as the priority tree is finite-

branching. We define GTP, the genuine true path, to be those α ă

TP such that there are infinitely many genuine α-stages.

Lemma 2.5.2. For every e P ω there is a node τ devoted to Ne on

GTP.

Proof. Let τ be the longest node devoted to Ne on TP, which exists

by the finite injury along any path lemma. We claim that τ is on

GTP. Suppose otherwise. Then it must be the case that there are τ1

and σ on GTP such that τ1 ă τ ă σ and the link pτ1, σq is there at

almost all stages. This implies that σ ˆg is on GTP. On the priority

tree, if τ1 ă τ2 then epτ1q ă epτ2q. Now as σ links to its mother

node τ1 and τ1 ă τ we must have epτ1q ă epτq “ e. But then by

the construction of the priority tree, there is an Ne node below σˆg,

contradicting the hypothesis that τ is the longest such. �

Lemma 2.5.3. For every e P ω, Ne is satisfied.

88 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Proof. Let τ be the longest node on GTP devoted to Ne. First sup-

pose that τ ˆ f ă GTP. Then Γ∆
A
e

e , A and Ne is vacuously satisfied.

If there is a permanent link pτ, σq for some node σ, then we claim

that Γ∆
A
e

e , A. For contradiction suppose Γ∆
A
e

e “ A, and suppose the

link was placed at stage s0. Then there is a stage s ą s0 and uses

δepγepl1pτqqq “ a1, γepl1pτqq “ a2, such that Γ∆
A�a1
e �a2

e rss 4 A � a1.

However if this were the case, at the next genuine τ-stage greater

than s we will see that these computations have converged, play the

d outcome, and remove the link. This contradicts the fact that the

link is permanent. This establishes the claim.

Now suppose there is no such permanent link. We will show

that mτ succeeds on ∆A
e . We must ensure that mτ’s capital does not

decrease along ∆A
e . Fix k P ω, and let σ1 ą τ be the first node

devoted to Ne,k that is visited. Suppose we visit σ1 first at stage s0.

At stage s0 we assign σ1 a fresh large location marker ppσ1q and

link back to τ. Let s1 be the stage at which we first define mτ to

win $k on ∆A
e rs0s. As we acted in case (2b) of the construction, we

did not play the g outcome at stage s1 and so there were no markers

belonging to any nodes β such that τ ă β ˆ8 4 σ1 below the use

of our computations. The computations are τ-correct at stage s1

and restraint is imposed on requirements of weaker priority than σ1.

Therefore the only markers which can be enumerated below the use

are those belonging to nodes β such that τ ă βˆ f 4 σ1. As βˆ f was

visited at stage s0, there is at least one marker, namely λpx,m, s0q

where x “ xpβq and m “ mpβq, that has not been enumerated into A

2.5. C.E. DEGREES NOT CONTAINING IVRS 89

by stage s0. The location marker ppσ1q was chosen to be large at the

substage when σ1 was visited, and so is larger than λpx,m, s0q. If at

some later stage t we enumerate λpx,m, s0q into A, then A changes

below ppσ1q. If we are to have Γ∆
A
e

e “ A, then ∆A
e rts � γepppσ1qqrs0s

is incomparable with ∆A
e rs0s � γepppσ1qqrs0s. Therefore mτp∆

A
e rts �

dτrtsq “ k ´ 1, and so mτ has not decreased in capital along ∆A
e . If

we later arrive at β, we will play βˆ8 and initialize σ1 as it is to the

right of β ˆ8. If we visit σ1 again, a new location marker will be

chosen, which must be larger than at least one marker of any node β

such that τ ă βˆ f 4 σ1.

Let s0 be the least genuine τ-stage. As τ is genuinely visited at

stage s0 there can be no link pτ1, σ1q at stage s0 with τ1 ă τ ă σ1.

Fix k P ω and suppose for contradiction that σ ă TP devoted to

Ne,k is never genuinely visited. Then there is some permanent link

pτ2, σ2q with τ ă τ2 ă σ ă σ2. Suppose the link pτ2, σ2q was

placed at stage s1. Then as σ2 is genuinely visited at stage s1 and

σ ă σ2, σ is genuinely visited at stage s1. Contradiction. At stage

s1 we define the location marker ppσq and create a link pτ, σq. Let

s2 be the stage at which we travel the link to σ and define mτ to

win $k on ∆A
e rs2s. If we visit a node that is below τ but to the left

of σ then, as in the previous paragraph, mτ will then have capital

k ´ 1. However σ ă TP, and so this will occur only finitely many

times. Let s3 be the greatest stage at which σ is initialized. We

remove any link over σ as part of the initalization. At the next σ-

stage after s3 we will genuinely visit σ and place a link if we see

90 CHAPTER 2. INTEGER-VALUED RANDOMNESS

that mτp∆
A
e rs3s � dτrs3sq ă k. Let s1 be the stage at which we travel

the link to σ and define more of mτ. As we never visit a node to the

left of σ, no marker belonging to a node β such that τ ă β ˆ f 4 σ

will be enumerated after stage s1. As in the previous paragraph, A

cannot change below the use δepγeplpτqqrs1s and mτp∆
A
e q > k. �

Lemma 2.5.4. For every x P ω,Hx is satisfied.

Proof. Suppose x < Cof. Let β ă TP be the node devoted to Hx

with mpβq least such that βx,m is not permanently linked over by τ’s

of stronger priority for all m > mpβq. Let m0 “ mpβq. We show that

limtΛ
Apx,m, tq “ 0 for all m > m0. We will have ΛApx,m, tq “ 0

unless the marker λpx,m, tq is enumerated into A. Thus we must

show that we eventually stop enumerating the markers λpx,m, tq into

A. As rm0,8q * Wx, the Π2 test which measures whether rm,8q Ď

Wx will eventually always say “no”. So eventually the βx,m nodes

will stop putting their markers into A and redefining ΛApx,m, tq.

Therefore the only way we will enumerate the markers is if there

is a link pτ, σq over βx,m with τ ă βx,m ˆ8 4 σ and τ is accessible.

We must show that if there is such a link then τ is accessible at only

finitely many stages.

For τ with epτq ą x, we will restart τ below βx,m ˆ8. If β ˆ8 4

τ ă βx,m1 4 σ and a link pτ, σq is placed over βx,m1 for some m1 ą m,

then as βˆ8 can be visited at most finitely many times, only finitely

many markers λpx,m1, tq will be enumerated.

Now suppose τ is above β and we place a link pτ, σq over β. Sub-

case (2a) of the construction will enumerate markers λpx,m, tq only

2.5. C.E. DEGREES NOT CONTAINING IVRS 91

if βx,m ˆ8 4 σ. As σ must be below βˆ f , the markers λpx,m, tq will

not be enumerated, and we will have limtΛ
Apx,m, tq “ 0.

Finally, if β1x,m is another node on another path of the priority tree

which is visited infinitely often, we must ensure that it does not enu-

merate all of the markers λpx,m, tq. The Π2 test performed at β1x,m
is the same test which is performed at βx,m and so will eventually

always say “no”. Therefore the marker λpx,m, tq will only be enu-

merated if there is a link pτ, σq over β1x,m with β1x,m ˆ8 4 σ. As β1x,m
is to the right of TP it will be initialized infinitely many times. Any

link over β1x,m will be removed as part of the initialization, and so β1x,m
is not permanently linked over. The marker λpx,m, tq is enumerated

capriciously only if β1x,m ˆ8 4 σ. For the marker to be enumerated

infinitely many times we must visit σ below β1x,m ˆ8 and place a

link back to τ. However if β1x,m ˆ8 is visited infinitely many times,

this contradicts x < Cof. Therefore β1x,m cannot enumerate infinitely

many of its markers.

Now suppose that x P Cof and rm0,8q Ď Wx. Let β ă TP be the

node devoted toHx with mpβq least such that βx,m is not permanently

linked over by τ’s of stronger priority for all m > mpβq. Let m1 “

maxtmpβq,m0u. We show that limtΛ
Apx,m, tq “ 1 for all m > m1.

We first show that lims cτpx,mqrss exists for all τ 6 β and so

all markers λpx,m, qq ą maxτ6β lims cτpx,mqrss may be enumerated

into A. The value of cτpx,mq can be increased only when the mother

node τ links to some worker σ with σ ă β1x,m and subsequently de-

fines more of the martingale mτ. The priority tree is finite-branching,

92 CHAPTER 2. INTEGER-VALUED RANDOMNESS

and so there are only finitely many nodes βx,m. Consider

xe1, k1y “ maxYβx,mtxe, ky |σ ă βx,m has mother τ and is devoted to Ne,ku.

Let σ0 be the node on TP devoted toNe1,k1, and suppose that no node

to the left of σ0 is visited after stage s0. When we genuinely visit

any node σ 4 σ0 with mother node τ, the construction will check

to see whether mτp∆
A
e rss � dτrssq > kpσq. If so, we will play the d

outcome. As σ ă TP, the martingale will never decrease in capital

and cτpx,mq cannot be increased again after travelling a link to some

σ1 devoted to Ne,kpσq. If mτp∆
A
e � dτrssq ă kpσq, then we will create

a link from σ back to τ at stage s ą s0. If the link is permanent

then cτpx,mq will never be increased. If we later define more of mτ

we will then increase cτpx,mq. Again, as σ ă TP, the martingale

will never decrease in capital and cτpx,mq cannot be increased again

after travelling a link to some σ1 devoted to Ne,kpσq. There are only

finitely many worker nodes σ 4 σ0 with mother node τ. Therefore

lims cτpx,mqrss exists for all τ 6 β.

We will restart all τ nodes with epτq ą x below βx,m1 ˆ8. As

rm1,8q Ď Wx, the Π2 test which measures whether rm,8q Ď Wx

will say “yes” infinitely many times for all m > m1. If a link pτ, σq

is placed over βx,m1, and so βx,m1 ˆ f 4 σ, we will perform a scouting

report when we arrive at τ. Suppose the link pτ, σq is placed at stage

s0 and that s1 is the least stage greater than s0 at which the Π2 test

says “yes”. At the least τ-stage after s1, the scouting report will be

successful, and βx,m1 ˆ8 will be accessible. We then will remove the

link pτ, σq and enumerate the marker λpx,m1, tq. In this way all of

2.5. C.E. DEGREES NOT CONTAINING IVRS 93

βx,m1’s markers will eventually be enumerated.

Now suppose that βx,m1 ˆ8 4 τ ă βx,m1 ă σ. The node βx,m1

has only the 8 outcome, as it is below βx,m1 ˆ8 with m1 ă m1.

If βx,m1 is on GTP then it will enumerate its markers whenever it

is accessible and define Λ such that limtΛ
Apx,m1, tq “ 1. If βx,m1

is not on GTP then the link pτ, σq must be permanent. As in the

previous paragraph, βx,m1 ˆ8 will be accessible at infinitely many

stages. When we arrive at τ and see the link, we will enumerate

markers of the form λpx,m1, qq. Therefore all of βx,m1’s markers will

eventually be enumerated and limtΛ
Apx,m1, tq “ 1. �

This concludes the verification of the construction, and the proof of

Theorem 2.1.8.

94 CHAPTER 2. INTEGER-VALUED RANDOMNESS

Chapter 3

DNR and incomparable Turing
degrees

This chapter is joint work with Mingzhong Cai and Noam Green-

berg, and has appeared in [10].

3.1 Introduction

One way in which we might consider a Turing degree to be compu-

tationally strong is if it computes a diagonally noncomputable func-

tion: a function f : ω Ñ ω such that f peq , ϕepeq when the latter is

defined. Then f is thought to be far from computable because it can

give f peq as a counterexample to the assertion that f “ ϕe.

We might wonder whether a Turing degree can be simultane-

ously strong in this sense, but weak in another. Sacks in [39] asked

whether there exists a degree which both computes a diagonally

noncomputable (DNC) function and is minimal. Kumabe ([32]) an-

95

96 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

swered this affirmatively using a technique known as forcing with

“bushy trees”. Since then the technique has been used in several re-

sults, including some in algorithmic randomness and reverse mathe-

matics. See [29] for a survey of such results.

In this chapter we extend this technique to show:

Theorem 3.1.1. There is an initial segment a1 ă a2 ă a3 ă ¨ ¨ ¨ of

the Turing degrees such that each an`1 is a DNC degree relative to

an.

The theorem has a corollary in reverse mathematics.

Corollary 3.1.2. The system DNR0 does not imply Turing incompa-

rability, in fact it does not imply the existence of a pair of Turing

incomparable reals.

Although no knowledge of reverse mathematics is required for

the proof of the theorem, we provide some background for motiva-

tion.

Reverse mathematics is a programme in the foundations of math-

ematics with deep connections with computability theory. We con-

sider subsystems of second order arithmetic. Our models M consist

of two parts. The first part is a set |M| which we interpret as our

numbers, and the second part is a collection SM of subsets of |M|

which we interpret as our sets. We are often interested in so-called

ω-models, where |M| is simplyω, the standard natural numbers. Our

collection of sets is usually a Turing ideal. That is, it is closed under

computable join and downward closed under Turing reducibility.

3.1. INTRODUCTION 97

We consider axiom systems and models of such systems. One im-

portant system is known as WKL0 (weak König’s lemma). It ensures

that our Turing ideal contains a completion of Peano Arithmetic.

In [31], Kučera and Slaman solved a long-standing open problem

by showing that for every model M of WKL0, if x P SM is noncom-

putable, then there is some y P SM which is Turing incomparable

with x. We say that Turing incomparability holds in every ω-model

of WKL0. This was improved by Conidis [15] to show that Turing

incomparability holds in ω-models of the weaker system WWKL0,

the system which ensures the existence of a Martin-Löf random set.

A prominent system below WWKL0 is DNR0, the system which

ensures the existence of a DNC function. The systems WWKL0

and DNR0 were first separated by Ambos-Spies et al. [1] using a

tame version of bushy tree forcing. Our corollary shows that Turing

incomparability does not necessarily hold in models of the weaker

system DNR0.

We prove Theorem 3.1.1 in four steps. The third step (in Sec-

tion 3.4) provides the construction, for each n ă ω, of an initial

segment a1 ă ¨ ¨ ¨ ă an of the desired infinite sequence xaky. The

fourth and last step (in Section 3.5) shows how to string these con-

structions together and so prove Theorem 3.1.1. The first two steps

serve as an introduction to the construction of Section 3.4. In Sec-

tion 3.2 we recast Kumabe’s construction in the language of forcing

that we subsequently use. In Section 3.3 we discuss the case n “ 2

(the construction of a minimal DNC degree a1 and a strong mini-

98 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

mal cover a2 of a1 which is DNC relative to a1). Recall that b is

a strong minimal cover of a if b ą a, but for all c ă b we have

c 6 a. We say that the function f is DNC relative to a if for some

function a of degree a, f peq , Φa
epeq where the latter is defined, and

we write f P DNCa. We say that the degree b is DNC relative to a
if it contains some function which is DNC relative to a.

3.1.1 Fast-growing functions

Below we use trees (or tree systems) which are fairly “bushy” but

associated with them we will have sets of “bad” strings which we

want to avoid. In the first step we use infinite trees and for example

declare every string which is not DNC to be bad. We then extend the

bad set of strings when we force divergence or force a functional to

be constant on a tree. We cannot simply remove the bad strings from

the tree because the trees will be computable whereas the set of bad

strings will be c.e. To ensure that most strings are not bad, and that

the construction can proceed, we will require that the tree is h-bushy

and that the bad set of strings is b-small above the stem of the tree,

where h grows much more quickly than the order-function b. Here

we discuss the notion of relative quickness that we will use.

For an equivalence notion of rate of growth we close under rela-

tive elementary recursive functions. (We could use relative primitive

recursive functions but this is not needed.) For any order function h

one defines the class of order functions which are obtained from h

using a list of rules such as substitution and bounded summation and

3.1. INTRODUCTION 99

multiplication.

We are only concerned with rates of growth. If h grows suf-

ficiently quickly then g is bounded by a function elementary in h if

and only if it is dominated by an iterated composition of h with itself.

In particular, the elementary recursive functions are those which are

bounded by iterated exponentials.

It will be convenient to consider functions that may be undefined

on a finite initial segment of ω.

Definition 3.1.3. Let Q denote the collection of nondecreasing com-

putable functions h : ωÑ r2, ωq satisfying hpnq > 2n for all n.

For h P Q let hp1q “ h and for k > 1, hpk`1q “ h ˝ hpkq. For two

functions h and g in Q we say that h majorises g if hpnq > gpnq for

all n (and write h > g). We say that h > g above m if hpnq > gpnq for

all n > m. We say that h dominates g if h > g above some m (and

write h >˚ g).

We will use the fact that iterated exponentials of h are dominated

by iterates of h. For example:

Example 3.1.4. Let h P Q. Let gpnq “
ś

mPr0,nq hpmq. Then g 6˚

hp3q. For g 6 hh whereas hp2q > 2h and hp3q > 22h
, and 22h

>˚ hh.

Definition 3.1.5. Let h, g P Q. We say that h dominates the iter-

ates of g uniformly, and write h " g, if there is a computable se-

quence xdky such that for all k > 1, h > gpkq on the interval pdk, ωq.

The relation " on Q is transitive. Indeed if h " g, h1 >˚ h and

100 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

g >˚ g1 then h1 " g1. Further, h " gpkq for all k, and so for example

h " 2g.

The following density lemma will be used to keep extending con-

ditions.

Lemma 3.1.6. For all h, g P Q such that h " g there is some f P Q

such that h " f " g.

Proof. The idea is to gradually let f copy gpkq. If f is bounded

by gpkq for a long time, then for a shorter time we can ensure that

f pkq is bounded by gpk
2q, so we do this until the point where h starts

to majorise gppk`1q2q, and only then start copying gpk`1q.

Since g is nondecreasing and dominates the identity, each gpkq is

nondecreasing and gpk`1q > gpkq.

Let k > 1, e > 0 and let f be a function. Suppose that f 6 gpkq

on the interval r0, gpk
2qpeqs (actually the interval r0, gpk

2´kqpeqs will

suffice). Then f pkq 6 gpk
2q on the interval r0, es: by induction on

j 6 k we see that f p jq 6 gpk jq on the interval r0, gpkpk´ jqqpeqs.

Let xdky witness that h " g. We may assume that xdky is nonde-

creasing.

We define a computable sequence ´1 “ a0 6 a1 6 ¨ ¨ ¨ and

then define f by letting f “ gpkq on the interval pak´1, aks. So the

sequence xak´1y witnesses that f " g. But also f 6 gpkq on the

interval r0, aks for all k > 1. So we let ak “ gpk
2qpdpk`1q2q. This

ensures that f pkq 6 gpk
2q on r0, dpk`1q2s, which in turn shows that

h > f pkq on the interval pdk2, dpk`1q2s. Since f P Q, f pmq > f pkq if

m > k, so the sequence xdk2y witnesses that h " f . �

3.1. INTRODUCTION 101

3.1.2 Other notation and conventions

A string is a finite sequence of natural numbers, an element of ωăω.

If σ is a string then we let σ4 be the collection of strings which

extend σ, and rσsă be the set of elements of Baire space ωω which

extend σ. If C is a set of strings then C4 “
Ť

σPC σ
4 and so rCsă “

Ť

σPCrσs
ă.

We may assume that for any Turing functional Γ and for any

string τ, the domain of Γpτq is downwards closed. Thus Γ deter-

mines a monotone computable map τ ÞÑ Γpτq from strings to strings,

which induces a partial computable function on Baire space: Γpxq “
Ť

tΓpτq : τ ă xu.

We let lowercase Greek letters denote strings, lowercase Roman

letters denote elements of Baire space, and uppercase Roman letters

denote sets of strings and sometimes subsets of Baire space.

3.1.3 Compactness, splittings and computability

Definition 3.1.7. A subset X of Baire space is computably bounded

if some computable function majorises every element of X.

Every computably bounded and closed subset of Baire space is

compact.

The following is well-known.

Lemma 3.1.8. Let X Ď ωω be Π0
1 and computably bounded; let

102 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

f : X Ñ 2ω be a computable function.1

• If f is constant on X then this constant value is computable.

• If f is 1-1 on X then for all x P X, x ”T f pxq.

Proof. Suppose that f is constant on X; let f rXs “ tyu. The fact

that X is computably bounded implies that the set of α P 2ăω such

that X “ f´1 rrαsăs is c.e.; this is the set of initial segments of y,

so y is computable.

Suppose that f is 1-1 on X. Let Y “ f rXs. Then Y a Π0
1 subset

of 2ω and f is a homeomorphism between X and Y . And f´1 is

computable: the set of pairs pα, τq such that rαsă X Y Ď f rrτsăs is

c.e. �

If X Ď pωωq
2 and x P ωω we let Xx “ ty : px, yq P Xu.

Lemma 3.1.9. Let X Ď pωωq
2 be Π0

1 and computably bounded. Let

f : X Ñ 2ω be computable and suppose that the collection of sets

f rXxs for x P dom X are pairwise disjoint. Then for all px, yq P X,

x 6T f px, yq.

Proof. For τ P ωăω let Xτ “
Ť

xPrτsă Xx. The set of pairs pτ,Cq

where C Ď 2ω is clopen and f rXτs “ C X f rXs is c.e. �

1Here we think of X and 2ω as computable metric spaces. A computable function from X to 2ω

is given by a uniform Turing reduction.

3.1. INTRODUCTION 103

3.1.4 Forcing with closed sets

We quickly remind the reader of just a few definitions needed for

our development of forcing. A good reference for forcing more gen-

erally in computability theory is Chapter 3 of [42].

A notion of forcing is a partial order pP,6q. We call the elements

of P conditions, and if q 6 p, then we say that q extends p, or that q

is below p. A subset F of P is called a filter if is is upwards closed,

and every pair of elements in F has a common extension in F. A

subset D of P is dense if every condition p P P has an extension in

D.

Definition 3.1.10. Let P be a notion of forcing. Suppose that with

each condition p P P we associate a closed subset Xp of Baire space.

We call this assignment acceptable if:

(a) for all p P P, Xp is nonempty;

(b) if q extends p then Xq Ď Xp; and

(c) for every m, the set of conditions p P P such that Xp Ď rσsă

for some string σ of length m is dense in P.

(Below we will consider finite powers pωωqn of Baire space, but

these are of course effectively isomorphic to Baire space.)

Recall the Borel codes for Borel subsets of Baire space. These

can be identified with propositional sentences in Lω1,ω. To be pre-

cise:

• Every finite set of strings C is a Borel code;

104 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

• If C is a Borel code then C is a Borel code;

• If C is a countable set of Borel codes, then
Ž

C and
Ź

C are

Borel codes.

The semantics are obvious (a finite set of strings C defines the set

rCsă); if C is a Borel code then we let tCu be the Borel subset of

Baire space defined by C.

Suppose that P is a notion of forcing equipped with an acceptable

assignment of closed sets Xp. We define the forcing relation p C

between conditions in P and Borel codes C. We start with strong

forcing.

Definition 3.1.11. Let C be a Borel code and let p P P. We say that

p strongly forces C if Xp Ă tCu. We write p ˚ C.

Now by recursion on Borel codes C we define forcing.

• For a finite set of strings D, p D if the collection of conditions

which strongly force D is dense below p.

• p C if no extension of p forces C.

• p
Ź

C if p C for all C P C.

• p
Ž

C if the set of conditions which force some element of C

is dense below p.

The basic properties of forcing hold.

Lemma 3.1.12. Let p P P and let C be a Borel code.

3.1. INTRODUCTION 105

1. No condition forces both C and C.

2. The set of conditions which decide C is dense in P.

3. If q extends p and p C then q C.

4. If the set of conditions which force C is dense below p then

p C.

Forcing equals truth. That is, every sentence in our language is

true if and only if it can be forced. It will be convenient to con-

sider directed subsets of P rather than filters; of course the upwards

closure of a directed set is a filter, so we can always pass to filters

without adding information. Genericity for directed sets is defined

using dense open sets: dense subsets of P which are closed down-

wards (closed under taking extensions). Note that the dense sets of

conditions mentioned above are all open.

Suppose that G Ă P is a directed set. If G meets all of the dense

open sets of conditions guaranteed by (c) above, then
Ş

pPP Xp is a

singleton that we denote by txGu. (This uses the completeness of

Baire space; we do not need the sets Xp to be compact.)

In the rest of the chapter, the statement “for all sufficiently generic

G Ă P ...” means: there is a countable collection D of dense open

subsets of P such that for every directed subset of P meeting all the

sets inD, ...

Lemma 3.1.13. Let C be a Borel code. If G Ă P is a sufficiently

generic directed set then xG P tCu if and only if p C for some p P

G.

106 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Proof. First note that if p P G and p ˚ C then xG P tCu. On

the other hand, suppose that D is a finite set of strings, and suppose

that xG P rDsă: there is some τ ă xG such that τ P D. By as-

sumption, there is some string η of length |τ| and some p P G such

that Xp Ď rηsă. Then η “ τ, and so p ˚ D, which implies that

p D.

The rest of the argument follows the usual proof of the equiva-

lence of forcing and truth for generic filters. �

Since every condition can be extended to a sufficiently generic

directed set, we conclude:

Corollary 3.1.14. Let p P P and let C be a Borel code.

1. p C if and only if for every sufficiently generic directed set G,

if p P G then xG P tCu.

2. If tCu Ď tC1u and p C then p C1.

3. If p ˚ C then p C.

In light of (2) we write p xG P A when A is a Borel subset of

Baire space, rather than a code for such a set.

3.1.5 Simplified iterated forcing

We give a not-completely-standard definition for restriction maps

between notions of forcing.

3.1. INTRODUCTION 107

Definition 3.1.15. Let P and Q be partial orderings. A restriction

map from Q to P is an order-preserving map i from Q to P such that

for all q P Q, the image of Qp6 qq (the set of extensions of q) under i

is dense below ipqq.

That is, for all q P Q and p 6 ipqq there is some r 6 q in Q such

that iprq 6 p.

Lemma 3.1.16. Let i : QÑ P be a restriction map.

1. If G Ă Q is a directed set then irGs Ă P is a directed set.

2. If D Ď P is dense and open then i´1rDs Ď Q is dense and open.

Hence for any collection D of dense open subsets of P there is

a collection E of dense open subsets of Q such that if G Ă Q is

a directed set which meets every set in E, then irGs is a directed

set which meets every set in D. In other words, if G is sufficiently

generic then so is irGs.

Suppose that P and Q have acceptable assignments of closed sets

Xp Ď ωω for p P P and Yq Ď pωωq
2 for q P Q. Suppose that i : QÑ

P is a restriction map and further that for all q P Q, Xipqq Ě dom Yq.

Let G Ă Q be sufficiently generic; we denote the generic pair of

reals by pxG, yGq. Then xirGs “ xG.

3.1.6 The plan

To prove Theorem 3.1.1, for each n ă ω we define a notion of

forcing Pn which adds an initial segment of the degrees of length n,

108 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

each degree DNC relative to the one below it. We then show that

there are restriction maps from each Pn to Pn´1. This will allow us

to obtain generic Gn Ă Pn which are coherent, from which we will

obtain the desired ω-sequence of degrees.

3.2 A DNC minimal degree

Khan (see [29]) showed that for any Turing degree x there is a func-

tion which is DNC relative to x and of minimal Turing degree. He

presented an elaboration on the Kumabe-Lewis construction using

the language of forcing in computability (rather than give an explicit

construction). The extra complication is due to the fact that the set

of strings which are not DNCx is c.e. in x, rather than merely c.e.

We have no access to this set when defining the computable trees.

For this reason Khan needs to use trees with terminal elements (and

the set of terminal elements is co-c.e. but not computable).

In this section we present a proof of the original Kumabe-Lewis

theorem using the language of forcing. We use c.e. sets of bad

strings and trees with no terminal elements.

3.2.1 Trees and forests

We follow [1, 23, 29] and use trees which are sets of strings rather

than function trees (as in [9, 32]). We localise to basic clopen sets.

Recall that for a string σ, σ4 is the set of strings extending σ.

A tree above σ is a nonempty subset of σ4 which is closed in σ4

3.2. A DNC MINIMAL DEGREE 109

under taking initial segments. A set of strings A is prefix-free if no

two distinct elements of A are comparable. If A is a finite prefix-free

set of strings then a forest above A is a set T Ď A4 such that for

all σ P A, T X σ4 is a tree above σ. In particular we require that

A Ď T . When we just say “tree” we mean a tree aboveσ for someσ;

the string σ will usually be clear from the context or unimportant.

The same holds for forests. We will mostly only use finite forests,

but will use both finite and infinite trees.

Let T be a forest and let τ P T . An immediate successor of τ on T

is a string τ1 ą τ on T such that |τ1| “ |τ| ` 1. A leaf of a forest T ,

also known as a terminal element of T , is a string on T which has

no proper successors on T .

A subtree of a tree T is a subset S Ď T which is a tree. Note that

the stem of S may equal the stem of T , or properly extend the stem

of T . If T is a tree and τ P T then the full subtree of T above τ is

T X τ4, the set of strings on T which extend τ.

If T is a tree above σ then rT s is the set of infinite paths of T , the

set of x P ωω such that x�nP T for all n > |σ|. This is a closed subset

of ωω. Recall that rσsă is the set of extensions of σ in Baire space;

in our notation, rσsă “ rσ4s.

A tree T is bounded by a function h if for all τ P T , τpnq ă hpnq

for all n 6 |τ|. It is computably bounded if h can be taken to be

computable. If T is computably bounded then so is rT s (Defini-

tion 3.1.7).

110 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

3.2.2 Bushy notions of largeness

The basic notions of “bushiness” were extended from constant bounds

to order functions, see [8, 29]. We recall the definitions and basic

properties. A bounding function is a computable function from ω

to r2, ωq.

Definition 3.2.1. Let T be a forest above a finite prefix-free set of

strings A; let h be a bounding function. We say that T is h-bushy if

every nonterminal τ P T has at least hp|τ|q many immediate succes-

sors on T .

Definition 3.2.2. Let A be a finite prefix-free set of strings and let B

be a set of strings. Let h be a bounding function. The set B is h-big

above A if there is a finite forest T above A which is h-bushy, all of

whose leaves are elements of B.

If A is an infinite set of strings then we say that B is h-big above A

if B is h-big above every finite, prefix-free subset of A.

If B is not h-big above A then we say it is h-small above A.

If A is a singleton tσu then we say that B is h-big (or h-small)

above σ. A set B is h-big above A if and only if the set of minimal

strings in B is h-big above A. We thus often use the notion for either

prefix-free sets of strings, or for open sets of strings – those that

are upwards closed (closed under taking extensions). Also note that

sometimes we do not assume that B only contains extensions of A,

but of course for this notion it suffices to look at BX A4.

3.2. A DNC MINIMAL DEGREE 111

The following remark is trivial. Its generalisations in later sec-

tions will be less so.

Remark 3.2.3. Suppose that B is a set of strings, h-big above A, and

that A, B Ď T for some tree T . Then any forest S which witnesses

that B is h-big above A is a subset of T .

The basic combinatorial properties of this notion of largeness

have been repeatedly observed [27, 32, 23, 29].

Lemma 3.2.4 (Big subset property). Let h and g be bounding func-

tions. Let B and C be sets of strings, let σ be a string, and suppose

that B Y C is ph ` gq-big above σ. Then either B is h-big above σ

or C is g-big above σ.

Here it is important that we work above a single string σ and not

above any finite A.

Proof. Let T be a tree which witnesses that B Y C is ph ` gq-big

above σ. Label a leaf τ of T “B” if it is in B, and “C” otherwise.

Now if ρ P T and all immediate successors of ρ have been labelled

then since ρ has at least hp|ρ|q ` gp|ρ|q immediate successors on T ,

either at least hp|τ|q of these are labelled “B” or at least gp|τ|q of

them are labelled “C”. In the first case label ρ “B”, in the other label

it “C”. Eventually σ is labelled. If σ is labelled “B” then the set

of ρ P T labelled “B” form a tree which witnesses that B is h-big

above σ; and similarly if σ is labelled “C”. �

Lemma 3.2.5 (Concatenation property). Let h be a bounding func-

tion. Let A, B and C be sets of strings. Suppose that B is h-big

112 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

above A, and that C is h-big above every τ P B. Then C is h-big

above A.

Proof. Let A1 be a finite, prefix-free subset of A. Let T be a forest

which witnesses that B is h-big above A1. For a leaf τ of T let Rτ be a

tree which witnesses that C is h-big above τ. Then T Y
Ť

Rτ, where

τ ranges over the leaves of T , witnesses that C is h-big above A1. �

The concatenation property will sometimes be used to recursively

build bushy trees meeting infinitely many big sets. Again the follow-

ing are fairly immediate; their generalisations in the next sections

will be less so.

Definition 3.2.6. A forest R is an end-extension of a forest S if every

string in RzS extends some leaf of S .

(This is not the same as the usual definition for partial order-

ings, but under the usual definition, any tree extension is an end-

extension.) The argument proving the concatenation is broken up to

show:

Lemma 3.2.7. Let A, B,C be sets of strings, and let h be a bounding

function.

1. Suppose that C is h-big above every τ P B. Then C is h-big

above B.

2. Suppose that A is prefix-free and finite; suppose that B is h-big

above A and that C is h-big above B. Then any forest which

3.2. A DNC MINIMAL DEGREE 113

witnesses that B is h-big above A has an end-extension which

witnesses that C is h-big above A.

Remark 3.2.8. Throughout, we will assume that whenever we are

given a set of strings which is guaranteed to have some largeness

property, then this set is the set of leaves of a forest witnessing this

property. For example, suppose that we are given a set B which

is h-big above some σ. We will assume, often without mentioning

it, that B is finite, that it is prefix-free, and that every string in B

extends σ.

3.2.3 The notion of forcing and the generic

Let BDNC be the set of strings σ that are not initial segments of di-

agonally noncomputable functions: σpeq “ JpeqÓ for some e ă |σ|,

where J is a fixed universal jump function, for example Jpeq “

ϕepeq.

Let T be a tree. We say that a set of strings B Ď T is open in T if

it is upwards closed in T : if σ P B and τ < σ is in T then τ P B.

We let P1 be the set of tuples p “ pσp,T p, Bp, hp, bpq satisfying:

1. T p is a computably bounded, computable tree above σp with

no leaves.

2. hp P Q and T p is hp-bushy.

3. Bp Ă T p is c.e. and open in T p, and Bp Ě BDNC X T p.

4. bp P Q and Bp is bp-small above σp.

114 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

5. hp " bp and hp > bp above |σp|.

Lemma 3.2.9. P1 is nonempty.

Proof. The set BDNC is c.e. and is 2-small above the empty string xy.

Fix some b P Q (and recall that b > 2); and find some h P Q such

that h " b and h > b (for example hpnq “ bpn`1qpnq). Recall that hăω

is the set of h-bounded strings. Then p “ pxy, hăω, BDNCXhăω, h, bq

is a condition in P1. �

We define a partial ordering on P1 as follows. A condition q

extends a condition p if σp 4 σq, T q is a subtree of T p, Bp X T q Ď

Bq, and hq 6 hp and bq > bp above |σq|.

To use the machinery of forcing developed in Section 3.1.4 we

need to associate with each condition p P P1 a closed set Xp.

Lemma 3.2.10. The assignment of closed sets Xp “ rT pszrBpsă “

rT pzBps for p P P1 is acceptable (Definition 3.1.10).

Proof. Requirement (b), that Xq Ď Xp if q extends p, follows di-

rectly from the definition of the partial ordering on P1.

Let p P P1. Suppose that rT ps Ď rBpsă. Since T p is bounded,

rT ps is compact. This implies that there is a prefix-free, finite set

C Ă Bp such that every τ P T p is comparable with some element

of C. The collection of strings in T p extended by some string in C

witnesses that Bp is hp-big above σp. Since hp > bp above |σp| this

implies that Bp is bp-big above σp. We get requirement (a): Xp is

nonempty.

3.2. A DNC MINIMAL DEGREE 115

Again let p P P1. Let m > |σp|. There is some τ P T p of length m

above which Bp is bp-small; otherwise, the concatenation property

implies that Bp is bp-big above σp. If Bp is bp-small above τ then

q “ pτ,T p X τ4, Bp X τ4, hp, bpq is a condition in P1 extending p

and satisfying Xq Ď rT qs Ď rτsă. This gives requirement (c) of

Definition 3.1.10. �

As discussed in Section 3.1.4, if G Ă P1 is sufficiently generic

then
Ş

pPGrT
pzBps is a singleton txGu. In fact

xG
“
ď

tσp : p P Gu .

Let p P P1; since BDNCXT p Ď Bp we see that Xp Ď DNC. Since

strong forcing implies forcing (Corollary 3.1.14(3)) we get:

Proposition 3.2.11. Every condition in P1 forces that xG P DNC.

Remark 3.2.12. Let A be an open set of strings and let g be a bound-

ing function. We say that A is g-closed if every string above which A

is g-big is an element of A.

The concatenation property implies that every set A has a g-

closure: the set of all strings above which A is g-big is g-closed.

Let p P P1. We could require that Bp be bp-closed by replacing it

by its bp-closure. In this case T pzBp is an php ´ bpq-bushy tree with

no leaves.

In later sections we will use notions of largeness for which the

concatenation property fails, and so will not be able to quite mimic

this operation. Some amount of closure will be required to ensure

that we get a restriction map from Pn to Pn´1.

116 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

3.2.4 Totality

Recall that for a set of strings C we let rCsă “
Ť

σPCrσs
ă be the set

of x P ωω which extend some string in C.

Lemma 3.2.13. Let p P P1. Let C Ď T p be c.e. and open in T p.

Suppose that p xG P rCsă. Let τ P T p; let g P Q such that hp " g,

and hp > g > bp above |τ|. Then the set Bp YC is g-big above τ.

Proof. Otherwise q “ pτ,T pXτ4, pBpYCqXτ4, hp, gq is a condition

extending p which strongly forces that xG < rCsă. (We need g > bp

above |τ| not to ensure that q is a condition but to ensure that it

extends p.) �

Remark 3.2.14. Let p P P1, let C Ď T p be c.e. and open in T p, and

suppose that p strongly forces that xG P rCsă. By compactness there

is some level m such that all strings in T p of length m are in BpYC.

This shows that Bp YC is hp-big above every τ P T p.

The following proposition shows that when we force totality of ΓpxGq

(for some Turing functional Γ), we can in fact force strong totality.

Proposition 3.2.15. Let C Ď ωω be Π0
2 and let p P P1. Then

p xG P C if and only if the set of conditions which strongly force

that xG P C is dense below p.

Proof. It suffices to show that if p xG P C then p has an extension

which strongly forces that xG P C. Fix such p.

By Lemma 3.1.6, find some g P Q such that hp " g " bp. As dis-

cussed above, every level of T p contains a string above which Bp X

3.2. A DNC MINIMAL DEGREE 117

T p is bp-small. So by extendingσp (and taking the full subtree above

that string) we may assume that hp > g > bp above |σp|.

Let xCky be a uniform sequence of c.e. subsets of T p, open in T p,

such that C X rT ps “ rT ps X
Ş

krCks
ă. Lemma 3.2.13 says that for

all τ P T p, for all k, the set Bp YCk is g-big above τ.

We effectively define an increasing sequence xS ky of finite g-

bushy trees with the following properties:

• S k is g-bushy;

• S k`1 is an end-extension of S k, and no leaf of S k is a leaf

of S k`1;

• S k Ă T p; and

• the leaves of S k`1 lie in Bp YCk.

We start with S 0 “ tσpu. We know that Bp Y C0 is g-big

above σp; Lemma 3.2.13 together with Lemma 3.2.7 shows that for

all k ą 0, Bp Y Ck is g-big above Bp Y Ck´1. Thus, given S k we

can find a g-bushy end-extension S 1k of S k with leaves in Bp Y Ck;

Remark 3.2.3 shows that S 1k Ă T p. Since T p has no leaves, we can

extend S 1k to the required S k`1 by adding children from T p to each

leaf of S 1k (using the fact that hp > g above |σp|).

Having defined the trees S k we let S “
Ť

k S k. Then S Ď T p, S

is g-bushy, and S has no leaves. Also, S is computable: a string of

length k is in S if and only if it is in S k.

118 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Every path in S lies in rBp Y Cks
4 for all k and so rS zBps Ď C.

We required that g " bp, so q “ pσp, S , Bp X S , g, bpq is a condition

which extends p and strongly forces that xG P C. �

3.2.5 Minimality

We prove:

Proposition 3.2.16. Every condition in P1 forces that degTpx
Gq is

minimal.

Let Γ : ωω Ñ 2ω be a Turing functional. There are three ways

to ensure that ΓpxGq does not violate the minimality of degTpx
Gq:

ensuring that it is partial, ensuring that it is computable, or ensuring

that it computes xG.

For the rest of this section, fix a Turing functional Γ : ωω Ñ 2ω.

Definition 3.2.17. Let B be a set of strings. Two sets A0 and A1

of strings Γ-split mod B if Γpτ0q K Γpτ1q for all τ0 P A0zB and

τ1 P A1zB.

Lemma 3.2.18. Suppose that p P P1 strongly forces that ΓpxGq is

total, and forces that ΓpxGq is noncomputable.

Let τ P T p. Let g P Q such that hp " g, and hp > 3g and g > bp

above |τ|. Then there are A0, A1 Ă T p, each g-big above τ, which

Γ-split mod Bp.

Proof. Suppose that τ and g witness the failure of the lemma; we

find an extension of p which forces that ΓpxGq is computable.

3.2. A DNC MINIMAL DEGREE 119

For α P 2ăω let

Aα “ Bp
Y tρ P T p : Γpρq < αu

and

AKα “
ď

Aβ vβ P 2ăω & β K αw.

Let α P 2ăω and suppose that Aα is 2g-big above τ. By Re-

mark 3.2.14 the set Aαˆ0 Y Aαˆ1 is hp-big above every ρ P Aα. Since

hp > 2g above |τ|, the concatenation property implies that Aαˆ0YAαˆ1

is 2g-big above τ. By the big subset property there is some i ă 2

such that Aαˆi is g-big above τ [Here we use that the range of Γ is

in Cantor rather than Baire space; we also use this in the proof of

Lemma 3.2.20].

The assumption implies that AKαˆi is g-small above τ. Since AαˆiY

AKαˆi is hp-big above τ and 3g 6 hp above |τ| it must be that in

fact Aαˆi is 2g-big above τ.

By recursion define the unique z P 2ω such that for all α ă z, Aα

is 2g-big above τ. Note that z is computable. The set

AKz “
ď

kăω

AKz�k

is g-small above τ because it is the union of an increasing sequence

of sets, each g-small above τ; since largeness is witnessed by a finite

tree, g-smallness above τ is preserved when taking the union. The

fact that z is computable shows that AKz is c.e., whence the tuple

pτ,T p X τ4, AKz X τ4, hp, gq is a condition extending p as required

(recalling that Bp Ď AKz). �

120 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

The following lemma will allow us to construct a “delayed split-

ting” subtree of T p.

Lemma 3.2.19. Suppose that p P P1 strongly forces that ΓpxGq is to-

tal, and forces that ΓpxGq is noncomputable. Suppose that τ1, τ2, . . . , τk P

T p. Let g P Q such that hp " g, and g > bp and hp > 3kg

above mint|τ1|, |τ2|, . . . , |τk|u. Then there are sets A1, A2, . . . , Ak Ă

T p, each A j g-big above τ j, which pairwise Γ-split mod Bp.

To prove Lemma 3.2.19 we need the following, which (mod B)

is Lemma 6.2 of [32].

Lemma 3.2.20. Let g, h P Q; let B be a set of strings. Suppose that:

• τ and τ˚ are strings;

• A is a set of strings, 3g-big above τ;

• For all ρ P A, Eρ,0 and Eρ,1 are 3g-big above ρ and Γ-split

mod B; and

• F is a set of strings, 3h-big above τ˚, satisfying |Γpσq| ą |Γpνq|

for allσ P FzB and all ν P EzB, where E “
Ť

Eρ,i vρ P A, i ă 2w.

Then there are E1 Ď E, g-big above τ, and F 1 Ď F, h-big above τ˚,

which Γ-split mod B.

We delay the proof of Lemma 3.2.20 until the end of the section.

Proof of Lemma 3.2.19, given Lemma 3.2.20. The proof is by induc-

tion on k. The lemma is vacuous for k “ 1. Assume the lemma has

3.2. A DNC MINIMAL DEGREE 121

been proven for k. Let τ1, . . . , τk and τ˚ be strings on T p; suppose

that hp " g, and hp > 3k`1g and g > bp above mint|τ˚|, |τ1|, |τ2|, . . . , |τk|u.

The hypothesis for k holds for the bound 3g instead of g, and so

by induction we find finite sets A1, . . . , Ak Ă T p, each A j 3g-big

above τ j, which pairwise Γ-split mod Bp. As per Remark 3.2.8 we

assume that A j Ă τ4j .

For every j “ 1, . . . , k, for every ρ P A j, by Lemma 3.2.18 find

finite Eρ,0 and Eρ,1, subsets of T p, each 3g-big above ρ and contained

in ρ4, which Γ-split mod Bp. Let E j “
Ť

Eρ,i vρ P A j, i ă 2w. Note

that the E j also pairwise Γ-split mod Bp.

Since
Ť

j6k E j is finite, p strongly forces totality of ΓpxGq and

3k`1g 6 hp above |τ˚|, by Remark 3.2.14 we find F Ă T p which is

3kg-big above τ˚, such that |Γpσq| ą |Γpνq| for all σ P FzBp and

ν P
Ť

j6k E jzBp.

Let Fk “ F. By (reverse) recursion on j “ k, k ´ 1, . . . , 1 we

define sets E1j Ď E j and F j´1 Ď F j such that every E1j is g-big

above τ j, F j is 3 jg-big above τ˚ and E1j and F j´1 pairwise Γ-split

mod Bp. To do this, given F j apply Lemma 3.2.20 with τ “ τ j,

A “ A j, g, τ˚ and Eρ,i as themselves, F “ F j and h “ 3 j´1g.

In the end the sets E1j for j 6 k and F0 are as required. �

Proposition 3.2.21. Every condition in P1 forces that if ΓpxGq is total

and noncomputable then ΓpxGq ”T xG.

Proof. It suffices to show that if p P P1 forces that ΓpxGq is total and

noncomputable then p has an extension which forces that ΓpxGq ”T

122 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

xG. By Proposition 3.2.15 we may assume that p strongly forces

that ΓpxGq is total.

By Lemma 3.1.6 find some g P Q such that hp " g " bp.

Let ḡpnq “
ś

măn gpmq. As above by extending σp we may assume

that hp > 3ḡg and g > bp above |σp| (see Example 3.1.4).

We effectively define an increasing sequence x`ky and a sequence

xS ky of finite subtrees of T p such that: (a) S k`1 is an end-extension

of S k; (b) the leaves of S k all have length `k; and (c) S k is exactly g-

bushy: every nonterminal τ P S k has precisely gp|τ|q many immedi-

ate extensions on S k.

Let `0 “ |σ
p| and S 0 “ tσ

pu. Suppose that S k and `k have been

defined. For every leaf τ of S k we find a finite tree Rτ Ă T p, exactly

g-bushy above τ, such that the sets of leaves of the various Rτ pair-

wise Γ-split mod Bp. This can be done since the number of leaves

of S k is
ś

mPr|σp|,`kq
gpmq, which is bounded by ḡp`kq. We assumed

that hp > 3ḡg and so hp > 3ḡp`kqg above `k; so Lemma 3.2.19 applies.

Let S 1k be the union of S k with the trees Rτ for all leaves τ of S k.

Let `k`1 be greater than the height of S 1k; obtain S k`1 by appending

a subtree of T p, exactly g-bushy above ρ, to every leaf ρ of S 1k.

Let S “
Ť

k S k. As in the proof of Proposition 3.2.15, S is

computable, computably bounded and has no leaves. It is g-bushy,

and Γ is 1-1 on rS zBps: if x, x1 P rS zBps and x �`k, x1 �`k then

Γpx�`k`1q K Γpx
1�`k`1q. The tuple pσp, S , BpX S , g, bpq is a condition

as required (Lemma 3.1.8). �

Proof of Proposition 3.2.16. Let p P P1. Let Γ be a Turing func-

3.2. A DNC MINIMAL DEGREE 123

tional. If p has an extension which forces that ΓpxGq is partial then

we are done. Otherwise p forces that ΓpxGq is total. We can extend p

to a condition q which decides whether ΓpxGq is computable or not.

If the former then we are done. Otherwise, Proposition 3.2.21 says

that q forces that ΓpxGq ”T xG. �

Proof of Lemma 3.2.20. Let E “
Ť

Eρ,i vi ă 2 & ρ P Aw.

For a string α P 2ăω let

F<α “ pF X Bq Y tσ P F : Γpσq < αu ,

and similarly define FKα, E<α, E4α and so on.

If FXB is h-big above τ˚ then we can let F 1 “ FXB and E1 “ E.

Similarly if E X B is g-big above τ.

Suppose otherwise. In that case, for sufficiently long α, F<α is

h-small above τ˚ (as it equals F X Bq. Let α be a string, maximal

with respect to F<α being h-big above τ˚. We will show that either

1. EKα is g-big above τ, or

2. E<α is g-big above τ and FKα is h-big above τ˚.

In both cases we can find E1 and F 1 as required.

We examine two cases, depending on E4α.

First, suppose that E4α is g-big above τ. Let R be a tree wit-

nessing this. Every leaf of R extends some element of A, so ev-

ery element of R is comparable with some element of A. Since A

is an antichain, the restriction of R to initial segments of elements

of A is g-bushy. This shows that A1, the set of ρ P A such that

124 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

E4α is g-big above ρ, is g-big above τ. We show that EKα is g-big

above every ρ P A1; with the concatenation property this implies (1).

Let ρ P A1; there are two possibilities. If BXE is g-big above ρ then

we are done. Otherwise for some i ă 2, Eρ,i intersects E4αzB. But

then Eρ,1´i Ď EKα, and Eρ,1´i is 3g-big above ρ.

In the second case, suppose that E4α is g-small above τ. Since E “

EKα Y E<α Y E4α is 3g-big above τ, either (1) holds, or E<α is g-big

above τ. Assume the latter. We assumed that E X B is g-small

above τ; together, we see that E<αzB is nonempty. In turn this im-

plies that |Γpσq| ą |α| for all σ P FzB; so F “ Fŋα Y FKα.

The maximality of α ensures that Fŋα is 2h-small above τ˚ [Here

again we use the fact that Γ maps into Cantor space]. Since F is 3h-

big above τ˚ it must be that FKα is h-big above τ˚, so (2) holds. �

3.3 A relatively DNC SMC of a DNC minimal de-
gree

We now construct two sequences x, y P ωω such that x P DNC, x

has minimal Turing degree, y P DNCx and degTpx, yq is a strong

minimal cover of degTpxq. Here, degTpx, yq is the Turing degree of

the computable join of x and y.

We use the mechanism of tree systems that was used by Cai [7,

6, 9] to show that there is a generalised high degree which is a min-

imal cover of a minimal degree. This is a more versatile approach

than the homogenous trees which are usually used to construct initial

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 125

segments of the Turing degrees (as in [35]).

3.3.1 Length 2 tree systems

Let A Ď ωăω ˆ ωăω be a set of pairs of strings. For τ P ωăω we let

Apτq “ tρ P ωăω : pτ, ρq P Au .

Of course dom A “ tτ : Dρ rpτ, ρq P Asu.

Definition 3.3.1. A tree system of length 2 above a pair pσ, µq is a

set T of pairs of strings satisfying:

• dom T is a tree above σ;

• For all τ P dom T , T pτq is a finite tree above µ; and

• If τ ă τ1 are in dom T then T pτ1q is an end-extension of T pτq.

In this section we only consider systems of length 2 and so we

omit mentioning the length.

A tree system S is a subsystem of T if S Ď T . This means that

dom S is a subtree of dom T and for all τ P dom S , S pτq is a subtree

of T pτq. If pτ, ρq P T then T X pτ, ρq4 is a tree system, the system

whose domain is the full subtree of dom T above τ and which maps

all τ1 in its domain to the full subtree of T pτ1q above ρ. Here of

course pτ, ρq4 “ τ4 ˆ ρ4 is the upwards-closure of tpτ, ρqu in the

partial ordering 4 on pωăωq2 defined by the product of extension on

strings: pτ, ρq 4 pτ1, ρ1q if τ 4 τ1 and ρ 4 ρ1.

126 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

A tree system is h-bounded if for all pτ, ρq P T , τpnq ă hpnq for

all n ă |τ| and ρpnq ă hpnq for all n ă |ρ|. It is computably bounded

if it is bounded by some computable function.

If T is a computable and computably bounded tree system then

dom T is computable and the map τ ÞÑ T pτq is computable (for each

τ P dom T we obtain a canonical index for T pτq as a finite set).

Forest systems

To iterate largeness we require the notion of forest systems.

We call a set of pairs of strings A Ă pωăωq2 prefix-free if dom A

is prefix-free and for all τ P dom A, Apτq is prefix-free. For a set

of pairs A let A4 “
Ť

pσ,µqPApσ, µq
4 be the upwards closure of A

under 4. If A is prefix-free then A4 is the disjoint union of pσ, µq4

for pσ, µq P A. In other words, if pτ, ρq extends some element of A

then that element is unique. We denote this element by pτ, ρq´A.

Definition 3.3.2. A forest system of length 2 above a finite prefix-

free set A Ă pωăωq2 is a set T of pairs of strings satisfying:

• dom T is a forest above dom A;

• For all τ P dom T , T pτq is a finite forest above Apτ´ dom Aq

(where again τ´ dom A is τ’s unique predecessor in dom A); and

• If τ ă τ1 are in dom T then T pτ1q is an end-extension of T pτq.

A leaf of a forest system T is a pair pτ, ρq P T such that τ is a

leaf of dom T and ρ is a leaf of T pτq. Equivalently, it is a maximal

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 127

element of the set of pairs T , if T is partially ordered by double

extension 4. The set of leaves of a finite forest system is prefix-free.

Paths of tree systems

Let T be a tree system above pσ, µq. For x P rdom T s we let

T pxq “
ď

T pτq vσ 4 τ ă xw.

We also let

rT s “ tpx, yq : x P rdom T s & y P rT pxqsu.

In general the set rT s need not be closed.

Lemma 3.3.3. Suppose that for all x P rdom T s the tree T pxq has

no leaves. Then rT s is a closed subset of rσ, µsă.

Proof. For τ P dom T let

Eτ “
ď

rρsă vρ a leaf of T pτqw;

for n > |σ| let

En “
ď

prτsă ˆ Eτq vτ P dom T & |τ| “ nw.

Each En is clopen. We show that rT s “
Ş

En. We always have

rT s Ď
Ş

n>|σ| En. For suppose that px, yq P rT s, and let n > |σ|. Let

τ “ x�n; so τ P dom T . Let m be greater than the height of T pτq,

and let ρ “ y�m. Since ρ P T pxq there is some τ1 ă x such that

ρ P T pτ1q. Since ρ < T pτq we must have τ ă τ1, and so ρ extends

some leaf of T pτq; this shows that y P Eτ, so px, yq P En.

128 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

In the other direction we use our assumption. Suppose that px, yq P
Ş

n>|σ| En. For all n > |σ|, px, yq P En implies that x�nP dom T , so

x P rdom T s. For all n > |σ|, some leaf of T px �nq is an initial

segment of y. To show that y P rT pxqs it suffices to show that the

minimum length of a leaf in T px�nq is unbounded as n Ñ 8. But

otherwise T pxq would have a leaf. �

We will require that the pairs in tree systems appearing in our

conditions can be extended to paths. It is not enough to require that

the system does not have leaves.

Lemma 3.3.4. Let T be a bounded tree system and suppose that dom T

has no leaves. The following are equivalent:

1. For all k there is some m such that for every τ P dom T of

length m, every leaf of T pτq has length at least k.

2. For all x P rdom T s, T pxq has no leaves.

Proof. That (1) implies (2) is immediate. Suppose (2) holds. By

Lemma 3.3.3, rT s is closed; since T is bounded, rT s is compact.

Let k ă ω. The collection of clopen rectangles rτ, ρsă where τ P

dom T , ρ is a leaf of T pτq, and |ρ| > k is an open cover of rT s; a

finite sub-cover gives the desired m. �

To simplfy the combinatorics of finding big splittings, we restrict

ourselves to “balanced” tree systems.

Definition 3.3.5. Let T be a tree system and let n ă ω. We say

that m is a balanced level of T if for all τ P dom T of length m, every

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 129

leaf of T pτq has length m. We say that T is balanced if dom T has

no leaves and T has infinitely many balanced levels.

If T is bounded and balanced then it satisfies the conditions of

Lemma 3.3.4 and so by Lemma 3.3.3, rT s is closed. If T is bal-

anced, computable and computably bounded then rT s is effectively

closed (this is really where we use the requirement that if τ1 extends τ

in dom T then T pτ1q is an end-extension, rather than any extension,

of T pτq).

3.3.2 Bushiness for forest systems

Definition 3.3.6. Let g and h be bounding functions. A forest sys-

tem T is pg, hq-bushy if dom T is g-bushy and for all τ P dom T ,

T pτq is h-bushy.

Lemma 3.3.7. Let A Ă pωăωq
2 be finite and prefix-free, and let g

and h be bounding functions. The following are equivalent for a

set B of pairs of strings:

1. There is a finite pg, hq-bushy forest system above A, all of whose

leaves lie in B.

2. The set of τ such that Bpτq is h-big above Apτ´ dom Aq is g-big

above dom A.

Proof. Assume (2). We define a forest system S by first defin-

ing dom S , and then for all τ P dom S , defining S pτq. We let dom S

be a g-bushy forest above dom A such that for every leaf τ of dom S ,

130 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Bpτq is h-big above Apτ´ dom Aq. Now let τ P dom S ; letσ “ τ´ dom A.

There are two cases. If τ is a leaf of dom S then we let S pτq be

an h-bushy forest above Apσq which witnesses that Bpτq is h-big

above Apσq. If τ is not a leaf of dom S then we let S pτq “ Apσq. �

These equivalent conditions define the notion of B being pg, hq-

big above A; if they fail, we say that B is pg, hq-small above A. If A

is infinite then we say that B is pg, hq-big above A if it is pg, hq-big

above every finite prefix-free subset of A.

For brevity we let for B Ď pωăωq2, a bounding function h and a

finite prefix-free set of strings D

πh
DpBq “ tτ : Bpτq is h-big above Du .

Note that πh
DpBq “

Ş

ρPD π
h
ρpBq. A set B is pg, hq-big above a finite

prefix-free set A if and only if for all σ P dom A, πh
ApσqpBq is g-big

above σ.

The big subset property (the analogue of Lemma 3.2.4) holds.

Lemma 3.3.8. Let g, g1 and h, h1 be bounding functions and let pσ, µq P

pωăωq
2. Suppose that B,C Ď pωăωq2 and that BYC is pg`g1, h`h1q-

big above pσ, µq. Then either B is pg, hq-big above pσ, µq or C is

pg1, h1q-big above pσ, µq.

Proof. The set πh`h1
µ pBYCq is pg` g1q-big above σ. The big subset

property implies that πh`h1
µ pBY Cq Ď πh

µpBq Y πh1
µ pCq. Utilising the

big subset property again, this time on the left coordinate, we see

that either πh
µpBq is g-big above τ or πh1

µ pCq is g1-big above τ. The

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 131

first means that B is pg, hq-big above pσ, µq; the second, that C is

pg1, h1q-big above pσ, µq. �

Weak concatenation

The concatenation property (Lemma 3.2.5) fails. Suppose that A is

pg, hq-big above pσ, µq, and that B is pg, hq-big above every pτ, ρq P

A. It is possible that B is not pg, hq-big above pσ, µq: take for exam-

ple two strings ρ1 and ρ2 and a string τ such that pτ, ρ1q, pτ, ρ2q P A.

Then πh
ρ1
pBq and πh

ρ2
pBq are both g-big above τ, but the trees wit-

nessing these facts need not be the same. That is, it is possible that

πh
tρ1,ρ2u

pBq is g-small above τ. As a result, it is possible that a set B is

pg, hq-small above some pσ, µq but the set of pairs above which B is

pg, hq-big is pg, hq-big above pσ, µq. Instead, we will employ a weak

version of the concatenation property.

Definition 3.3.9. Let S and R be forest systems. We say that R is an

end-extension of S if:

• dom R is an end-extension of dom S ;

• If τ P dom S is not a leaf of dom S , then Rpτq “ S pτq;

• If τ is a leaf of dom S then Rpτq is an end-extension of S pτq.

Note that this relation is transitive. Now if T is a finite (length

1) forest above A, E is the set of leaves of T , and U is a forest

above E, then T Y U is a forest above A, an end-extension of T

whose leaves are the leaves of U. For forest systems we cannot take

132 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

unions. Suppose that S is a finite forest system above A; let D be

the set of leaves of S , and suppose that R is a forest system above D.

We define the concatenation S ˆR of S and R:

• dompS ˆRq “ pdom S q Y pdom Rq;

• For τ P dom S z dom D, pS ˆRqpτq “ S pτq;

• For τ P dom R, pS ˆRqpτq “ pS pτ´ dom Dqq Y Rpτq.

This is a forest system above A, an end-extension of S whose leaves

are the leaves of R. Note that if τ P dom D then we do not assume

that Rpτq “ Dpτq, and so it is possible that pS ˆRqpτq , S pτq. If

both S and R are pg, hq-bushy then so is S ˆR. We conclude:

Lemma 3.3.10. Suppose that B is pg, hq-big above A, and that C

is pg, hq-big above B. Then C is pg, hq-big above A. Indeed, every

finite pg, hq-bushy forest system whose leaves are in B has a finite

pg, hq-bushy end-extension whose leaves are in C.

A set B of pairs of strings is open if it is upwards closed in the

partial ordering 4: closed under taking extensions in either coordi-

nate.

The following lemma concerns sets of strings, not pairs of strings.

It is a consequence of the concatenation property, and is formally

proved by induction on |B|.

Lemma 3.3.11. Let B be a finite collection of open sets of strings,

and let A be a finite, prefix-free set of strings. Suppose that each B P

B is g-big above every σ P A4. Then
Ş

B is g-big above A.

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 133

Lemma 3.3.12. Let A and B be sets of pairs of strings, and let g

and h be bounding functions. Suppose that B is open. Suppose that

for all pσ, µq P A, for all σ1 < σ, B is pg, hq-big above pσ1, µq.

Then B is pg, hq-big above A.

Proof. It suffices to show that for any σ P dom A and any finite,

prefix-free E Ď Apσq, πh
EpBq is g-big aboveσ. We apply Lemma 3.3.11

to the collection of sets πh
µpBq for µ P E. The fact that B is open im-

plies that each πh
µpBq is open; the assumption is that each πh

µpBq is

g-big above every extension of σ. �

Corollary 3.3.13 (Weak concatenation property). Let A, B and C be

sets of pairs of strings, and suppose that C is open. Suppose that B

is pg, hq-big above A, and that for all pτ, ρq P B, for all τ1 < τ, C is

pg, hq-big above pτ1, ρq. Then C is pg, hq-big above A.

Working within tree systems

We will need to apply the weak concatenation property while work-

ing within a given tree system T .

Remark 3.3.14. Suppose that B is pg, hq-big above A, that T is a tree

system and that A, B Ď T . Then the forest system constructed in the

proof of Lemma 3.3.7 is a subset of T .

Fix a tree system T . Suppose that S is a finite forest system; let D

be the set of leaves of S . Let R be a forest system above D. Suppose

that both S and R are subsets of T . Then S ˆR is also a subset of T .

Thus, Remark 3.3.14 can be extended. Suppose that B is pg, hq-big

134 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

above A, that C is pg, hq-big above B, and that A, B,C Ď T . Then

not only is there a finite pg, hq-bushy forest system S Ď T above A

whose leaves are in B, but further, any such system S can be end-

extended to a finite pg, hq-bushy forest system R Ď T above A whose

leaves are in C.

If T is a tree system and B Ď T then we say that B is open in T

if it is upwards closed in the restriction of the partial ordering 4

to T . Lemma 3.3.11 can be “restricted to a tree S ”: if A, B Ď S and

each B P B is open in S and g-big above A4 X S , then
Ş

B is g-big

above A. We then obtain a version of Lemma 3.3.12 restricted to T :

Lemma 3.3.15. Let T be a tree system; let A, B Ď T, and let g and h

be bounding functions. Suppose that B is open in T , and that for all

pσ, µq P A, for all σ1 < σ in dom T, B is pg, hq-big above pσ1, ρq.

Then B is pg, hq-big above A.

And so we get the weak concatenation property within a tree sys-

tem:

Corollary 3.3.16. Let T be a tree system, let A, B,C Ď T, and sup-

pose that C is open in T . Suppose that B is pg, hq-big above A,

and that for all pτ, ρq P B, for all τ1 < τ in dom T, C is pg, hq-big

above pτ1, ρq. Then C is pg, hq-big above A, and in fact every finite

pg, hq-bushy forest system S Ď T which witnesses that B is pg, hq-

big above A has an end-extension R Ď T which witnesses that C is

pg, hq-big above A.

We obtain a lemma which will allow us to take full subsystems

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 135

as extensions.

Lemma 3.3.17. Let T be a bounded and balanced pb, cq-bushy tree

system above pσ, µq and let B Ă T be open in T and pb, cq-small

above pσ, µq. Then for every m there is some pτ, ρq P T such that

|τ|, |ρ| > m and above which B is pb, cq-small.

Proof. Let m be some balanced level of T . Let D be the set of pairs

pτ, ρq P T such that |τ| “ |ρ| > m. Then D is pb, cq-big above

pσ, µq. If there is no pair as required then the weak concatenation

property localised to T (Corollary 3.3.16) shows that B is pb, cq-big

above pσ, µq. �

Remark 3.3.18. We use the same convention discussed in Remark 3.2.8;

we assume that large sets given to us are sets of leaves of tree sys-

tems witnessing their largeness. For example, if we are given a set B

of pairs, pg, hq-big above some A, then we assume that B is finite and

prefix-free; that for all τ P dom B, Bpτq is h-big above Apτ´ dom Aq;

and that B Ď A4.

3.3.3 The notion of forcing and the generic

Let BDNC2 be the set of pairs pτ, ρq such that τ P BDNC or ρ P BDNCτ;

the latter means that ρpeq “ JτpeqÓ for some e ă |ρ|. Note that this

set of pairs is p2, 2q-small above pxy, xyq.

We let P2 be the set of tuples p “ ppσp, µpq,T p, Bp, hp, bpq satis-

fying:

136 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

1. T p is a computably bounded, computable, balanced tree system

above pσp, µpq;

2. hp P Q and T p is php, hpq-bushy;

3. Bp Ă T p is c.e. and open in T p, and Bp Ě BDNC2 X T p;

4. bp P Q and Bp is pbp, bpq-small above pσp, µpq; and

5. hp " bp and hp > bp above mint|σp|, |µp|u.

We define a partial ordering on P2 as follows. A condition q

extends a condition p if pσp, µpq 4 pσq, µqq, T q is a subsystem of T p,

Bp X T q Ď Bq, and hq 6 hp and bq > bp above mint|σq|, |µq|u.

Lemma 3.3.19. The assignment of closed sets Xp “ rT pszrBpsă for

p P P2 is acceptable (Definition 3.1.10).

Note that T pzBp may not be a tree system and so we have not

defined rT pzBps.

Proof. As discussed above, the fact that T p is balanced implies that

rT ps is closed. That Xq Ď Xp when q extends p again follows di-

rectly from the definition of the partial ordering on P2.

Let p P P2. Suppose that rT ps Ď rBpsă. Since T p is bounded,

rT ps is compact. There is some finite C Ă Bp such that rT ps Ď

rCsă. We may assume that C is prefix-free. Then C shows that Bp is

php, hpq- and so pbp, bpq-big above pσp, µpq. Hence Xp is nonempty.

Let m ă ω. Since hp > bp above mint|σp|, |µp|u Lemma 3.3.17

shows that there is some pair pτ, ρq P T p with |τ|, |ρ| > m above

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 137

which Bp is pbp, bpq-small. Then q “ ppτ, ρq,T p X pτ, ρq4, Bp X

pτ, ρq4, hp, bpq is a condition in P2 extending p satisfying Xq Ď rT qs Ď

rτ, ρsă. Thus for every m, the set of conditions p P P2 such that

Xp Ď rτ, ρsă for some strings τ, ρ, both of length at least m, is dense

in P2; this implies requirement (c) of Definition 3.1.10. �

As in the previous section, if G Ă P2 is sufficiently generic then
Ş

pPGrT
pszrBpsă is a singleton which we denote by tpxG, yGqu. In

fact xG “
Ť

tσp : p P Gu and yG “
Ť

tµp : p P Gu.

Let p P P2; since BDNC2 Ď Bp we see:

Proposition 3.3.20. Every condition in P2 forces that xG P DNC

and that yG P DNCxG
.

The restriction of P2 to P1

We do not actually have a restriction map to P1 from P2 but from a

dense subset of P2. Note that if Q Ď P is dense and G Ă Q is a

generic directed set, then it is also a generic directed subset of P.

Proposition 3.3.21. There is a dense subset Q2 Ď P2 and a restric-

tion map i : Q2 Ñ P1 such that for all p P Q2, Xippq Ě dom Xp.

In particular this shows that P2 is nonempty.

Proof. We define i : P2 Ñ P1 by letting

ipqq “ pσq, dom T q, πbq

µqpBq
q, hq, bq

q

where we recall that πbq

µqpBqq is the set of τ such that Bqpτq is bq-big

above µq.

138 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Let q P P2. It is routine to check that ipqq P P1.

However, i is not order-preserving. For this reason we let

Q2 “

p P P2 : πbp

µppBp
q “ tτ P dom T p : µp

P Bp
pτqu

(

.

Suppose that q P Q2; then Xipqq Ě dom Xq. To check this we observe

that if px, yq P rT qszrBqsă then for all τ ă x, pτ, µqq < Bq and so

τ < Bipqq; so x P rdom T qszrBipqqsă. (In fact Xipqq “ dom Xq; if

x P Xipqq then Bqpxq is bq-small above µq, so T qpxqzBqpxq has a

path.)

Let q P P2. Define a set B Ă T q: for τ P dom T qzπbq

µqpBqq we

let Bpτq “ Bqpτq; for τ P πbq

µqpBqq we let Bpτq “ T qpτq. Let νpqq “

ppσq, µqq,T q, B, hq, bqq. The concatenation property implies that πbq

µqpBqq “

πbq

µqpBq, which shows that νpqq P P2, in fact that νpqq P Q2, and it ex-

tends q. Hence Q2 is dense in P2. We observe that ipqq “ ipνpqqq.

To show that the restriction of i to Q2 is order-preserving we need

to check that if q, s P Q2 and q extends s, then Bipsq X T ipqq Ď Bipqq.

If τ P Bipsq (and τ P T ipqq) then pτ, µsq P Bs; since Bs is open in T s,

this means that pτ, µqq P Bs; since Bs X T q Ď Bq, pτ, µqq P Bq and so

τ P Bipqq.

Let q P Q2 and let p P P1 extend ipqq; we need to find r P Q2

extending q such that iprq extends p. Using the map ν, it suffices to

find r P P2.

Let T be the restriction of T q to T p: dom T “ T p and for τ P T p,

T pτq “ T qpτq. The system T is php, hqq-bushy above pσp, µqq.

Also define B Ď T ; if τ P Bp then Bpτq “ T pτq; if τ P T pzBp then

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 139

Bpτq “ Bqpτq. The set B is open in T , is c.e., and is pbp, bqq-small

above pσp, µqq. To see that let S be pbp, bqq bushy above pσp, µqq;

by Remark 3.3.14 we may assume that S Ă T . Since dom S is a

subtree of T p we find a leaf τ of dom S which is not in Bp. Since p

extends ipqq, τ < Bipqq and so Bpτq “ Bqpτq is bq-small above µq, so

S pτq has a leaf ρ which is not in Bpτq.

Since hp > bp above |σp| and hq > bq above |µq|, T is pbp, bqq-

bushy. By Lemma 3.3.17 we can find pσ, µq P T such that |σ|, |µ| >

maxt|σp|, |µq|u and above which B is pbp, bqq-small.

We now define r “ ppσ, µq,T X pσ, µq4, BX pσ, µq4, hp, bpq. The

point is that hp 6 hq and bp > bq above mint|σ|, |µ|u and so T r is

php, hpq-bushy and Br is pbp, bpq-small above pσ, µq. This also shows

that r extends q. To show that iprq extends p we need to show that

Bp X dom T r Ď Biprq. Let τ P Bp X dom T r. Then τ < σ and so

µ P T pτq “ Bpτq, so τ P Biprq. �

Corollary 3.3.22. Every condition in P2 forces that xG has minimal

Turing degree.

Totality

Proposition 3.3.23. Let C Ď pωωq
2 be Π0

2 and let p P P2. If

p pxG, yGq P C then p has an extension which strongly forces

that pxG, yGq P C.

Proof. The proof is similar to the proof of Proposition 3.2.15. We

choose a function g P Q such that hp " g " bp. By Lemma 3.3.17

we may assume that hp > g > bp above mint|σp|, |µp|u.

140 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

We fix a sequence of c.e. sets Ck Ď T p, open in T p, such that CX

rT ps “ rT psX
Ş

krCks
ă. For all pτ, ρq P T p, for all k, the set BpYCk

is pg, gq-big above pτ, ρq; otherwise ppτ, ρq,T pXpτ, ρq4, pBpYCkqX

pτ, ρq4, hp, gq is a condition extending p which forces that pxG, yGq <

C.

We define a sequence of finite tree systems S k Ă T p such that:

each S k is pg, gq-bushy; S k`1 is a proper end-extension of S k; the

leaves of S k`1 are in Ck Y Bp; if k ą 0 then there is some `k such

that for every k > 1, for every leaf pτ, ρq of S k, |τ| “ |ρ| “ `k.

We begin with S 0 “ tpσp, µpqu. Given S k, Corollary 3.3.16 says

that Ck Y Bp is pg, gq-big above the set of leaves of S k, so we can

find a finite pg, gq-bushy end-extension S 1k Ă T p of S k with leaves in

Ck Y Bp.

Now find some `k`1, greater than |τ| and |ρ| for any leaf pτ, ρq

of S 1k, which is a balanced level for T p (Definition 3.3.5). Then the

set of pτ, ρq P T p such that |τ| “ |ρ| “ `k`1 is pg, gq-big above the

set of leaves of S 1k. Hence we can find S k`1 Ă T p to be an end-

extension of S 1k as required.

It follows that S “
Ť

k S k is a computable, pg, gq-bushy and bal-

anced tree system above pσp, µpq and that the condition ppσp, µpq, S , BpX

S , g, bpq extends p and strongly forces that pxG, yGq P C. �

3.3.4 Minimal cover

We work toward showing that degTpx
G, yGq is a strong minimal cover

of degTpx
Gq. We do this in two steps. First we show that it is a

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 141

minimal cover. This mostly uses the tools of the previous section.

Let Γ : pωωq
2
Ñ 2ω be a Turing functional. For a condition p P

P2, a bounding function g and a string µ let Γ-Spg
µppq be the set of

τ P dom T p such that T ppτq contains two sets A0pτq and A1pτq, both

g-big above µ, which Γpτ,´q-split mod Bppτq.

Lemma 3.3.24. Suppose that p P P2 strongly forces that ΓpxG, yGq

is total and forces that ΓpxG, yGq
T xG. Let pσ, µq P T p. Let g P Q

such that hp " g, and hp > 3g and g > bp above mint|σ|, |µ|u. Then

Γ-Spg
µppq is g-big above σ.

Proof. Suppose that pσ, µq and g witness the failure of the lemma;

we find an extension of p which forces that ΓpxG, yGq is computable

from xG.

Let Θ be the (c.e.) set of pairs pτ, αq such that τ P dom T p, α P

2ăω and Aαpτq is g-big above µ, where as before Aα “ BpYtpτ, ρq P

T p : Γpτ, ρq < αu.

For brevity let C “ Γ-Spg
µppq. The set C is open in dom T p. If

τ P dom T pzC then the strings in Θpτq are pairwise comparable.

Let τ P dom T pzC. The argument of the proof of Lemma 3.2.18

shows that if |Γpτ, ρq| > m for every leaf ρ of T ppτq which is not

in Bppτq then Θpτq contains a string of length m. Also, Bppτq is g-

small above µ and so Θpτq is finite; in this case we let Θτ “
Ť

Θpτq

be the longest string in Θpτq.

If τ 4 τ1 are in dom T pzC then Θτ 4 Θτ
1

. This follows from the

fact that Aαpτq Ď Aαpτ
1q for all α.

Let D “ tpτ, ρq P T p : τ P C or Γpτ, ρq K α for some α P

142 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Θpτqu. The set D is c.e. and is open in T p. Also, D Y Bp is pg, gq-

small above pσ, µq. To see this, suppose that S Ă T p is a finite pg, gq-

bushy tree system above pσ, µq (as above we use Remark 3.3.14).

Then there is a leaf τ of dom S which is not in C; and then S pτq

must contain a leaf ρ < Bppτq such that Γpτ, ρq is compatible with

Θτ.

Now suppose that px, yq P rT pszrD Y Bps4. No initial segment

of x is in C. A compactness argument shows that Θpxq “
Ť

τăxΘ
τ

is total, and so Γpx, yq “ Θpxq. Certainly Θpxq 6T x. Therefore the

condition ppσ, µq,T p X pσ, µq4, pDY Bpq X pσ, µq4, hp, gq extends p

and (strongly) forces that ΓpxG, yGq 6T xG. �

Definition 3.3.25. Let B Ď pωăωq
2. Two sets A0 and A1 of pairs

of strings locally Γ-split mod B if for all τ, A0pτq and A1pτq form a

Γpτ,´q-splitting mod Bpτq. That is, if pτ, ρ0q P A0zB and pτ, ρ1q P

A1zB then Γpτ, ρ0q K Γpτ, ρ1q.

We introduce the notion of uniform largeness.

Definition 3.3.26. Let A be finite and prefix-free, and let B be a

collection of sets of pairs of strings. We say that the sets in B are

uniformly pg, hq-big above A if the set of τ such that for all B P B,

Bpτq is h-big above Apτ´ dom Aq, is g-big above dom A.

The conclusion of Lemma 3.3.24 is that there are A0 and A1, sub-

sets of T p uniformly pg, gq-big above pσ, µq, which locally Γ-split

mod Bp.

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 143

Lemma 3.3.27. Suppose that p P P2 strongly forces that ΓpxG, yGq

is total and forces that ΓpxG, yGq
T xG.

Let σ P dom T p, and let µ1, µ2, . . . , µk be elements of T ppσq. Let

g P Q such that hp " g, and hp > 3kg and g > bp above mint|σ|, |µ1|, |µ2|, . . . , |µk|u.

Then there is a set A Ă T p, pg, gq-big above tpσ, µ jq : j 6 ku, such

that the sets AX pσ, µ jq
4 pairwise locally Γ-split mod Bp.

Proof. The idea is to extend bushily on the first coordinate so that

we can emulate the proof of Lemma 3.2.19 on the second coordi-

nate. Formally this is done by induction on k. Suppose this has been

shown for k; let µ1, . . . , µk and µ˚ be elements of T ppσq; suppose that

h " g, and hp > 3k`1g and g > bp above mint|σ|, |µ˚|, |µ j| : j 6 ku.

Then h " 3g; so by induction we can find a set A, p3g, 3gq-big above

tpσ, µ jq : j 6 ku such that the sets A X pσ, µ jq
4 pairwise locally Γ-

split mod Bp. In fact we only need pg, 3gq-big.

Let pζ, νq P A. By Lemma 3.3.24, for all ζ 1 < ζ on dom T p,

Γ-Sp3g
ν ppq is 3g-big above ζ 1 (again we only need g-big). By re-

peatedly extending we see that for all ζ P dom A, Qζ “ ζ4 X
Ş

νPApζq Γ-Sp3g
ν ppq is 3g-big above ζ. We extend the set A by let-

ting Apτq “ Apζq for all τ P Qζ . Let Q “
Ť

ζPdom A Qζ; it is 3g-

big above σ. For every τ P Q and all ν P Apτq we can find sets

Eν,0pτq, Eν,1pτq Ă T ppτq, each 3g-big above ν, which Γpτ,´q-split

mod Bppτq.

Further, by extending in dom T p, we may assume that for all τ P

Q we can find Fpτq Ă T ppτq which is 3kg-big above µ˚ and such

that |Γpτ, ρq| ą |Γpτ, ηq| for all ρ P FpτqzBppτq and all η P Eν,ipτq

144 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

(for both i ă 2 and all ν P Apτq).

Overall we see that for all τ P Q we can run the argument proving

Lemma 3.2.19 inside T ppτq and using Lemma 3.2.20 find F 1pτq Ď

Fpτq, g-big above µ˚ and for j 6 k, E1jpτq Ă T ppτq, g-big above µ j,

with every string in E1jpτq extending some string in A jpτq, such that

F 1pτq and E1jpτq form a Γpτ,´q-splitting mod Bppτq; the fact that

strings in E1jpτq extend strings in ApτqXµ4j shows that the sets E1jpτq

also pairwise Γpτ,´q-split mod Bppτq. �

Proposition 3.3.28. Every condition in P2 forces that if ΓpxG, yGq is

total and ΓpxG, yGq
T xG then ΓpxG, yGq ‘ xG >T yG.

Proof. As in the proof of Proposition 3.2.21 we take some p P P2

which strongly forces that ΓpxG, yGq is total and forces that ΓpxG, yGq
T

xG, and find an extension of p which forces that ΓpxG, yGq ‘ xG >T

yG.

Find some g P Q such that hp " g " bp. Let ḡpmq “
ś

kăm gpkq.

By Lemma 3.3.17 we can extend pσp, µpq so that hp > 3ḡg and

g > bp above mint|σp|, |µp|u.

We define an increasing sequence x`ky and a sequence xS ky of

finite subsystems of T p such that: dom S k is g-bushy and for all

τ P dom S k, S kpτq is exactly g-bushy; S k`1 is a proper end-extension

of S k; for every leaf pτ, ρq of S k, |τ| “ |ρ| “ `k.

To begin we find some `0 ą |σp|, |µp|, a balanced level for T p.

We let dom S 0 “ dom T p �ω6`0 and for each leaf τ of dom S 0 we

let S 0pτq be an exactly g-bushy subtree of T ppτq whose leaves all

have lenght `0. As usual if τ P dom S 0 is not a leaf then we let

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 145

S 0pτq “ tµ
pu.

Given S k we note that for every leaf σ of dom S k, the number

of leaves of S kpσq is precisely
ś

mPr|µp|,`kq
gpmq which is bounded

by ḡp`kq; and hp > 3ḡp`kqg above `k. By Lemma 3.3.27 we can

find for each leaf σ of dom S k a finite pg, gq-bushy forest system

Rσ Ă T p above tpσ, νq : ν a leaf of S kpσqu, such that for every

leaf τ of dom Rσ, the sets Rσpτq X ν4 for the leaves ν of S kpσq pair-

wise Γpτ,´q-split mod Bp. By shrinking we may assume that for all

leaves τ P dom Rσ, Rσpτq is exactly g-bushy. Let R “
Ť

σ Rσ and

let S 1k “ S kˆR.

Now as in the proof of Proposition 3.3.23 we let `k`1 be a bal-

anced level of T p, greater than the length of any string appearing in

S 1k, and let S k`1 Ă T p be an end-extension of S 1k with the desired

properties.

Let S “
Ť

k S k. Then for all x P rdom S s, Γpx,´q is 1-1 on

rS pxqszrBppxqsă. The tuple ppσp, µpq, S , BpXS , g, bpq is a condition

as required (relativise Lemma 3.1.8 to each x). �

3.3.5 Strong minimal cover

The following is the usual definition of splitting, restated for pairs

of strings.

Definition 3.3.29. Let B Ď pωăωq
2. Two sets A0 and A1 Γ-split

mod B if for all pτ, ρq P A0zB and pτ1, ρ1q P A1zB, Γpτ, ρq K Γpτ1, ρ1q.

Lemma 3.3.30. Let g1, g2, h1, h2 P Q; let B be an open set of pairs

of strings. Suppose that:

146 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

• pσ, µq and pσ˚, µ˚q are pairs of strings;

• A is p3g1, 3g2q-big above pσ, µq;

• E0 and E1 are uniformly p3g1, 3g2q-big above A; and for all

pτ, ρq P A, E0 X pτ, ρq
4 and E1 X pτ, ρq

4 locally Γ-split mod B;

and

• F is p3h1, 3h2q-big above pσ˚, µ˚q, and |Γpλ, νq| ą |Γpζ, ηq| for

all pλ, νq P FzB and all pζ, ηq P EzB, where E “ E0 Y E1.

Then there are E1 Ď E, pg1, g2q-big above pσ, µq, and F 1 Ď F,

ph1, h2q-big above pσ˚, µ˚q, which Γ-split mod B.

Proof. The proof is very similar to that of Lemma 3.2.20. As above,

for a string α P 2ăω let F<α “ pFXBqYtpτ, ρq P F : Γpτ, ρq < αu ,

and similarly define FKα, E<α, E4α and so on. If FXB is ph1, h2q-big

above pσ˚, µ˚q then we can let F 1 “ F X B and E1 “ E. Similarly if

E X B is pg1, g2q-big above pσ, µq.

Suppose otherwise. In that case, for sufficiently long α, F<α is

ph1, h2q-small above pσ˚, µ˚q. Let α be a string, maximal with re-

spect to F<α being ph1, h2q-big above pσ˚, µ˚q. As above we show

that either

1. EKα is pg1, g2q-big above pσ, µq, or

2. E<α is pg1, g2q-big above pσ, µq and FKα is ph1, h2q-big above pσ˚, µ˚q.

In both cases we can find E1 and F 1 as required.

Again we examine two cases, depending on E4α.

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 147

First suppose that E4α is pg1, g2q-big above pσ, µq. Let R wit-

ness this. Fix ζ, a leaf of dom R. The argument of the proof of

Lemma 3.2.20 is now carried out within Rpζq. Let τ “ ζ´ dom A. Ev-

ery ν P Epζq extends some unique ρ P Apτq. The tree Rpζq restricted

to initial segments of strings in Apτq shows that ApτqXRpζq is g2-big

above µ; for each ρ P ApτqXRpζq, E4αpζq is g2-big above ρ. The pre-

vious argument shows that for each such ρ, EKαpζq is g2-big above ρ.

The concatenation property shows that EKαpζq is g2-big above µ.

And then dom R shows that EKα is pg1, g2q-big above pσ, µq.

Next suppose that E4α is pg1, g2q-small above pσ, µq; the argu-

ment is now identical to the comparable one in Lemma 3.2.20, using

Lemma 3.3.8. It shows that (2) holds. �

Lemma 3.3.31. Suppose that p P P2 strongly forces that ΓpxG, yGq

is total and forces that ΓpxG, yGq
T xG.

Let C Ă T p be prefix-free and finite; let g P Q such that hp " g,

and hp > 3|C|
2
g and g > bp above mint|σ|, |µ| : pσ, µq P Cu.

Then there is a set A Ă T p, pg, gq-big above C, such that the sets

AX pσ, µpq4 (for σ P dom C) pairwise Γ-split mod Bp.

Proof. We prove the lemma by induction on |C|. Let C˚ “ C Y

tpσ˚µ˚qu Ă T p be finite and prefix-free, and suppose that the lemma

is already known for C. Let g satisfy the assumptions of the lemma

for C˚. The assumptions of the lemma hold for the set C and the

function 3|C|g. Let A be as guaranteed by the lemma for C and 3|C|g.

Let pσ1, µ1q, pσ2, µ2q, . . . , pσk, µkq list the elements of C such that

σ j , σ˚. By reverse recursion on j 6 k we define a set A j Ă T p,

148 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

p3 jg, 3 jgq-big above C˚. We will ensure that A j X C4 Ă A4, and

so the sets A j X pσ, µ
pq4 for σ P dom C pairwise Γ-split mod Bp.

Further, we will ensure that A j´1 X pσ
˚, µ˚q4 and A j´1 X pσ j, µ jq

4

Γ-split mod Bp; and that A j´1 Ă A4j . Thus in the end, the set A0 is

as required.

We start with Ak “ A Y tpσ˚, µ˚qu. Now suppose that j ą 0 and

we are given the sets A j. Let τ P pdom A jqXσ
4
j . Lemma 3.3.24 says

that for all τ1 < τ in dom T p, for all ρ P A jpτqXµ
4
j , the set Γ-Sp3 jg

ρ ppq

is 3 jg-big above σ j. So applying Lemma 3.3.11 to these sets, and

repeating this process for all such τ, we find (finite) E j,0 Ă T p and

E j,1 Ă T p, uniformly p3 jg, 3 jgq-big above A j X pσ j, µ jq
4, such that

for every pτ, ρq P A j X pσ j, µ jq
4, E j,0 X pτ, ρq

4 and E j,1 X pτ, ρq
4

locally Γ-split mod Bp. Given E j “ E j,0YE j,1 we can find F j Ă T p,

p3 jg, 3 jgq-big above A j X pσ
˚, µ˚q4 (and lying above that set) such

that |Γpτ, ρq| ą |Γpτ1, ρ1q| for all pτ, ρq P F jzBp and all pτ1, ρ1q P E j.

We then appeal to Lemma 3.3.30 with F j in the role of F, E j,i in the

role of Ei, A jXpσ j, µ jq
4 in the role of A, and using the function 3 j´1g

we get F 1j Ď F j, p3 j´1g, 3 j´1gq-big above pσ˚, µ˚q and E1j Ď E j, also

p3 j´1g, 3 j´1gq-big above pσ j, µ jq, which Γ-split mod Bp.

We now define the set A j´1. We first define dom A j´1, and we

do this by defining pdom A j´1q X σ4 for all σ P dom C˚. Let σ P

dom C˚. If σ , σ j, σ
˚ then pdom A j´1q Xσ

4 “ pdom A jq Xσ
4. We

let pdom A j´1qXpσ
˚q4 “ dom F 1j and pdom A j´1qXpσ jq

4 “ dom E1j.

Now for τ P dom A j´1 we define A j´1pτq. Fix such τ; let ζ “

τ´ dom A j and let σ “ τ´ dom C˚ “ ζ´ dom C˚. If σ , σ˚, σ j then

3.3. A RELATIVELY DNC SMC OF A DNC MINIMAL DEGREE 149

ζ “ τ and we let A j´1pτq “ A jpτq. Otherwise, we define A j´1pτq by

defining A j´1Xµ
4 for all µ P C˚pσq. Suppose that σ “ σ˚. If µ , µ˚

then we let A j´1pτq X µ4 “ A jpζq X µ4 (which inductively will just

equal Apτ´ dom Aq X µ4). We let A j´1pτq X pµ
˚q4 “ F 1jpτq. Similarly,

if σ “ σ j and µ , µ j then we let A j´1pτq X µ
4 “ A jpζq X µ

4; we let

A j´1pτq X pµ jq
4 “ E1jpτq. �

Proposition 3.3.32. Every condition in P2 forces that if ΓpxG, yGq is

total and ΓpxG, yGq
T xG then ΓpxG, yGq >T xG.

Proof. The construction is similar to the one in Propositions 3.2.21

and 3.3.28. It is here that we really use the fact that T p is bal-

anced, for we ensure that each S k we build is exactly pg, gq-bushy.

We assume that hp " 3ḡ2
g above mint|σp|, |µp|u and then apply

Lemma 3.3.31 to C being the set of leaves of S k. We use Lemma 3.1.9.

�

And as a result:

Proposition 3.3.33. Every condition in P2 forces that degTpx
G, yGq

is a strong minimal cover of degTpx
Gq.

Remark 3.3.34. We could combine the proofs of Lemmas 3.3.27

and 3.3.31 to build a “totally Γ-splitting” extension: a set A such

that if pσi, µiq P C (for i ă 2) and pτi, ρiq P A X pσi, µiq
4zB, then

Γpτ0, ρ0q K Γpτ1, ρ1q provided that either σ0 , σ1, or τ0 “ τ1

(and ρ0 , ρ1). We could then have a single construction (replac-

ing Propositions 3.3.32 and 3.3.33) giving a condition forcing that

ΓpxG, yGq ”T pxG, yGq.

150 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

3.4 The general step

We now generalise to get a linearly ordered initial segment of length n.

Once the correct definitions are in place, much of the development

closely follows the previous section.

3.4.1 Length n forest systems

We work with n-tuples of strings. We use boldface notation for tu-

ples. If τ is a tuple then τi denotes the ith component of τ. The

partial ordering of extension 4 on pωăωqn is defined as expected.

For a set A Ď pωăωq
n we let A4 be the upward closure of A un-

der this partial ordering. If τ is an n-tuple and k 6 n then we let

τ�k“ pτ1, . . . , τkq and τ�pk,ns“ pτk`1, . . . , τnq.

For a set A Ď pωăωq
n and k ă n we let domk A be the domain

of A thought of as a relation between k-tuples and pn´ kq-tuples:

domk A “ tτ�k : τ P Au .

For τ P pωăωqk we let

Apτq “
!

ρ P pωăωqn´k : pτ, ρq P A
)

.

We will frequently need to chop off the last bit, so for compact no-

tation we let τÓ“ τ�n´1 for all τ P pωăωqn, and let AÓ“ domn´1 A “

tτÓ : τ P Au for all A Ď pωăωqn.

Definition 3.4.1. By induction on n we define the notion of a prefix-

free set of tuples of strings: a set A Ă pωăωqn is prefix-free if AÓ is

prefix-free, and for all τ P AÓ, Apτq is a prefix-free set of strings.

3.4. THE GENERAL STEP 151

If A is prefix-free and τ P A4 then there is a unique σ P A such

that σ 4 τ (formally this is proved by induction on n); we denote

thisσ by τ´A. Note that if A is prefix-free and τ P A4 then τÓP pAÓq4

and pτÓq´AÓ “ τ´AÓ.

Definition 3.4.2. By induction on n we define the notion of a length n

forest system. Let A Ă pωăωqn be prefix-free and finite. A length n

forest system above A is a set T Ď A4 such that:

• TÓ is a length n´ 1 forest system above AÓ;

• for all τ P TÓ, T pτq is a finite forest above Apτ´AÓq;

• if τ 4 τ1 P TÓ then T pτ1q is an end-extension of T pτq.

A forest system S is a subsystem of T if S Ď T . We write `pT q

for the length of T . If A is a singleton σ then we say that T is a tree

system above σ.

Lemma 3.4.3. Let T be a tree system and let σ P T. Then T X σ4

is a tree system above σ.

(In fact σ can be replaced by any finite, prefix-free subset of T).

Proof. By induction on `pT q. Let R “ TXσ4. The point is that RÓ“

TÓ XpσÓq4. For suppose that τ P TÓ XpσÓq4. Then T pσÓq Ď T pτq

and σ P T imply that pτ, σnq P T and witnesses that τ P RÓ. Finally

we also observe that for τ P RÓ we have Rpτq “ T pτq X pσnq
4. �

The definition of an h-bounded (and so of a computably bounded)

tree system is as expected. If T is computable and computably

152 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

bounded then for all k ă `pT q, domk T is computable and the map

τ ÞÑ T pτq is computable.

A leaf of a forest system T is a 4-maximal element of T . A

tuple τ is a leaf of T if and only if τÓ is a leaf of T Ó and τ`pT q is a

leaf of T pτÓq. The set of leaves of a forest system is prefix-free.

If T and S are length n forest systems then we say that T is an

end-extension of S if:

• TÓ is an end-extension of SÓ;

• If τ P SÓ is not a leaf of SÓ then T pτq “ S pτq;

• If τ is a leaf of SÓ then T pτq is an end-extension of S pτq.

Note that this is a transitive relation.

Lemma 3.4.4. Let xS my be a sequence of forest systems above A,

with each S m`1 an end-extension of S m. Then
Ť

m S m is a forest

system above A.

Proof. Let S “
Ť

m S m. Then S Ó“
Ť

m S m Ó, and so by induc-

tion on the length, S Ó is a forest system above AÓ. Let τ P S Ó.

Then S pτq “
Ť

m S mpτq is the union of a sequence of end-extensions

above Apτ´AÓq, and so is a forest above that set; note that if τ P S mÓ

but is not a leaf of S mÓ then S pτq “ S mpτq. �

Other breaking points

We don’t have to isolate only the last coordinate. For example:

3.4. THE GENERAL STEP 153

Lemma 3.4.5. Let A Ď pωăωqn. The following are equivalent:

1. A is prefix-free;

2. For some k P t1, . . . , n ´ 1u, domk A is prefix-free and for all

τ P domk A, Apτq is prefix-free; and

3. For all k P t1, . . . , n ´ 1u, domk A is prefix-free and for all

τ P domk A, Apτq is prefix-free.

The proof relies on the fact that pAÓqpτq “ pApτqqÓ, and induc-

tion. For forest systems we do not get as nice a result.

Lemma 3.4.6. Let A Ă pωăωqn be prefix-free and let T Ď A4.

1. Suppose that T is a forest system above A. Then for all k P

t1, 2, . . . , n ´ 1u: (a) domk T is a forest system above domk A;

(b) For all τ P domk T, T pτq is a forest system above Apτ´ domk Aq;

and (c) if τ 4 τ1 are in domk T then T pτq Ď T pτ1q.

2. Let k P t1, 2, . . . , n´1u; suppose that domk T is a forest system

above domk A, that for all τ P domk T, T pτq is a forest system

above Apτ´ domk Aq, and that if τ 4 τ1 are in domk T then T pτq

is an end-extension of T pτ1q. Then T is a forest system above A.

Again the proof is routine. In the situation of (1) we don’t al-

ways get that T pτ1q end-extends T pτq. Suppose for example that

τ ă τ1 are in dom1 T and that ρ ă ρ1 are in dom1 T pτq (and so

also in dom1 T pτ1q). It is possible that T pτ1, ρq , T pτ, ρq, even

though ρ is not a leaf of T pτq. For example we could have T pτ1, ρ1q “

154 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

T pτ1, ρq “ T pτ, ρ1q which is a proper end-extension of T pτ, ρq. For

end-extending, though, we do get full invariance of breaking point:

Lemma 3.4.7. Let S and T be forest systems of length n. The fol-

lowing are equivalent:

1. T is an end-extension of S ;

2. For some k P t1, . . . , n´1u, domk T is an end-extension of domk S ,

for all τ P domk S , T pτq is an end-extension of T pτq, and if

τ P domk S is not a leaf of domk S , then T pτq “ S pτq.

3. For all k P t1, . . . , n´1u, domk T is an end-extension of domk S ,

for all τ P domk S , T pτq is an end-extension of T pτq, and if

τ P domk S is not a leaf of domk S , then T pτq “ S pτq.

Also note that if S is a forest system then τ P S is a leaf of S

if and only if for some (all) k P t1, 2, . . . , `pS q ´ 1u,� �k is a leaf

of domk S and τ�pk,`pS qs is a leaf of S pτ�kq.

Paths of tree systems

We simplify our presentation by restricting ourselves to balanced

tree systems.

Definition 3.4.8. Let T be a tree system and let m ă ω. We say

that m is a balanced level of T if for all τ P dom1 T of length m,

every component of every leaf of T pτq has length m. We say that T is

balanced if dom1 T has no leaves and T has infinitely many balanced

levels.

3.4. THE GENERAL STEP 155

For a balanced tree system T we let

rT s “
!

x P pωωq
`pT q : x�mP T for every balanced level m of T

)

.

The set rT s is a closed subset of pωωq
n.

For x P rT Ós we let T pxq “
Ť

τăx T pτq. This is a tree with no

leaves. If T is balanced then so is TÓ, and rT s “ tpx, yq : x P rTÓs & y P rT pxqsu.
If T is balanced, computable and computably bounded then rT s is

effectively closed.

Bushiness for forest systems

Let g “ pg1, . . . , gnq be a tuple of bounding functions, and let T be

a length n forest system. We say that T is g-bushy if TÓ is gÓ-bushy

and for all τ P TÓ, T pτq is gn-buhsy. As usual, T is g-bushy if and

only if for some (all) k P t1, 2, . . . , n´ 1u, domk T is g�k-bushy and

for all τ P domk T , T pτq is g�pk,ns-bushy.

We say that a set B Ď pωăωqn is g-big above some finite prefix-

free set A Ă pωăωq
n if there is a g-bushy finite forest system R

above A whose leaves lie in B. This is extended to all sets A as

above. For k ă n, B Ď pωăωqn, a finite, prefix-free A Ď pωăωqn and

an pn´ kq-tuple h of bounding functions we let

πh
ApBq “

τ P pdomk Aq4 : Bpτq is h-big above Apτ´ domk A
q
(

.

Note that this notation is different from the one used in the previous

section; however, if A is a singleton σ then we revert to the old no-

tation and write πh
σ�pk,ns

pBq instead of πh
σpBq. A set B is g-big above A

156 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

if and only πg�pk,ns
A pBq is g�k-big above A. The proof of this follows

the proof of Lemma 3.3.7, using Lemma 3.4.6(2) (and the fact that

every finite prefix-free set is a forest system above itself, and any

forest system R above A is an end-extension of A). The proof gives

the analogue of Remark 3.3.14: if B is g-big above A, T is a forest

system and A, B Ď T then a finite forest system S witnessing the

largeness can be taken to be a subset of T .

Remark 3.4.9. Let 1 6 k ă m ă n, letσ P pωăωqm´k, µ P pωăωqn´m,

g be an pm ´ kq-tuple of bounding functions, and an pn ´ mq-tuple

of bounding functions. Let B Ď pωăωqn. Then

π
g
σpπ

h
µpBqq “ π

g,h
σ,µpBq.

The big subset property holds for largeness over singletons, with

the same proof as that of Lemma 3.3.8.

For the weak concatenation property, we will straightaway work

within tree systems. But first we discuss concatenations. Suppose

that S is a finite forest system, that A is the set of leaves of S , and

that R is a forest system above A. Since S is finite, AÓ is the set of

leaves of SÓ. We then define S ˆR by letting:

• pS ˆRqÓ“ SÓˆRÓ;

• For τ P SÓ, not a leaf of SÓ, we let pS ˆRqpτq “ S pτq;

• For τ P RÓ we let pS ˆRqpτq “ S pτ´AqˆRpτq “ S pτ´Aq Y Rpτq.

Then S ˆR is an end-extension of S , whose leaves are the leaves of R.

Also note that if S ,R Ď T for some forest system T then S ˆR Ď T .

3.4. THE GENERAL STEP 157

If both S and R are g-bushy then so is S ˆR. We thus get the restricted

analogue of Lemma 3.3.10. From now we fix a forest system T .

• Suppose that B is g-big above A, and that C is g-big above B.

Then C is g-big above A. If A, B,C Ď T then every forest

system S Ď T witnessing that B is g-big above A has an end-

extension R Ď T which witnesses that C is g-big above A.

We get an analogue of Lemma 3.3.11. The notion of an open

subset of T is as expected.

Lemma 3.4.10. Let B be a finite family of subsets of T which are

open in T . Let A Ď T be finite and prefix-free. Suppose that each B P

B is g-big above A4XT (recall that this means that it is g-big above

every finite, prefix-free subset of A4XT). Then
Ş

B is g-big above A.

We can now prove the analogue of Lemma 3.3.12.

Lemma 3.4.11. Let T be a forest system and let A, B Ď T; suppose

that B is open in T . Suppose that for all τ P A4 X T, B is g-big

above τ. Then B is g-big above A.

Proof. By induction on the length of T . We may assume that A

is finite and prefix-free. We need to show that C “ π
gn
A pBq is gÓ-

big above AÓ. Let τ P pAÓq4 X T Ó. We claim that C is gÓ-big

above τ (and then apply the induction hypothesis). Let σ “ τ´AÓ.

Then C X σ4 equals
Ş

µPApσq π
gn
µ pBq. By assumption, each π

gn
µ pBq

is gÓ-big above every tuple in σ4 X T Ó; we apply the analogue of

Lemma 3.3.11 mentioned above. �

158 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Corollary 3.4.12. Let T be a tree system, let A, B,C Ď T, and sup-

pose that C is open in T . Suppose that B is g-big above A, and that C

is g-big above every tuple in B4XT. Then C is g-big above A, and in

fact every finite g-bushy forest system S Ď T which witnesses that B

is g-big above A has an end-extension R Ď T which witnesses that C

is g-big above A.

As a corollary we get the analogue of Lemma 3.3.17:

• If T is a bounded and balanced b-bushy tree system above σ,

and B Ă T is open in T and b-small above σ, then for every m

there is some τ P T such that |τi| > m for all i 6 `pT q, and

above which B is b-small.

3.4.2 The notion of forcing and restriction maps

We let BDNCn be the set of tuples τ P pωăωqn such that either τÓP

BDNCn´1, or τn P BDNCτÓ, that is, if there is some e ă |τn| such that

τnpeq “ JτÓpeq.

For brevity, for a tupleσ P pωăωqn we let |σ| “ min t|σi| : i 6 nu.

When a tuple-length n is clear from the context, then for a function g

we let g “ pg, g, . . . , gq.

We let Pn be the set of tuples p “ pσp,T p, Bp, hp, bpq satisfying:

1. T p is a computably bounded, computable, balanced tree system

above σp;

2. hp P Q and T p is hp-bushy;

3.4. THE GENERAL STEP 159

3. Bp Ă T p is c.e. and open in T p, and Bp Ě BDNCn X T p;

4. bp P Q and Bp is bp-small above σp; and

5. hp " bp and hp > bp above |σp|.

We define a partial ordering on Pn as follows. A condition q

extends a condition p ifσp 4 σq, T q is a subsystem of T p, BpXT q Ď

Bq, and hq 6 hp and bq > bp above |σq|.

The assignment of closed sets Xp “ rT pszrBpsă for p P Pn is

acceptable; the proof is identical to the proof of Lemma 3.3.19.

If G Ă Pn is sufficiently generic then we denote the generic tuple

(the element of the singleton
Ş

pPGrT
pszrBpsă) by xG. As above,

every condition in Pn forces that xG
n is DNC relative to xGÓ.

The restriction maps

For all n > 2, define in : Pn Ñ Pn´1 by letting

inpqq “
`

σq
Ó,T q

Ó, πbq

σ
q
n
pBq
q, hq, bq˘,

where we have

πbq

σ
q
n
pBq
q “ tτ P T q

Ó : Bq
pτq is bq-big above σq

nu .

It is routine to check that inpqq P Pn´1 for all q P Pn. Inductively we

define Qn Ă Pn: Q1 “ P1, and Qn is the set of conditions q P Qn

such that:

• inpqq P Qn´1; and

160 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

• πbq

σqpBqq “ tτ P T qÓ : σq
n P Bqpτqu.

We again observe that for all q P Qn, XqÓ“ Xinpqq; the proof is the

same as above. The proof that the restriction of in to Qn is order-

preserving is identical to that in the proof of Proposition 3.3.21.

Lemma 3.4.13. There is a map νn : Pn Ñ Qn such that:

1. νnpqq 6 q for all q P Pn; and

2. in ˝ νn “ νn´1 ˝ in.

In particular, Qn is dense in Pn.

Proof. We omit the indices n and n´ 1 from in, νn etc.; they will be

clear from the context.

Let q P Pn. For brevity we let Cn “ Bq and for k P t1, . . . , n´ 1u

we let Ck “ πbq

σq�pk,ns
pBqq. Remark 3.4.9 says that if k ă m 6 n then

Ck “ πbq

σq�pk,ms
pCmq.

We define a tuple νpqq “ pσq,T q, Bνpqq, hq, bqq by letting

Bνpqq
“ tτ P T q : τ�k P Ck for some k 6 nu .

The set Bνpqq is bq-small aboveσq. For let D be the set of leaves of

a bq-bushy finite tree system S Ă T q above σq. Since C1 is bq-small

above σq
1 we find some τ1 P pdom1 DqzC1. Since C1 “ πbq

σ
q
2
pC2q,

C2pτq is bq-small above σq
2; we find some τ2 such that pτ1, τ2q P

pdom2 DqzC2; and so on, we find some τ P DzBνpqq. We conclude

that νpqq P Pn (and νpqq 6 q).

3.4. THE GENERAL STEP 161

Now Bipqq “ Cn´1; so Bνpipqqq is the set of tuples τ P T qÓ such that

τ�k P Ck for some k 6 n´ 1.

Let τ P T q. If τÓP Bνpipqqq then Bνpqqpτq “ T qpτq, in particular

σ
q
n P Bνpqqpτq. Otherwise, Bνpqqpτq “ Bqpτq, and since in this case

τ < Cn´1 we see that Bνpqqpτq is bq-small above σq
n. We conclude

that Bipνpqqq “ πbq

σ
q
n
pBνpqqq “ Bνpipqqq and so that ipνpqqq “ νpipqqq.

We also conclude that τ P πbq

σ
q
n
pBνpqqq if and only if σq

n P Bνpqqpτq.

By induction, νpipqqq P Qn´1, so νpqq P Qn. �

Proposition 3.4.14. in�Qn is a restriction map from Qn to Qn´1.

Proof. It remains to show that if q P Qn and p P Qn´1 extends inpqq

then there is some r P Qn extending q such that inprq 6 p. By using

the map νn, it suffices to find r P Pn. The proof is identical to that of

Proposition 3.3.21. �

Lemma 3.4.15. in�Qn is onto Qn´1.

Proof. Let p P Qn´1. We define q P Qn such that inpqq “ p by

letting, for σ P T p, T qpσq “ phpq6|σ|, and let Bqpσq “ T qpσq if

σ P Bp, otherwise Bqpσq “ BDNCσ. �

Totality

Proposition 3.4.16. Let C Ď pωωq
n be Π0

2 and let p P Pn. If p

xG P C then p has an extension which strongly forces that xG P C.

The proof is identical to the proof of Proposition 3.3.23.

162 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

3.4.3 Minimality

Let Γ : pωωq
n
Ñ 2ω be a Turing functional.

Definition 3.4.17. Let B Ď pωăωqn. Two sets A0, A1 Ă pω
ăωq

n form

a local Γ-splitting mod B if for all τ P pωăωqn´1, the sets A0pτq and

A1pτq Γpτ,´q-split mod Bpτq.

Definition 3.4.18. Let A Ă pωăωqn be finite and prefix-free, and let

B be a collection of subsets of pωăωqn. We say that the sets in B are

uniformly g-big above A if
Ş

BPB π
gn
A pBq is gÓ-big above AÓ.

Lemma 3.4.19. Suppose that p P Pn strongly forces that ΓpxGq is

total, and forces that it is not computable from xGÓ. Let σ P T p; let

g P Q such that hp " g, and hp > 3g and g > bp above |σ|. Then

there are sets A0, A1 Ă T p, uniformly g-big above σ, which locally

Γ-split mod Bp.

Proof. Identical to the proof of Lemma 3.3.24. �

Lemma 3.4.20. Let g and h be n-tuples of bounding functions;

let B Ď pωăωqn be open. Suppose that:

• σ,σ˚ P pωăωqn;

• A is 3g-big above σ;

• E0 and E1 are uniformly 3g-big above A; and for all τ P A,

E0 X τ
4 and E1 X τ

4 locally Γ-split mod B; and

• F is 3h-big above σ˚, and |Γpρq| ą |Γpζq| for all ρ P FzB and

all ζ P EzB, where E “ E0 Y E1.

3.4. THE GENERAL STEP 163

Then there are E1 Ď E, g-big above σ, and F 1 Ď F, h-big above σ˚,

which Γ-split mod B.

Proof. Identical to the proof of Lemma 3.3.30. �

Lemma 3.4.21. Suppose that p P Pn strongly forces that ΓpxGq

is total, and forces that it is not computable from xG Ó. Let k P

t0, 1, . . . , n ´ 1u. Let C Ă T p be finite and prefix-free. Let g P Q

such that hp " g, and hp > 3|C|
2
g and g > bp above |σ| for all

σ P C.

Then there is a set A Ă T p, g-big above C, such that for all

τ P domk A, the sets in the collection

Apτq X pρ,σp�pk`1,nsq
4 : ρ P dom1 Apτq

(

pairwise Γpτ,´q-split mod Bppτq.

Proof. The notation for the case k “ 0 is slightly easier. In this

case we closely follow the proof of Lemma 3.3.31. For simplicity

of notation, for a set A Ď T p and some tuple τ P domk T p (for some

k ă n) we let AXpτq4 “ AXpτ,σp�pk,nsq
4. We prove the lemma by

induction on |C|; we let C˚ “ C Y tσ˚u; by induction we are given

A which is 3|C|g-big above C, and the sets AXpρq4 (for ρ P dom1 C)

pairwise Γ-split mod Bp. We list the elements σ1,σ2, . . . ,σm of C

such that pσ jq1 , σ˚1. By reverse recursion on j 6 m we define

sets A j Ă T p with A j´1 Ă A4j and Am X σ
4 Ă A4 for all σ P C. We

ensure that A j is 3 j g-big above C˚ and that A j´1Xσ
4
j and A j´1Xσ

˚

form a Γ-splitting mod B.

164 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

We start with Am “ A Y tσ˚u. Say we are given A j, j ą 0. For

brevity let D j “ pA j X σ
4
j qÓ. For τ P A j X σ

4
j we let Qτ be the set

of ζ P D j
4 X T pÓ such that either:

• τÓ$ ζ; or

• in T ppζq there are G0 and G1, 3 jg-big above τn, which Γpζ,´q-

split mod Bppζq.

Then Lemma 3.4.19 says that for all µ P D4j X T pÓ the set Qτ is

3 j g-big above µ. By Lemma 3.4.11, Qτ is 3 j g-big above D4j X T pÓ.

By Lemma 3.4.10,
Ş

τPA jXσ
4
j
Qτ is 3 j g-big above D j. Thus, we can

find E j,0 and E j,1, finite subsets of T p which are uniformly 3 j g-big

above A jXσ
4
j , which locally Γ-split mod Bp. We obtain F j as before.

Applying Lemma 3.4.20 we finally get F 1j Ă A4j X pσ
˚q4, 3 j´1-big

above σ˚, and E1j Ă A4j X σ
4
j , 3 j´1 g-big above σ j, which Γ-split

mod Bp.

In this proof we employ the following notation: for a set X Ă

pωăωq
n and k 6 n we let Xk “ domk X. To define a set X it suffices

to first define X1; then, for all τ1 P X1, define X2pτ1q (a set of strings);

then, for all pτ1, τ2q P X2, define X3pτ1, τ2q, and so on.

We define the set A j´1. First, we consider all σ P C˚ such that

σ1 , σ
˚
1, pσ jq1. For all such σ we let A j´1 X σ

4 “ A j X σ
4. We let

A j´1,1 X pσ
˚
1q
4 “ pF 1jq1 and A j´1,1 X ppσ jq1q

4 “ pE1jq1.

Next, consider all σ P C˚ such that σ1 “ σ˚1, but σ2 , σ
˚
2. For all

τ1 P pF 1jq1 we let A j´1pτ1q X pσ�p1,nsq “ A jpτ
´A j,1

1 q X pσ�p1,nsq; this

completely defines A j´1 X σ
4. We similarly define A j´1 X σ

4 for

3.4. THE GENERAL STEP 165

σ P C˚ such thatσ1 “ pσ jq1 butσ2 , pσ jq2. Then, for all τ1 P pF 1jq1
we let A j´1,2pτ1q “ pF 1jqpτ1q; this defines A j´1,2 X pσ

˚ �2q
4, and

similarly define A j´1,2 X pσ j�2q
4. The process continues similarly

until all of A j´1 is defined.

The case k ą 0 is very similar. Morally it follows the idea of the

proof of Lemma 3.3.27, extending bushily on the first k coordinates

so that we can emulate the proof of the case k “ 0 (but with n ´ k

replacing n) within the image. We give a sketch. Again we work

by induction on |C|; we start with some C for which we inductively

already have A as required; and add to C a tuple σ˚ to get C˚. We

now let the list σ1,σ2, . . . ,σm contain those elements σ P C such

that σ�k“ σ
˚�k but σk`1 , σ˚k`1. We start with Am “ A Y tσ˚u

and build sets A j with the same properties as above. Given A j we

aim to find E j,0, E j,1 and F j as above, except that we also require

that domk E j “ domk F j; this is possible because σ j �k“ σ
˚ �k:

we first get E j as above, and then extend domk E j to domk F j; and

“relabel” E j by letting E jpζq “ E jpτq for all ζ P dom F j extending

τ P dom E j. Then we obtain E1j and F 1j but require that domk E1j “

domk F 1j “ dom F j; we apply Lemma 3.4.20 within T ppζq for each

ζ P dom F j. We then define A j´1 as above. �

Proposition 3.4.22. Every condition in Pn forces that degTpxGq is a

strong minimal cover of degTpxGÓq.

Proof. Let p P Pn which strongly forces that ΓpxGq is total, and

forces that it is not computable from xGÓ. Fix k P t0, 1, . . . , n ´ 1u.

166 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Using Lemma 3.4.21 and the by now familiar construction we obtain

an extension q of p which (strongly) forces that ΓpxGq ‘ pxG�kq >T

xG
k`1. Iterating for each k we obtain a condition which forces that

ΓpxGq ”T xG. �

3.5 Proof of the main theorem

We prove Theorem 3.1.1. We have obtained a directed sequence of

forcing notions

Q1 Q2 Q3 Q4
i2 i3 i4 i5

¨ ¨ ¨

With each in a restrction map. For m ă n let inÑm “ im`1 ˝ im`2 ˝

¨ ¨ ¨ ˝ in (and of course let inÑn “ idQn). A composition of restriction

maps is a restriction map, so each inÑm is a restriction map.

As sets, the forcing notions Qn are pairwise disjoint. Let Qăω “
Ť

nQn. We order Qăω as follows: if p P Qn and q P Qm then q

extends p if m > n and imÑnpqq 6 p in Qn. Note that the ordering on

each Qn agrees with this ordering.

For n ă ω let Q6n “
Ť

m6nQm, ordered as a sub-order of Qăω.

Define jωÑn : Qăω Ñ Q6n by letting, for q P Qm, jωÑnpqq “

q if m 6 n, and otherwise jωÑnpqq “ imÑnpqq. For m > n let

jmÑn : Q6m Ñ Q6n be jωÑn�Q6m. These maps are restriction maps

and they commute: for n 6 m 6 α 6 ω, jαÑn “ jmÑn ˝ jαÑm.

Let Găω Ă Qăω be very generic. Let G6n be the filter in Q6n

generated by the generic directed set jωÑnrGăωs. By Lemma 3.4.15,

3.5. PROOF OF THE MAIN THEOREM 167

each Qn is dense in Q6n; so Gn “ G6n X Qn is a fairly generic filter

of Qn; and imÑnrGms Ď Gn. (By ‘very generic’ and ‘fairly generic’

we mean that if we need Gn to be sufficiently generic, then we can

ensure that by making Găω sufficiently generic. Technically, for

any countable collection D of dense subsets of Qn we can find a

countable collection E of dense subsets of Qăω, such that if Găω

meets every set in E, then Gn meets every set inD.)

This gives us a sequence x1, x2, . . . of elements of Baire space

such that px1, . . . , xnq “ xGn. By Proposition 3.4.22, each tuple

px1, . . . , xnq is a strong minimal cover of px1, . . . , xn´1q; and xn P

DNCpx1,...,xn´1q.

168 CHAPTER 3. DNR AND INCOMPARABLE TURING DEGREES

Chapter 4

Multiple genericity

4.1 Introduction

Real numbers that are typical in some sense play an important role

in computability theory. They arise from considering the notions

of measure and category. Given a countable collection of sets that

are considered large in some sense, we consider the reals that are in

every such set in some way. If the sets in our collection are large

with respect to measure, we arrive at random reals, and if they are

large with respect to category, we arrive at generic reals.

In [26], Jockusch introduced the notion of n-generic reals, for

every n P ω. The original definition was in terms of reals that are

generic for Cohen forcing restricted to n-quantifier arithmetic. This

was shown by Jockusch and Posner ([26]) to be equivalent to the

following. Our collection of sets are the Σ0
n sets of strings. We say

that the real A meets the Σ0
n set S if there is some σ ă A such that

σ P S , and that A avoids S if there is some σ ă A such that no

169

170 CHAPTER 4. MULTIPLE GENERICITY

extension of σ is in S . Then a real is n-generic if it either meets

or avoids every Σ0
n set of strings. The n-generic sets form a proper

hierarchy: every n`1-generic real is also n-generic, but the converse

does not hold.

We also have the weakly n-generic sets, as defined by Kurtz in

[34]. We say that a set of strings S is dense if every string has

an extension in S . Then a real A is weakly n-generic if it meets

every dense Σ0
n set of strings. Kurtz ([34]) showed that this refines

the hierarchy, in that we have for all n, the n-generic reals properly

contain the weakly n ` 1-generic reals, which properly contain the

n` 1-generic reals.

The greater the n, the more typical we consider an n-generic real

to be. In many cases, typical behaviour starts with the 2-generic re-

als, and will fail for 1-generic reals. A similar situation occurs with

the hierarchy of n-random sets. Barmpalias, Day, and Lewis ([2])

survey many such results for randomness and genericity. As an ex-

ample, Kurtz ([34]) showed that the collection of sets computing a

2-generic real has measure 0, whereas the collection of sets comput-

ing a 1-generic real has measure 1 ([34]). Thus it is of great interest

to determine exactly when typical behaviour starts, and we may use

notions of genericity intermediate between 1- and 2-genericity to

more finely specify this.

Several such notions have already been defined. Apart from weak

2-genericity, the most well-known notion is pb-genericity, which

was introduced by Downey, Jockusch, and Stob in [20]. We meet

4.1. INTRODUCTION 171

pb-dense sets of strings. A set is pb-dense if it is the range of a

total function f : 2ăω Ñ 2ăω with f pσq < σ which can be approx-

imated, as in the Limit Lemma, with a primitive recursive bound

on the number of mind changes. Schaeffer ([40]) defines dynamic

genericity, which is a stronger notion than pb-genericity which also

uses dense sets of strings.

To highlight the difference between these notions, we consider

what we must do in order to construct these generics. Suppose that

we would like to construct a real A which is 1-generic. Let S be a

c.e. set of strings. Suppose that we already have decided that σ will

be an initial segment of our real A. For A to meet or avoid S , we

simply wait until a string τ with τ ą σ is enumerated into S . If no

such τ exists, then σ avoids S . If such a τ does exist, we can then

let A extend τ, and A will meet S . The point is that we need to act at

most once in order to satisfy the requirement that we meet or avoid

S .

Suppose we would like to instead make A pb-generic. Let f :

2ăω Ñ 2ăω be a total function with approximation x fsy that has a

primitive recursive bound p on the number of mind changes. Sup-

pose that we decide at stage s that our real A must extend σ. So that

A meets range f , at every stage t of the construction after stage s,

we would like At, our current approximation to A, to extend ftpσq,

the current approximation to f pσq. Although we do not know dur-

ing the construction which approximation fspσq to f pσq is correct,

we do know that we only have to change our approximation to A at

172 CHAPTER 4. MULTIPLE GENERICITY

most ppσq many times before it will permanently extend f pσq. In

particular, given the string σ and the function f with bound p, the

number of times we must act in order to satisfy the requirement that

some extension of σ meets range f is bounded in advance, namely

by ppσq.

We wish to generalise this notion of genericity so that givenσ and

some set of strings T we would like to meet or avoid, the number of

times we must act in order to meet T is only revealed to us during

the course of the construction. We would also like to allow for the

possibility that T is not a dense set of strings.

We imagine, as is standard in computability theory, that we are

trying to construct a real that is generic in this sense, and that our

opponent gets to play the set of strings T . Suppose that we have

decided that σ is an initial segment of the real we are building. Our

opponent is enumerating the strings in T . We look for such a string

extending σ. Suppose that at some stage s our opponent enumerates

the string τ extending σ. We then let our approximation to A extend

τ. For the moment we think that we have met T , and will work

towards meeting other such sets U played by the opponent. At some

later stage, our opponent then enumerates some extension τ1 of τ,

and demands that we must instead ensure that our real A extends τ1

in order to meet T . We change our approximation to A to extend τ1.

This can repeat a certain number of times. We require however, that

our opponent tells us at stage s how many times this may repeat.

This is formalised as follows. The set T is thought of as the

4.1. INTRODUCTION 173

range of a partial computable function f : ω ˆ ω Ñ 2ăω, equipped

with a partial computable function h. Suppose at stage s we see

f px, 0qrss Ó. We also require that hpxqrss Ó. Then f px, 0q is the

current string which we would like to extend in order to meet T , and

we know that we may see up to hpxqmany extensions of f px, 0q. We

may at some later stage s1 see that f px, 1qrs1s Ó, in which case we

would then like to extend f px, 1q in order to meet T . Our opponent

must ensure that |tk : f px, kq Óu| ă hpxq. Of course there may also

be y , x such that f py, 0qrs1s Ó. In order for the real A to meet T ,

we only need there to be some x such that f px, kq ă A, where k is

greatest such that f px, kq Ó. We say that the real A avoids range f

if it avoids range f when considered simply as a c.e. set of strings.

That is, if there is some σ ă A such that there are no x and k such

that f px, kq � σ. We refer to range f as an ω-change set of strings.

We give the definition again in the next section.

In section 4.3 we consider the computational power required to

compute such a generic. We see a connection between these generics

and the hierarchy recently introduced by Downey and Greenberg in

[17]. In section 4.4 we first present a corrected version of the proof

from [13] that if a set has no c.e. tight cover then it is computable

in a 1-generic, and then extend this result to the case of ω-change

generics. In the final section, we give another proof of Haught’s

theorem that every noncomputable degree below a 1-generic below

H1 contains a 1-generic. We hope in further work to show that the

analogous result for ω-change generics does not hold, and that they

174 CHAPTER 4. MULTIPLE GENERICITY

are not downward dense belowH1.

4.2 Definitions

An ω-change set of strings is the range of a partial computable func-

tion f : ω ˆ ω Ñ 2ăω for which there is a partial computable

function h : ωÑ ω such that for all x,

1. if f px, k ` 1qÓ then f px, kqÓ,

2. if f px, k ` 1qÓ then f px, k ` 1q < f px, kq,

3. for all s, if f px, 0qrssÓ, then hpxqrssÓ, and

4. |tk : f px, kqÓu| ă hpxq.

Let range f be an ω-change set of strings with partial computable

bound h. We say that a set A meets range f if there is some x and

k such that f px, kq ă A and f px, k1q Ò for all k1 ą k. We say that A

avoids range f if A avoids range f as a c.e. set of strings. That is,

there is some σ ă A such that for all x and n, f px, nq � σ. We say

that a set is ω-change generic if it meets or avoids every ω-change

set of strings.

We see that every ω-change generic is 1-generic, as every c.e. set

of strings is an ω-change set of strings. If range f is an ω-change

set of strings, then range f is a Σ0
2 set of strings. Therefore every

2-generic is ω-change generic.

4.3. COMPUTING ω-CHANGE GENERICS 175

For the remainder of this chapter, we let x fi, hiyiăω be an effective

list such that xrange fiy is a list of all ω-change sets of strings, and

that range fi has partial computable bound hi.

4.3 Computing ω-change generics

In this section we give several results which progressively refine the

computational power required to compute ω-change generic sets.

4.3.1 Forcing arguments

Importantly, the following theorem shows that ω-change generics

exist below H1. Note that this is not the case for weakly 2-generic

sets.

Theorem 4.3.1. There is an ω-change generic set G with G 6T H
1.

Proof. We must built G 6T H
1 and satisfy the requirements

Re: G meets or avoids range fe.

We build G by finite extension. The construction will proceed in

stages, with each stage consisting of possibly many substages. Let

Gs be the string at the end of the last substage of stage s, and let

Gs,n denote the string at the nth substage of stage s. Let G0 “ λ, the

empty string.

Construction

Stage e` 1: we deal with Re at this stage.

176 CHAPTER 4. MULTIPLE GENERICITY

Substage 0: Let Ge`1,0 “ Ge.

Substage 1: We askH1 the Σ0
1 question

pDsqpDxqpDkqphepxqrssÓ and fepx, kqrssÓą Ge`1,0q.

If the answer is no, then there is no string in range fe which extends

Ge`1,0, so we can let Ge`1 “ Ge`1,0 and proceed to the next stage.

If the answer is yes, then let xe be the least x found at the least

such stage. We let Ge`1,1 “ fepxe, kq where k is greatest such that

fepxe, kqrssÓ, and proceed to the next substage.

Substage u, u > 2: We askH1 the Σ0
1 question

pDkqpDsqp fepxe, kqrssÓą Ge`1,u´1q.

If the answer is no we let Ge`1 “ Ge`1,u´1 and proceed to the next

stage. If the answer is yes, we let Ge`1,u “ fepxe, kq, and proceed to

the next substage.

There are at most hepxeq substages of stage e as

|tk : fepx, kqÓu| ă hepxq.

In this way we make sure that Ge “ fepxe, kq where k is the great-

est such that fepxe, kq Ó, and so G meets range fe, and Re is satis-

fied. �

Our next step is showing that every GL2 degree computes an ω-

change generic. Recall that a set A is in GL2 if it is not generalised

low2. That is, for each function f 6T A ‘ H1 there is a function

4.3. COMPUTING ω-CHANGE GENERICS 177

g 6T A such that gpnq > f pnq for infinitely many n; see Corollary

2.23.8 of [18]. The proof is very similar to that of Lemma 2.24.23

of [18], which itself is fairly similar to Lemma 3 in [28].

Theorem 4.3.2. Every GL2 degree computes an ω-change generic.

Proof. Let a be a GL2 degree. We build an ω-change generic G 6T

a and satisfy the requirements

Re: G meets or avoids range fe.

First let us define the function p : ω ˆ 2ăω ˆ ω Ñ ω. We

let ppe, σ, sq “ 0 if there is no x and k such that fepx, kqrss Óą

σ. Otherwise, we let se,σ 6 s be the least such that there are x

and k such that fepx, kqrse,σs Óą σ. Let xe,σ be the least such x

at stage se,σ. Then if k is greatest such that fepxe,σ, kqrss Ó, we let

ppe, σ, sq be the least stage s1 6 s such that fepxe,σ, kqrs1s Ó. We

let qpe, σq “ lims ppe, σ, sq. As can be seen from the proof of the

previous theorem, q 6T H
1. Let

lpnq “ max t qpe, σq : e, |σ| 6 nu.

We also have l 6T H
1. Let A P GL2. AsH1 6T A‘H1, l 6T A‘H1.

By Corollary 2.23.8 in [18], there exists a function g 6T A that

escapes domination by l. That is, pD8sqpgpsq ą lpsqq. We assume

without loss of generality that g is nondecreasing and unbounded.

We obtain G as YsGs, where each Gs is a string of length s. At

stage s we look for extensions to our current approximation Gs´1

in range fe for e 6 s. The bound on the search is given by gpsq. At

178 CHAPTER 4. MULTIPLE GENERICITY

stage s, if Re is the strongest priority requirement that is not currently

satisfied, we see whether there is fepx, kqrgpsqs Óą Gs´1. If so, we

choose x to be the least such at stage s, and k the greatest such for this

x. We will then start working towards fepx, kq one bit at a time. Once

we reach a stage t where Gt “ fepx, kq, we say that Re is satisfied

at stage s. This attack can be interrupted by any requirement of

stronger priority. If at any stage u ą s we see that there is k1 ą k

such that fepx, k1qrgpuqs Ó, we say that Re is unsatisfied at stage u.

We then repeat the strategy for S e.

The construction is carried out computably in g, and so G 6T A.

It is clear that if Re is permanently satisfied then G meets range fe.

We show that each Re is satisfied. Suppose by induction that all Ri

for i ă e are permanently satisfied at all stages after stage s0. Let s ą

s0 be such that gpsq ą lpsq. If an attack as above is started at stage

s, then this will lead to Re being permanenty satisfied. Otherwise,

there must be a stage v P rs0, sq such that an attack for Re is started

at stage v. Suppose that this attack works towards the string fepx, kq.

Then as Re is not said to be unsatisfied at any stage before s, we must

have for all t P pgpvq, gpsqs that the greatest l such that fepx, lqrts Ó

is k. Then gpvq > qpe,Gv´1q and so Re will be satisfied at all stages

after stage s.

�

Downey, Jockusch, and Stob in [20] extended the result of Jockusch

and Posner from [28] that every GL2 degree bounds a 1-generic to

show that every array noncomputable degree bounds a 1-generic.

4.3. COMPUTING ω-CHANGE GENERICS 179

This is significant because array noncomputable degrees can exist

within the generalized low2, and in fact the low, degrees ([19], [20]).

We can too show that ω-change generics exist in the generalized

low2 degrees. We require some concepts introduced by Downey and

Greenberg in [17]. They define for all ordinals α 6 ε0 the notion of

an α-c.a. function. The concepts are quite sensitive to the ordinal

notations used. We refer the reader to Chapter II of [17] for a dis-

cussion of this. The ordinals must have an effective Cantor normal

form. In this chapter we deal only with the ordinals ω2 and ω, and

so for our purposes, if β ă ω2, then β “ ωk ` n, and we know k

and n. We consider ω2 with the lexicographic ordering, and so if

α, β ă ω2, then α “ ωl` m and β “ ωk ` n for some l,m, k, n, and

α ă β if and only if l ă k, or l “ k and m ă n.

Definition 4.3.3. An ω2-computable approximation of a function f

is a computable approximation x fsy of f , equipped with a uniformly

computable sequence xosysăω of functions from ω to ω2 such that

for all x and s,

• os`1pxq 6 ospxq, and

• if fs`1pxq , fspxq, then os`1pxq ă ospxq.

Then a function f : ωÑ ω is ω2-c.a. if it has an ω2-computable

approximation. We say that a degree a is ω2-c.a. dominated if every

function computable in a is dominated by some ω2-c.a. function.

There is a uniform version of this notion as well. We say that a

180 CHAPTER 4. MULTIPLE GENERICITY

degree a is uniformly ω2-c.a. dominated if there is some ω2-c.a.

function which dominates every function computable in a.

The definition of an ω-c.a. function is similar, replacing ω2 with

ω, and considering ω with its standard order. A function is ω-c.a. if

and only if it is weak truth-table belowH1.

Theorem 4.3.4. If a is not uniformly ω2-c.a. dominated then A

bounds an ω-change generic set.

Proof. We show that the function l from Theorem 4.3.2 is ω2-c.a.

We first show that the function q from Theorem 4.3.2 is pω ` 1q-

c.a. We have qpe, σq “ lims ppe, σ, sq and p is a total computable

function. We define a sequence of functions xosysăω, os : ωˆ2ăω Ñ

ω` 1. Let ospe, σq “ ω if ppe, σ, sq “ 0. If ppe, σ, sq , 0, then se,σ

and xe,σ are defined at stage s, and hepxe,σqrss Ó. We let ospe, σq “

hepxe,σq ` 1 ´ n, where n is the number of different numbers in the

list ppe, σ, se,σq, ppe, σ, se,σ ` 1q, . . . , ppe, σ, sq.

The function l has the computable approximation xlsy where

lspnq “ max t ppe, σ, sq : e, |σ| 6 nu.

There are pn`1qp2n`1´1qmany pairs pe, σq such that e 6 n and

|σ| 6 n. Let o1spnq “ p pn ` 1qp2n`1 ´ 1q ´ k ,
ř

e6n,|σ|6n ospe, σq q

where k is the number of pairs pe, σq such that ppe, σ, sq , 0 and

we do not include terms in the summation where ospe, σq “ ω. For

any n, o1spnq is nonincreasing, as the number of pairs pe, σq with

ppe, σ, sq , 0 can only increase, and ospe, σq is nonincreasing. If

4.3. COMPUTING ω-CHANGE GENERICS 181

for some s we have ls`1pnq , lspnq, this must be because there is

some pair pe, σq such that either ppe, σ, s`1q ą ppe, σ, sq, in which

case ospe, σq will decrease and so will o1spnq, or ppe, σ, sq “ 0 and

ppe, σ, s ` 1q , 0, in which case the first coordinate of o1spnq will

decrease, and so o1spnq will.

Let a be a not uniformly ω2-c.a. dominated degree. Then a com-

putes a function which escapes domination by l. Then as in the proof

of Theorem 4.3.2, we can build a ω-change generic set below a. �

Corollary 4.3.5. There exist ω-change generic sets in the general-

ized low2 degrees.

Proof. Downey and Greenberg’s hierarchy of α-c.a. dominated de-

grees is contained within the generalized low2 degrees. They show

that if α is a power of ω, then there is a degree which is α-c.a. dom-

inated but not uniformly α-c.a. dominated. See Chapter III, and in

particular Section III.5 of [17] for more details.

Taking a degree which is ω2-c.a. dominated but not uniformly

ω2-c.a. dominated, by the previous theorem, there is an ω-change

generic set in the generalized low2 degrees. �

4.3.2 A c.e. permitting argument

A closely related notion from [17] is that of a totally α-c.a. degree.

We say that the degree a is totally α-c.a. if every function com-

putable in a is α-c.a.

For c.e. degrees, the notions of (uniformly) α-c.a. dominated

and (uniformly) totally α-c.a. coincide (see Section III.5 of [17]).

182 CHAPTER 4. MULTIPLE GENERICITY

In Downey and Greenberg’s hierarchy, immediately below the uni-

formly totally ω2-c.a. degrees are the totally ω-c.a. degrees. There-

fore we can slightly improve the previous result for c.e. degrees.

Theorem 4.3.6. Every not totally ω-c.a. c.e. degree computes an

ω-change generic set.

Proof. Let a be a not totally ω-c.a. c.e. degree, A P a be a c.e. set,

and let g “ ΓpAq be a function that is not ω-c.a. (where Γ is a Turing

reduction). Let γspnq be the use at stage s of computing gpnq via

ΓpAq. We have a ∆0
2-approximation gs for g that is generated from

an enumeration of A via Γ.

We build a set G and a Turing functional ∆ such that G “ ∆pAq

to satisfy the requirements

Re: G either meets or avoids range fe.

We first consider how to satisfy Re in the simplified case where

for all x, if hepxq Ó then hepxq “ 1. This situation is equivalent to

meeting or avoiding a c.e. set of strings. The construction proceeds

in stages s P ω. Associated with every requirement at every stage

is a finite sequence of natural numbers we call lengths. If li is a

length, then the ith substrategy for Re will seek at stage s an exten-

sion to Gs´1 � li in range fe,s. If we find an appropriate extension

to Gs´1 � li (we say that li is realized) we would like to change our

approximation to G to meet the extension, but will require permis-

sion from A to do so. Whenever a new length is defined we assign

4.3. COMPUTING ω-CHANGE GENERICS 183

to it a permitting number; in this instance we assign li the permit-

ting number i. As li has permitting number i, we will grant permis-

sion for li if we see a change in the ∆0
2-approximation to gpiq, and

hence a change in A below γspiq. If permission is granted, we change

our approximation to G to meet the extension, and the requirement

will be permanently satisfied. As we may never receive permission

on any of the lengths already in our sequence, we choose a fresh

large number to be a new length and assign it a permitting number.

If there are infinitely many realized lengths, none of which receive

permission, then we derive a contradiction to g not being ω-c.a. as

follows. Suppose li is realized at stage si. As we do not receive per-

mission for li after stage si, we know that gpiq cannot change past

this stage. Thus we can computably bound the number of times gpiq

can change, which is a contradiction. In fact, in this simplified case

we have that A � γsipiq “ Asi � γsipiq for all i, which contradicts A

being noncomputable.

Unfortunately, we do not have hepxq “ 1 for all x such that

hepxqÓ. This will mean that a single length may require multiple per-

missions, as we now discuss. We begin as above, with the length l0
with permitting number 0. Suppose at stage s, l0 is realized when we

see for some x that fepx, 0qrssÓ, hepxqrssÓ, and Gs´1 � l0 ă fepx, 0q.

We refer to the x here as the location for this attack on Re, and asso-

ciate x with l0 by letting x0 “ x. As above, while we wait to receive

permission for l0 we will choose a new length l1 with permitting

number 1. If we were to ever receive permission for l0 at stage t,

184 CHAPTER 4. MULTIPLE GENERICITY

then we would change Gt to extend fepx0, 0q. In the simplified case,

this action would have been enough to permanently satisfy Re. Here

in the ω-change generic case, at some later stage t1 we may have

fepx0, 1qrt1sÓą fepx0, 0q but fepx0, 1q ⊀ Gt1, in which case Re would

no longer appear to be satisfied at stage t1. To change our approxi-

mation to G again we would require another permission for l0. The

number of permissions we may require for l0 is at most hepx0q, since

|tk : fepx0, kq Óu| ă hepx0q. If not enough permissions for l0 are

received to satisfy Re, then we can computably bound the number of

times gp0q may change as follows. We can approximate gp0q every

time l0 receives permission, and as this occurs strictly fewer than

hepx0q many times, our approximation changes at most hepx0q many

times.

There is one last complication. Suppose, as above, we acted for

l0 to have Gt meet fepx0, 0q. Re would then seem to be satisfied.

We may have no further need for l1, and so we clear it from our

sequence of lengths. The problem is that we must challenge the

non-ω-c.a.-ness of g at all i P ω. What should we do with changes

in gp1q? The solution is to let l0 receive permission from A when

there is a change in gp0q or gp1q. If at some later stage t1 we see that

fepx0, 1qrt1sÓą fepx0, 0q, we will wait for permission for l0, choose a

new length l1, and assign it permitting number 2. Why could we not

use the old length l1 here? We would like to be able to reason that if

we find no extension to Gt1 � l1 then Gt1 avoids range fe. However,

if we were to use the old value for l1 we might have l1 ă | fepx0, 1q|.

4.3. COMPUTING ω-CHANGE GENERICS 185

Therefore we choose a fresh number for l1.

In general, each length li will be assigned a permitting number

n. If li has permitting number n, it receives permission when there

is a change in the approximation to gpnq. If li receives permission

we clear all li1 for i1 ą i and then li takes responsibility for tracking

the changes in g on the permitting numbers of the li1 – the permit-

ting number for li will then become a permitting interval. This is

achieved in practice by lifting the use δt`1pliq to equal γt`1pnmaxq,

where nmax is the largest current permitting number. We show in

Lemma 4.3.7 that the use can be lifted only hepxiq many times, and

so is well-defined. To argue that Re is met, we show that if there are

infinitely many realized lengths, none of which receive enough per-

missions, then we will be able to obtain a contradiction by building

an ω-c.a. approximation ĝ for g. The definition of ĝ, as well as a

bound on the number of times the approximation may change, will

be given during the verification. We now give formal details of the

construction.

At every stage s and for every requirement Re we will have a

sequence

le,0,s, le,1,s, . . . , le,imaxpe,sq,s

of lengths, and a sequence

xe,0,s, xe,1,s, . . . , xe,imaxpe,sq´1,s

of locations. At some stages we will also define xe,imaxpe,sq,s. During

the construction we may clear all or parts of the sequences, and so

186 CHAPTER 4. MULTIPLE GENERICITY

if at stage s we have i entries in our sequence of lengths for Re, we

let imaxpe, sq “ i ´ 1; when the sequence is empty we let imaxpe, sq

be undefined. We will say that the length le,i,s is waiting if xe,i,s

is defined and we are currently seeking permission to change our

approximation to G to extend fepxe,i,s, kq, where k is greatest such

that fepxe,i,s, kqrssÓ.

To every length le,i,s we associate a permitting interval Iple,i,sq.

This is an interval of natural numbers; its left end is fixed from when

le,i,s is first defined, but its right end may grow with time (but only

finitely often). We say that le,i,s is permitted at stage s if for some

n P Iple,i,sq we have gs´1pnq , gspnq.

We say that Re is satisfied stage s if xe,imaxpe,sq,s is defined, and

fepxe,imaxpe,sq,s, kq ă Gs, where k is greatest such that fepxe,imaxpe,sq,s, kqrssÓ.

We say that Re requires attention at stage s if one of the following

holds:

1. the sequence of lengths for Re is empty at stage s.

2. For some i such that le,i,s is waiting, le,i,s is permitted at stage s.

3. Re was satisfied at some previous stage, but is not satisfied at

stage s.

4. Re is not satisfied at stage s, and there is an x not occuring in

our sequence of locations at stage s, and a k such that hepxqrssÓ

and fepx, kqrssÓą Gs � le,imaxpe,sq,s.

Why we may want Re to receive attention in case (2), even when

4.3. COMPUTING ω-CHANGE GENERICS 187

Re is satisfied, bears some explanation. Suppose at stage s we have

that Re is satisfied but that there is i ă imaxpe, sq such that le,i,s is

waiting and le,i,s is permitted. Suppose that n P Iple,i,sq. We would

then proceed to act for Re at le,i,s so that if there are many changes in

gpnq we can meet the requirement at position i. n may be the only

natural number for which we cannot computably bound the number

of changes in gpnq. If we do not act at le,i,s and Re were to require

attention in case (3) at some later stage t, we may never receive

permission on le,imaxpe,tq,t, and Re will not be met.

Construction

Stage 0: Let G0 “ 0ω. Let δ0pnq “ n for all n P ω.

Stage s, s > 1:

Find the least e, if any, such that Re requires attention at stage s.

(If no such e exists, go to stage s` 1.) Initialize all requirements Re1

for e1 ą e by clearing the sequences of lengths and locations for Re1.

Choose the first case by which Re requires attention.

If case p1q holds, let imaxpe, s ` 1q “ 0 and le,0,s`1 be fresh. Let

Iple,0,s`1q “ t0u.

If case p2q holds, choose the least i that is applicable. Set Gs`1 “

fepxe,i,s, kq ˆ 0ω, where k is greatest such that fepxe,i,s, kqrss Ó. Clear

le,i1,s and xe,i1,s for all i1 ą i, and set δs`1ple,i,s`1q “ γs`1pnmaxq where

nmax “ max Iple,imaxpe,sq,sq. Set Iple,i,s`1q “ rmin Iple,i,sq, nmaxs and

imaxpe, s` 1q “ i. Say that le,imaxpe,s`1q,s`1 is not waiting. We say that

Re received attention at position i at stage s.

188 CHAPTER 4. MULTIPLE GENERICITY

If case p3q holds, define imaxpe, s`1q “ imaxpe, sq`1 and choose

le,imaxpe,s`1q,s`1 to be fresh. Let Iple,imaxpe,s`1q,s`1q “ tnu where n is the

least number that is not already a permitting number for some length

for Re. Say that le,imaxpe,s`1q´1,s`1 is waiting.

If case p4q holds, define xe,imaxpe,sq,s to be the x found, define imaxpe, s`

1q “ imaxpe, sq`1 and choose le,imaxpe,s`1q,s`1 to be fresh. Let Iple,imaxpe,s`1q,s`1q “

tnu where n is the least number that is not already a permitting num-

ber for some length for Re. Say that le,imaxpe,s`1q,s`1 is waiting.

If we did not act in case (2) then we let δs`1pnq “ δspnq for all

n. If we did act in case (2), suppose we defined δs`1ple,i,s`1q. For

all m such that δsple,i,sq 6 δspmq 6 δs`1ple,i,sq, we define δs`1pmq “

δs`1ple,i,sq. For all other m we let δs`1pmq “ δspmq.

End of Construction

Verification

Lemma 4.3.7. limsăω Gs is well-defined and limsăω Gs 6T A.

Proof. We must show that for all n, limsăω δspnq exists. To see that

limsăω δspnq exists, go to stage n. Note that by the way δ is defined,

δspnq can be changed only if there is some length le,i,s 6 n and Re

receives attention in position i at or after stage s. So if at stage n

there is no e such that le,i,n 6 n for some i, then no requirement will

be able to lift the use of δpnq after stage n. Therefore δtpnq “ δnpnq

for all t ą n and so the limit exists. Otherwise, choose the least e,

and for this e, the least i, such that le,i,n 6 n and Re receives attention

4.3. COMPUTING ω-CHANGE GENERICS 189

at position i at some stage. Let t0 be the least stage at which Re

receives attention at position i. By the way that e and i were chosen,

le,i,n cannot be cleared from the sequence of lengths by the action

of requirements Ri for i ă e, or by Re acting in a position j ă i.

Thus lims le,i,s “: le,i exists. Re can receive attention in position i at

most hepxe,i,nq many times after stage n; Re may be satisfied at some

stage and then later require attention in case (3). If permission for

le,i,n is granted, Re will receive attention in position i. We have |tk :

fepxe,i,s, kqÓu| ă hepxe,i,sq, and so Re can require attention in case (3)

at most hepxe,i,nq many times after stage n. So δsple,iq can change at

most finitely many times. When Re receives attention at position i at

stage t0, we will clear the sequences of lengths for requirements of

lower priority, and clear le,i1,n for all i1 ą i. Thus if we define l f , j,u

for either f “ e and j ą i, or f ą e, at some later stage u, we will

choose fresh numbers which will be larger than n and not interfere

with the approximation to δpnq. So limsăω δspnq “ δpnq exists for

all n.

Lastly, we must show that if As`1 � δspnq “ As � δspnq, then

δs`1pnq “ δspnq and Gs`1 � n “ Gs � n. If As`1 � δspnq “

As � δspnq then no requirement with a length less than n can re-

ceive permission at stage s. Thus, as discussed above, δs`1pnq “

δspnq. Only lengths greater than n can receive permission at stage

s. If a requirement Re were to act at stage s in position i where

le,i,s ą n, we would let Gs`1 “ fepxe,i,s, kq ˆ 0ω, where k is greatest

such that fepxe,i,s, kqrss Ó. But by condition (4) of requires attention,

190 CHAPTER 4. MULTIPLE GENERICITY

fepxe,i,s, kq ą Gs � le,i,s, and so as le,i,s ą n, Gs`1 � n “ Gs � n.

Therefore limsăω Gs 6T A.

�

Let G “ limsăω Gs.

Lemma 4.3.8. Each requirement receives attention at only finitely

many stages, and is met.

Proof. Assume by induction that there is a stage r after which no

requirement Ri for i ă e receives attention. Suppose for contradic-

tion that Re receives attention at infinitely many stages. In this case

we show that g is ω-c.a. by building an ω-c.a. function ĝ with com-

putable approximation xĝsysăω such that limsăω gspiq “ limsăω ĝspiq

for all i.

Suppose that x is in our sequence of locations for Re, and that x

is never cleared from the sequence. We claim that we cannot have

fepx, kq ă G, where k is greatest such that fepx, kq Ó. Suppose for

contradiction that x is in the ith place in our sequence of locations

at all stages after stage s. Then we cannot act for Re at a position

j ă i, otherwise x would be cleared from the sequence. If at some

stage t we have fepx, kq ă Gt1 for all t1 > t and k is greatest such that

fepx, kqÓ, then Re is satisfied at all stages after stage t, and we do not

act for Re after stage t. This is a contradiction, since we act for Re

infinitely many times. Note that this shows that we must act for Re

in case (4) infinitely many times.

4.3. COMPUTING ω-CHANGE GENERICS 191

We now show that every natural number is contained in some

permitting interval. At the first stage s ą r that we act for Re, we

will define le,0,s and we will have 0 P Iple,0,sq. Suppose by induction

that n is in some permitting interval at stage t. As in the previous

paragraph, we must act in case (4) for Re at some later stage, and at

this stage, we will define a permitting interval which includes n` 1.

For every n, let sn be the stage at which a length with permitting

number n is defined, and suppose this length is le,i,sn. We define ĝ

as follows. Initially we let ĝ0pnq “ gsnpnq. Either this is the correct

value of gpnq and we do not need to update the approximation, or Re

receives attention at some position j 6 i at some later stage s1. If this

occurs, then we update our approximation and let ĝs1pnq “ gs1pnq.

Re may receive attention at position i, but this must occur at most

hepxe,i,sqmany times. Re may then receive attention at position i´ 1.

We will then have n P Iple,i´1,tq so that changes in gpnq will give

permission on le,i´1,s, but this must occur at most hepxe,i´1,sq many

times, and so on. Therefore we update our approximation at most
ř

j6i hepxe, j,sq times. Calculating the bound on the number of times

the approximation ĝpnq may change is a computable function of n.

The approximation is correct; if we updated our approximation more

than
ř

j6i hepxe, j,sq times then fepxe,0,s, kq ă G where k is greatest

such that fepxe,0,s, kq Ó, contradicting the first claim of the lemma.

Therefore we have lims ĝspnq “ lims gspnq and so g is ω-c.a. This

is a contradiction. Therefore Re receives attention at only finitely

many stages.

192 CHAPTER 4. MULTIPLE GENERICITY

To see that Re is satisfied, go to a stage s after which no require-

ment Ri for i 6 e requires attention. Let x “ xe,imaxpe,sq,s. If Re is

satisfied at stage s, then as Re does not require attention in case (3)

after stage s, we must have fepx, kq ă Gt, where k is greatest such

that fepx, kq Ó for all t > s. Therefore fepx, kq ă G and G meets

range fe. If Re is not satisfied at stage s, then le,imaxpe,sq,s is defined.

As Re does not require attention in case (4) after stage s, there is no

extension to Gs � le,imaxpe,sq,s in range fe, so G avoids range fe, and Re

is met.

�

�

Together with the following theorem, we see that a c.e. degree

computes an ω-change generic if and only if it is not totally ω-c.a.

Theorem 4.3.9. If G is ω-change generic then G is not ω-c.a. dom-

inated.

Proof. Let G “ ta0 ă a1 ă ¨ ¨ ¨ u. Recall that the principal func-

tion pG of G is defined by pGpnq “ an. We show that pG escapes

domination by every ω-c.a. function.

Let f be anω-c.a. function with computable approximation x fsysăω

and computable function g such that for all x, |ts : fs`1pxq , fspxqu| ă

gpxq. Fix k. We show that there is n > k such that pGpnq > f pnq.

We identify strings with natural numbers via some Gödel num-

bering. For σ P 2ăω, let jσ be the number of 1s in σ. We define the

partial computable function f : ωˆ ωÑ 2ăω. We set f pσ, 0qr0s “

4.4. DEGREES COMPUTABLE IN GENERICS 193

σ1k´10 f0pk` jσq and g1pσq “ gpk` jσq. If at some later stage s we see

that fspk` jσq , f0pk` jσq, then we set f pσ, 1qrss “ σ1k´10 fspk` jσq.

We continue in this way, defining another f pσ, lq every time we see

a change in the approximation to f pk ` jσq. Then range f is an

ω-change set of strings with computable bound g1. G cannot avoid

range f as range f is dense. Therefore G must meet range f . So

there is a σ such that σ1k´10 f pk` jσq ă G. Therefore the pk ` jσqth 1

must come after the f pk` jσqth bit of G. So pGpk` jσq > f pk` jσq.

�

It is open whether there is a (non-c.e.) not ω-c.a. dominated

degree which does not bound an ω-change generic. By Theorem

4.3.4, such a degree would have to be uniformly ω2-c.a. dominated.

4.4 Degrees computable in generics

4.4.1 Computable in a 1-generic

In [13] and [12], Chong and Downey obtain a characterisation of

the degrees which are computable in a 1-generic. We recall their

characterisation. A c.e. set of strings T is a tight cover1 of a set A if

A neither meets nor avoids T , and for every other c.e. set of strings

T 1 such that A neither meets nor avoids T 1, there is some string in T 1

which extends a string in T . Then a set is computable in a 1-generic

set if and only if it has no c.e. tight cover.

1in [13] this was referred to as a Σ0
1-dense set of strings

194 CHAPTER 4. MULTIPLE GENERICITY

The proof in [13] that a set with no c.e. tight cover is computable

in a 1-generic set contained a small error in the handling of Sub-

case 2a in the following proof. We present a proof of the theorem,

including a significantly different discussion from that in [13].

Theorem 4.4.1. Let M be a set with no c.e. tight cover. Then there

is a 1-generic set G such that M 6T G. In fact, G 6T M ‘H2.

Proof. Suppose M has no c.e. tight cover. We first perform a com-

putable construction of a Turing functional Φ. We then use the or-

acle M ‘H2 to select a 1-generic path G through domΦ such that

ΦpGq “ M.

Let xS eyeăω be an effective enumeration of all c.e. sets of strings.

We must define G to meet the requirements

Re : G meets or avoids S e.

Suppose that by stage s we have some string σ such that for all

m ă n, σ either meets S m,s or avoids S m, and that Φspσq Óă M.

We let G extend σ. We would now like to define Φ on some string

σ1 ą σ such that σ1 either meets or avoids S n, and such thatΦpσq ă

Φpσ1q ă M.

We wait for a string γ P S n with γ ą σ. If we see such a string,

we can set Φpγq “ Φpσq, and make G extend γ. We would like G

to compute M, and so we want to define Φ on some string γ2 ą γ

so that Φpγ2q computes at least one more bit of M than Φpσq did.

The Turing functional Φ needs to be c.e., and so in the construction

4.4. DEGREES COMPUTABLE IN GENERICS 195

of Φ, we cannot make any use of M. We therefore choose two in-

comparable strings γ0, γ1 ą γ, and define Φpγ0q “ Φpσq ˆ 0 and

Φpγ1q “ Φpσqˆ1. We say that γ0 guesses that the next bit of M is 0,

and that γ1 guesses that the next bit of M is 1. Then if 0 is the next

bit of M we can choose γ0 ă G, and if 1 is the next bit of M we can

choose γ1 ă G.

Of course this strategy does not work with more than one require-

ment because there may not be any string γ ą σ in S n. We cannot

wait forever before beginning work on requirements of weaker pri-

ority.

We now consider how two strategies, one working for Rn and one

working for Rn`1, may interact if they both work above the string σ.

Suppose that at stage s1 we see δ P S n`1,s1 with δ ą σ. We choose

some string δ1 ą δ such that we have made no Φ definitions on or

above δ1, and define Φs1pδ
1q “ Φpσq. We choose two incomparable

strings δ0, δ1 ą δ1, and define Φs1pδ0q “ Φpσq ˆ 0 and Φs1pδ1q “

Φpσqˆ1. Now suppose at some later stage s2 we see γ P S n,s2, and Φ

is not already defined on an extension of any string βwithσ 4 β ă γ

and β P S n,s2. We would like to define Φpγ1q for some γ1 ą γ, and

have G extend γ1 if Φpγ1q ă M. In order to keep Φ consistent, we

look for the greatest string η with σ 4 η ă γ such that ΦpηqÓ. We

choose some γ1 ą γ such that we have made no Φ definitions on

or above γ1, and set Φs2pγ
1q “ Φpηq. Suppose that γ ą δ1. Then

η < δ1 and so Φpγ1q < Φpδ1q. However, if the next bit of M is 0,

then we cannot define Φpγ1q for any γ1 < γ and have Φpγ1q ă M.

196 CHAPTER 4. MULTIPLE GENERICITY

We therefore do not want G to extend γ. We must be careful though,

because S n`1 and S n could repeat this situation infinitely many times

and G may neither meet nor avoid S n.

Suppose that we follow the above strategy and defineΦ on a set S

of extensions of strings in S n that extend σ. If there is some γ1 P S

with Φpγ1q ă M, then we choose G to pass through γ1, and will

be able to successfully guess at the next bit of M as above. Now

suppose there is no such γ1 P S . Then M does not meet ΦpS q. In

this situation, we would like to defineΦ on some string τ ą σwhich

avoids S n, and such that Φpσq ă Φpτq ă M. Then we can choose G

to extend τ. We first look at the case where M in addition does not

avoid ΦpS q. We later consider the case where M avoids ΦpS q.

Suppose M neither meets nor avoids ΦpS q. We use the fact that

M has no c.e. tight cover. So there is some c.e. set of strings Y that

is dense in M and such that no string in Y extends a string in ΦpS q.

We define two strings τ0 and τ1 extending σ, and promise that if we

define Φpρq for any ρ < τ j, then Φpρq is an initial segment of some

string in Y .

The string τ j guesses that that the next bit of M is j. We will first

wait to define Φpτ jq before defining Φpρq for any string ρ ą τ j. We

want to define Φpτ jq “ Φpσq ˆ j, and so will wait for confirmation

that our promise can be kept. If at some later stage t we see some

ν P Yt such that ν < Φpσq ˆ j, then we say that τ j is confirmed, and

define Φtpτ jq “ Φpσq ˆ j. Once τ j has been confirmed, we allow

requirements of weaker priority than Rn to act above τ j, as long as

4.4. DEGREES COMPUTABLE IN GENERICS 197

our promise above is kept.

We note that if we see at some stage u a string γ P S n,u with σ 4

γ ă τ j, then we will choose an extension γ1 ą γ that is incomparable

with τ j, regardless of whether τ j has been confirmed by stage u.

As a result, we do not define Φ on any string η with σ 4 η ă

τ j. Therefore at any stage after we create the extension τ j, we still

wait for confirmation to define Φpτ jq “ Φpσq ˆ j. If we do receive

confirmation at some stage t, then we can define Φtpτ jq “ Φpσq ˆ j

and Φ will remain consistent.

As τ j is our candidate to avoid S n, if we do see some γ P S n with

γ ą τ j, then we will want to define Φpγ1q for some γ1 ą γ in order

to derive a contradiction. Therefore, if we confirm τ j at stage t and

see at some later stage u that there is γ ą τ j with γ P S n,u, then if

we have not already acted for some β P S n,u with τ j 4 β ă γ, we

will act for γ.

Suppose j is such that Φpσqˆ j ă M. We show that τ j avoids S n.

As Y is dense in M, there is some stage t as above where we define

Φtpτ jq “ Φpσq ˆ j. Suppose that there is γ < τ j with γ P S n. Let

u ą t be least such that there is γ P S n,u with γ < τ jpσq, and for this

u, let γ be the least such. By the choice of γ, we have not already

acted for some β P S n,u with τ j 4 β ă γ. Therefore at stage u we

define Φpγ1q for some γ1 ą γ. Let η be greatest such that η ă γ

and η P domΦu´1. Then we set Φpγ1q “ Φpηq. As τ j P domΦu´1

and γ < τ j, we must have η < τ j. We have kept the promise that

if we define Φpρq for strings ρ < τ j, then Φpρq is an initial segment

198 CHAPTER 4. MULTIPLE GENERICITY

of some string in Y . So Φpγ1q “ Φpηq is an initial segment of some

string in Y , which is a contradiction. We can then let G extend τ j.

One problem with the strategy to avoid S n is that we do not know

during the construction of Φ what the index for the c.e. set Y is. For

notational convenience, we write Yi for the ith c.e. set of strings when

considering strings in the range of Φ. We instead define at stage s

infinitely many pairwise incomparable strings τi, jpσq for i ă ω and

j ă 2. The string τi, jpσq guesses that i is an index of Y , and that

the next bit of M is j. We refer to the strings τi, jpσq as extensions.

If we wish to define Φpρq “ µ for any string ρ < τi, jpσq, then we

will wait for confirmation. In this case, we now wait until a stage

t where we see a string ν P Yi,t such that ν < µ. We may then

define Φtpρq “ µ. We wait until an extension τi, jpσq is confirmed

before allowing requirements of weaker priority than Rn to act above

τi, jpσq.

Suppose that at stage s we have defined the extension τi, jpσq, but

have not yet confirmed it. If there is some γ P S n,s with γ < τi, jpσq,

then we will now need to wait for τi, jpσq to be confirmed before

we can define Φpγ1q for some γ1 ą γ. This will do no harm to the

construction. If i is such that Yi is dense in M, and j is such that

Φpσq ˆ j ă M, then we will confirm τi, jpσq at some stage t ą s.

Then at stage t we will immediately define Φpγ1q “ Φpτi, jpσqq for

some γ1 ą γ, and as Φpτi, jpσqq “ Φpσq ˆ j ă M, we will have

Φpγ1q ă M as desired.

Suppose we confirm the extension τi1, jpσq at stage t. We allow

4.4. DEGREES COMPUTABLE IN GENERICS 199

Rn`1 to start working above τi1, jpσq. We may have made several

promises about defining Φ on strings extending σ, for the sake of

requirements of stronger priority than Rn. Suppose that I is the set

of indices such that if we want to define Φpρq “ µ for some ρ ą σ,

then we require for every i P I some string ν P Yi,t1 such that ν < µ.

We associate the set I with σ by tagging the string σ with the set

I, and write Ipσq “ I. In order to define Φpρq “ µ for a string

extending ρ ą τi1, jpσq, we must in addition see that there is some

string ν P Yi1,t1 such that ν < µ. Therefore we tag τi1, jpσq with the set

Ipτi1, jpσqq “ Ipσq Y ti1u.

Above the string τi1, jpσq, we are guessing that if M does not meet

or avoid ΦpS q, then i1 is an index for the set Y . We may define Φ

on strings above τi1, jpσq. If i1 is not an index for the set Y , then the

argument given above that τi1, jpσq avoids S n does not work. So there

may be strings γ P S n with γ < τi1, jpσq. Suppose we see such a γ

at stage u ą t. We wish to define Φpγ1q for some γ1 ą γ as usual,

in the hopes that Φpγ1q ă M. We do define Φupγ
1q as usual, and

choose extensions γ0, γ1 ą γ1. We wait for confirmation to define

Φpγ jq “ Φpγ
1q ˆ j, and set Ipγ jq “ Ipσq. If Yi is dense in M for all

i P Ipγ jq and j is the next bit of M, then we will eventually confirm

γ j and define Φpγ jq.

If we define Φpρq for any ρ ą γ j, we must have Φpρq < Φpγ jq.

Therefore, if Φpγ jq ⊀ M, there is no point in pursuing a strategy to

define Φpρq for a string ρ P S n with ρ ą γ j. We do not know during

the construction whether Φpγ jq ă M, so above γ j, we work under

200 CHAPTER 4. MULTIPLE GENERICITY

the assumption that Φpγ jq ă M.

Strategies of weaker priority than Rn may have acted above τi1, jpσq

after stage t, but before the stage u where we defined Φpγ1q. At

stage u, we no longer allow requirements of weaker priority than Rn

to work above any string that extends τi1, jpσq. We remove the tag

Ipτi1, jpσqq from τi1, jpσq. If we confirm γ j at some later stage v, then

we allow Rn`1 to work above γ j at stage v. As in a standard finite

injury priority argument, we eventually come to some string τ1 such

that Rn`1 works above τ1 from some stage on.

If Φpγ jq ⊀ M, then the strategy to avoid S n will continue to be

in place. That is, all other extensions τi, jpσq will still have their tag,

and we allow requirements of weaker priority to act above τi, jpσq,

as long as we continue to enforce the promises we must keep above

each such extension. If i˚ is an index for Y and j is such that

Φpσqˆ j ă M, then we will confirm τi˚, jpσq at some stage and define

Φpτi˚, jpσqq. Then we never remove the tag of τi˚, jpσq, τi˚, jpσq will

avoid S n, and we will have Φpσq ă Φpτi˚, jpσqq ă M.

We finally consider the case where M does not meet ΦpS q, but M

avoids ΦpS q. Then there is some µ ą Φpσq such that µ ă M, and

for all γ1 P S , Φpγ1q % µ. We would like to define Φ on some string

τ ą σ such that Φpτq “ µ. Then τ will avoid S n.

In order to define such a τ, we will need to again guess at the

next bits of M. Along with the extensions τi, jpσq, we create two

special extensions ofσ, which we denote τH, jpσq for j ă 2. We wait

for confirmation to define ΦpτH, jpσqq “ Φpσq ˆ j. We tag τH, jpσq

4.4. DEGREES COMPUTABLE IN GENERICS 201

with the set IpτH, jpσqq “ Ipσq, and so if Yi is dense in M for all

i P Ipσq and j is the next bit of M, then we will eventually confirm

τH, jpσq and define ΦpτH, jpσqq at some stage t. Once τ1 “ τH, jpσq

has been confirmed, we create the extensions τi, jpτ1q for i P ω Y

tHu. We allow only Rn to work above τH, jpτ1q. If some τi, jpτ1q

for i P ω is confirmed at some later stage, then we allow Rn`1 to

work above τi, jpτ1q. By guessing the bits j1, . . . , jm such that µ “

Φpσq ˆ j1 ˆ . . . ˆ jm, we eventually come at some stage u to the string

τ as above.

As with the other extensions τi, jpσq for i P ω, τH, jpσq is our

candidate to avoid S n. So if we do see some γ P S n with γ ą

τH, jpσq, then we will want to define Φpγ1q for some γ1 ą γ in order

to derive a contradiction. Therefore, if we confirm τH, jpσq at stage u

and see at some later stage v that there is γ ą τH, jpσq with γ P S n,v,

then if we have not already acted for some β P S n,v with τH, jpσq 4

β ă γ, we will act for γ.

We show that τ avoids S n. Suppose that there is γ < τ with γ P

S n. Let u ą t be least such that there is γ P S n,u with γ < τi˚, jpσq,

and for this u, let γ be the least such. By the choice of γ, we have not

already acted for some β P S n,u with τ 4 β ă γ. Therefore at stage u

we define Φpγ1q for some γ1 ą γ. Let η be greatest such that η ă γ

and η P domΦu´1. Then we set Φpγ1q “ Φpηq. As τ P domΦu´1

and γ < τ, we must have η < τ. Then Φpγ1q “ Φpηq < Φpτq “ µ,

which is a contradiction. We now give the formal details of the

construction.

202 CHAPTER 4. MULTIPLE GENERICITY

Construction

Stage 0: Define Φpλq “ λ, where λ is the empty string. Let

Ipλq “ H, and say that R0 is able to work above λ.

Stage s, s > 1:

Step 1: defining Φ on extensions of strings in S n.

There is an n P ω and strings σ and γ such that

1. σ P domΦs´1,

2. Rn is able to work above σ,

3. γ P S n,s with γ ą σ, and

4. (a) if γ ą τi, jpσq for some extension τi, jpσq, then Rn has not

already acted for any string β with τi, jpσq ă β ă γ and

β P S n,s, or

(b) if γ is not comparable with any extension τi, jpσq, or γ ă

τi, jpσq for some extension τi, jpσq, then Rn has not already

acted for any string β with σ ă β ă γ and β P S n,s.

Let n be least such that there is σ and γ as above. For this n, let

σ be such that there is γ as above, and choose γ least.

If there is some extension τi, jpσq with σ ă τi, jpσq 4 γ, and

τi, jpσq has not been confirmed, then we proceed to the next step.

Otherwise, let η 4 γ be greatest with η P domΦs´1. Choose a

string γ1 ą γ incomparable with all strings extending γ generated in

the construction so far. Define Φspγ
1q “ Φpηq. We choose incom-

parable strings γ0, γ1 ą γ1. We add γ0 and γ1 to L. For j ă 2, we

4.4. DEGREES COMPUTABLE IN GENERICS 203

say that Rn is waiting for confirmation to define Φpγ jq “ Φpγ
1qˆ j at

stage s, and tag γ j with the set Ipγ jq “ Ipσq.

For all strings µ P domΦs´1 with either σ ă µ ă γ or µ ą γ, if

l ą n and Rl was able to work above µ at stage s, then Rl is unable to

work above µ at stage s` 1, we remove the tag of µ, and we remove

all extensions defined for µ from Ls´1.

We say that Rn acts for the string γ.

Step 2: confirmation.

For every string ρ P L at the end of Step 1, we do the following.

If Rn is waiting for confirmation to define Φpρq “ µ, and for all

i P Ipρq there is ν P Yi,s such that ν < µ, then we declare ρ as

confirmed. We remove ρ from L, and define Φspρq “ µ. If ρ is not

of the form τH, jpσq, then we say that Rn`1 is able to work above ρ

at stage s` 1. If ρ is of the form τH, jpσq, then we say that Rn is able

to work above ρ at stage s` 1.

Step 3: creating extensions.

For any string σ that is maximal in the domain of Φ at the end

of Step 2, we do the following. Suppose that Rn is able to work

above σ at the end of Step 2. If σ already has its extensions defined,

we proceed to the next stage. Otherwise, we create infinitely many

pairwise incomparable extensions τi, jpσq of σ, for i P ωY tHu and

j ă 2, so that τi, jpσq is incomparable with any string that extends

σ defined during the construction so far. We say that σ has had its

extensions defined.

204 CHAPTER 4. MULTIPLE GENERICITY

For i P ω, we tag τi, jpσq with the set Ipτi, jpσqq “ Ipσq Y tiu, and

we tag τH, jpσq with the set IpτH, jpσqq “ Ipσq. We say that Rn is

waiting for confirmation to define Φpτi, jpσqq “ Φpσqˆ j at stage s.

For each τi, jpσq we have just created, we perform Step 2. That is,

if for all for all i P Ipτi, jpσqq there is ν P Yi,s such that ν < Φpσq ˆ j,

we declare τi, jpσq as confirmed, remove τi, jpσq from L, and define

Φspτi, jpσqq “ Φpσq ˆ j. If i P ω, then we say that Rn`1 is able to

work above τi, jpσq at stage s` 1.

End of Construction

We now define G 6T M ‘H2 such that ΦpGq “ M. We do this

in Steps by finite extension.

At Step 0, we set G0 “ λ. We proceed by induction and assume

that by Step n we have Gn “ σ for some σ P domΦtn, where t “ tn
is a stage in the construction such that

1. Rn is able to work above σ at all stages after stage t,

2. σ has tag Ipσq at all stages after stage t,

3. for all i P Ipσq, Yi is dense in M,

4. |Φpσq| > n and Φpσq ă M, and

5. for all m ă n, σ either meets S m,tm or avoids S m.

Suppose at some stage s ą t we define Φspγ
1q in Step 1 of the

construction for some γ1 ą γ where γ P S n and γ ą σ. Let S be the

set of all such γ1.

4.4. DEGREES COMPUTABLE IN GENERICS 205

Case 1: M meets ΦpS q.

Choose γ P S n with γ ą σ least such that there is γ1 ą γ with

γ1 P S and Φpγ1q ă M. Suppose that Φpγ1q is defined at stage u > t.

By induction, we cannot act for Rm for m ă n after stage u. By part

(4) of the conditions in Step 1 and the choice of γ, we do not act for

Rn for any string in S n that is comparable with γ after stage u. At

stage u we choose strings γ0, γ1 ą γ1, and Rn waits for confirmation.

We tag γ j with the set Ipγ jq “ Ipσq, and by assumption, Yi is dense

in M for all i P Ipσq. Therefore if j is such that Φpγ1q ˆ j ă M, we

will confirm γ j at some later stage v, and define Φvpγ jq “ Φpγ
1q ˆ j.

We say that Rn`1 is able to work above γ j at stage v. Again by

induction, Rn`1 is able to work above γ j at all stages v1 > v, and γ j

has tag Ipγ jq at all stages v1 > v. We have Gn`1 “ γ j.

Case 2: M does not meet ΦpS q. There are two subcases.

Subcase a: M avoids ΦpS q. Then there exists some µ ą Φpσq

such that µ ă M and for all γ1 P S , Φpγ1q % µ. Suppose µ “

Φpσqˆ j1 ˆ . . . ˆ jm.

Consider the string τ1 “ τH, j1pσq. We have Ipτ1q “ Ipσq, and by

assumption, Yi is dense in M for all i P Ipσq. So at some later stage

u1 we will confirm τ1 and define Φu1pτ1q “ Φpσq ˆ j1. At stage u1

we define the extensions τi, jpτ1q for i P ωY tHu and j ă 2. Again,

at some later stage u2 we will confirm τ2 “ τH, j2pτ1q and define

Φu2pτ2q “ Φpσq ˆ j1 ˆ j2. We eventually come at some stage um to a

string τm where Φumpτmq “ µ.

We show that τm avoids S n. So suppose for contradiction that

206 CHAPTER 4. MULTIPLE GENERICITY

there is some γ P S n with γ < τm. Let v ą um be least such that

there is γ P S n,v with γ < τm, and for this v, let γ be the least such.

By the choice of γ, we have not already acted for some β P S n,u with

τm 4 β ă γ. Then at stage v we will define Φvpγ
1q for some γ1 ą γ.

Let η be greatest such that η ă γ and η P domΦu´1. Then we set

Φpγ1q “ Φpηq. As τm P domΦv´1 and γ < τm, we must have η < τm.

As γ1 ą η < τm and Φ is consistent, Φpγ1q “ Φpηq < Φpτmq “ µ,

which contradicts the choice of µ. So τm avoids S n.

At stage um we create the extensions τi, jpτmq for i P ωYtHu and

j ă 2. Let i1 be such that Yi1 is dense in M, and let j1 be such that

µˆ j1 ă M. We have Ipτi1, j1pτmqq “ Ipσq Y ti1u, and so at some later

stage w we will confirm τi1, j1pτmq and define Φwpτi1, j1pτmqq “ µ ˆ j1.

At stage w we say that Rn`1 is able to work above τi1, j1pτmq. By

induction and the fact that τi1, j1pτmq avoids S n, this is true at all stages

after stage w, and τi1, j1pτmq has tag Ipτi1, j1pτmqq at all stages after stage

w. We have Gn`1 “ τi1, j1pτmq.

Subcase b: M does not avoid ΦpS q. As M does not have a c.e.

tight set of strings, there is an i˚ such that Yi˚ is dense in M and such

that for all α P Yi˚ and β P ΦpS q, α % β.

We note the following crucial fact. Suppose the extension τ is

confirmed at some stage u. Then at any stage v ą u, if we de-

fine Φvpρq for some string ρ < τ and Rn has not already acted for

some string comparable with τ, then ρ was confirmed at stage v, and

Ipρq Ě Ipτq.

Let j be such that Φpσq ˆ j ă M. At stage t we create the exten-

4.4. DEGREES COMPUTABLE IN GENERICS 207

sions τi, jpσq, and Rn waits for confirmation to define Φpτi, jpσqq “

Φpσq ˆ j. Let u > t be least such that for all i P Ipσq Y ti˚u, there is

some ν P Yi,u such that ν < Φpσq ˆ j. Then at stage u we declare the

string τi˚, jpσq as confirmed, and define Φupτi˚, jpσqq “ Φpσqˆ j.

To show that τi˚, jpσq avoids S n, suppose for contradiction that

there is γ P S n with γ < τi˚, jpσq. Let v ą u be least such that there

is γ P S n,v with γ < τi˚, jpσq, and for this v, let γ be the least such.

By the choice of v, we have not already acted for some β P S n,v with

τi˚, jpσq 4 β ă γ. Therefore at stage v we will define Φpγ1q for some

γ1 ą γ. Let η be greatest such that η ă γ and η P domΦv´1. We set

Φpγ1q “ Φpηq. As τi˚, jpσq P domΦv´1 and γ < τi˚, jpσq, we must

have η < τi˚, jpσq. Suppose Φpηq was defined at stage w. Again by

the choice of γ, and the fact above, η was confirmed at stage w, and

Ipηq Ě Ipτi˚, jq. In particular, i˚ P Ipηq, and so there is some ν P Yi˚,w

such that ν < Φpηq. So ν < Φpγ1q, which contradicts the choice of

i˚. So τi˚, jpσq avoids S n. We have Gn`1 “ τi˚, jpσq.

�

4.4.2 Computable in an ω-change generic

We now consider the analogue of the above result for ω-change

generics. We say that range f is a ω-change tight cover of a set A

if range f is an ω-change set of strings, A neither meets nor avoids

range f , and for all other ω-change sets of strings range f 1, if A nei-

ther meets nor avoids range f 1, then there is some string in range f 1

which extends a string in range f .

208 CHAPTER 4. MULTIPLE GENERICITY

Suppose that M does not have an ω-change tight cover. Then if

range f is an ω-change set of strings and M neither meets nor avoids

range f , then there is a partial computable function y : ωˆωÑ 2ăω

and a partial computable function w : ω Ñ ω such that range y is

an ω-change set of strings with partial computable bound w, and no

string in range y extends a string in range f . The difference between

M not having a c.e. tight cover and not having an ω-change tight

cover is that the existence of y and w is guaranteed even if M meets

range f as a c.e. set of strings. So there may be some x and k such

that f px, kq Óă M, but if M does not meet range f as an ω-change

set of strings, that is, there is k1 ą k such that f px, k1qÓ⊀ M, then

such a y and w must still exist.

Theorem 4.4.2. Let M be a set with no ω-change tight cover. Then

there is an ω-change generic set G such that M 6T G. In fact,

G 6T M ‘H2.

Proof. The proof will follow fairly closely the proof of the previous

theorem. Suppose M has no ω-change tight cover. We first perform

a computable construction of a Turing functionalΦ. We then use the

oracle M‘H2 to select an ω-change generic path G through domΦ

such that ΦpGq “ M.

Let x fi, hiyiăω be an effective list such that xrange fiy is a list of

all ω-change sets of strings, and that range fi has partial computable

bound hi. We must meet the requirements

Re : G meets or avoids range fe.

4.4. DEGREES COMPUTABLE IN GENERICS 209

Suppose that by stage s we have some string σ such that for all

m ă n, σ either meets range fm or avoids range fm, and that ΦspσqÓ

ă M. We let G extend σ. We would now like to define Φ on some

string σ1 ą σ such that σ1 either meets or avoids range fn, and such

that Φpσq ă Φpσ1q ă M.

The strategy to define Φpσ1q will be similar to the strategy from

the previous proof. Suppose at stage s1 we see some x with fnpx, 0qrs1sÓ

ą σ, and hnpxqrs1s Ó. Then we would like to choose some γ1 ą

fnpx, 0q, defineΦpγ1q, and have G extend γ1 if fnpx, 1q Ò andΦpγ1q ă

M. If β is greatest with β 4 fnpx, 0q and β P domΦs1´1, then we

choose some string γ1 ą fnpx, 0q such that no definition for Φ has

been made on or above γ1, and define Φs1pγ
1q “ Φpβq. We choose

two incomparable extensions γ0, γ1 ą γ1, and wait for confirmation

to define Φpγ jq “ Φpγ
1q ˆ j as before. Suppose we confirm γ j at

some later stage s2. Then above γ j we assume that Φpγ jq ă M, and

so we do not need to act again for Rn above γ j unless we see at some

later stage s3 that f px, 1qrs3s Ó. We allow Rn`1 to work above γ j at

stage s2 ` 1.

Now suppose we do see at some later stage s3 that fnpx, 1qrs3sÓą

fnpx, 0q. Then we would like to defineΦpγ2q for some γ2 ą fnpx, 1q,

and have G extend γ2 if fnpx, 2q Ò and Φpγ2q ă M. We repeat the

above for fnpx, 1q. Strategies working for requirements of weaker

priority than Rn may have started to work above strings extending

fnpx, 0q. We restart all such strategies above fnpx, 1q. As

|tk : fnpx, kqÓu| ă hnpxq,

210 CHAPTER 4. MULTIPLE GENERICITY

we eventually no longer need to act for Rn, and will define Φ on

some string extending fnpx, kq where k is such that fnpx, k1q Ò for all

k1 ą k.

Suppose that we follow the above strategy and define Φ on a set

S Ă range fn of strings extending σ. Then we show that ΦpS q is an

ω-change set of strings. We set h̄ “ h, and if we choose some γ1 ą

fnpx, kq and define Φpγ1q at stage s, then we set f̄npx, kq “ Φpγ1q.

Suppose M meets the ω-change set of strings range f̄n “ ΦpS q.

Then if γ1 is such that Φpγ1q ă M and γ1 ą fnpx, kq, then we let

G extend γ1. As M meets range f̄n, there is no k1 ą k such that

fnpx, k1q Ó, and so G meets range fn. We will be able to successfully

guess at the next bit of M. Now suppose that M does not meet range

f̄n. As in the previous proof, there are two cases in this situation. If

M avoids range f̄n, then we will be able to show that there is a string

τ ą σ such that τ avoids range fn. If M does not avoid range f̄n,

then we use the fact that M has no ω-change tight cover. In this case

we will also be able to show that there is a string τ ą σ such that τ

avoids range fn.

Consider the case where M neither meets nor avoids range f̄n.

As M has no ω-change tight cover, there is a partial computable

function y with partial computable bound w such that range y is an

ω-change set, and no string in range y extends a string in range f̄n.

Let xyi,wiy be an effective list such that xrange yiy is a list of all

ω-change sets of strings, and that range yi has partial computable

bound wi. We create extensions τi, jpσq with the intention that τi, jpσq

4.4. DEGREES COMPUTABLE IN GENERICS 211

guesses that i is an index for the pair xy,wy in the above list, and that

j is the next bit of M. The extensions τi, jpσq function in the same

way as in the previous proof.

Because M avoids range f̄n as an ω-change set of strings if and

only if it avoids range f̄n as a c.e. set of strings, the cases where M

does not meet f̄n are identical to the cases where M does not meet

ΦpS q in the previous proof.

Construction

Stage 0: Define Φpλq “ λ, where λ is the empty string. Let

Ipλq “ H, and say that R0 is able to work above λ.

Stage s, s > 1:

Step 1: defining Φ on extensions of strings in range fn.

There is an n P ω, a string σ, and x, k P ω such that

1. σ P domΦs´1,

2. Rn is able to work above σ,

3. fnpx, kqrssÓ and fnpx, kq ą σ,

4. (a) if fnpx, kq ą τi, jpσq for some extension τi, jpσq, and either

i. Rn has not already acted for any string β with τi, jpσq ă

β ă fnpx, kq and β P range fn,s, or

ii. Rn has acted for the string fnpx, k´1q but not for fnpx, kq.

(b) if fnpx, kq is not comparable with any extension τi, jpσq, or

fnpx, kq ă τi, jpσq for some extension τi, jpσq, and either

212 CHAPTER 4. MULTIPLE GENERICITY

i. Rn has not already acted for any string β with σ ă β ă

fnpx, kq and β P range fn,s, or

ii. Rn has acted for the string fnpx, k´1q but not for fnpx, kq.

Let n be least such that there are σ, x, and k as above. For this n,

let σ be such that there is x as above, and choose x least.

If there is some extension τi, jpσq with σ ă τi, jpσq 4 fnpx, kq, and

τi, jpσq has not been confirmed, then we proceed to the next step.

Otherwise, let η 4 fnpx, kq be greatest with η P domΦs´1. Choose

a string γ1 ą fnpx, kq incomparable with all strings extending fnpx, kq

generated in the construction so far. Define Φspγ
1q “ Φpηq. We

choose incomparable strings γ0, γ1 ą γ1. We add γ0 and γ1 to L.

For j ă 2, we say that Rn is waiting for confirmation to define

Φpγ jq “ Φpγ
1qˆ j at stage s, and tag γ j with the set Ipγ jq “ Ipσq.

For all strings µ P domΦs´1 with either σ ă µ ă fnpx, kq or

µ ą fnpx, kq, if l ą n and Rl was able to work above µ at stage s,

then Rl is unable to work above µ at stage s ` 1, we remove the tag

of µ, and we remove all extensions defined for µ from Ls´1.

We say that Rn acts for the string fnpx, kq.

Step 2: confirmation.

For every string ρ P L at the end of Step 1, we do the following.

If Rn is waiting for confirmation to define Φpρq “ µ, and for all

i P Ipρq there is ν P range yi,s such that ν < µ, then we declare ρ as

confirmed. We remove ρ from L, and define Φspρq “ µ. If ρ is not

of the form τH, jpσq, then we say that Rn`1 is able to work above ρ

4.4. DEGREES COMPUTABLE IN GENERICS 213

at stage s` 1. If ρ is of the form τH, jpσq, then we say that Rn is able

to work above ρ at stage s` 1.

Step 3: creating extensions.

For any string σ that is maximal in the domain of Φ at the end

of Step 2, we do the following. Suppose that Rn is able to work

above σ at the end of Step 2. If σ already has its extensions defined,

we proceed to the next stage. Otherwise, we create infinitely many

pairwise incomparable extensions τi, jpσq of σ, for i P ωY tHu and

j ă 2, so that τi, jpσq is incomparable with any string that extends

σ defined during the construction so far. We say that σ has had its

extensions defined.

For i P ω, we tag τi, jpσq with the set Ipτi, jpσqq “ Ipσq Y tiu, and

we tag τH, jpσq with the set IpτH, jpσqq “ Ipσq. We say that Rn is

waiting for confirmation to define Φpτi, jpσqq “ Φpσqˆ j at stage s.

For each τi, jpσq we have just created, we perform Step 2. That

is, if for all for all i P Ipτi, jpσqq there is ν P range yi,s such that

ν < Φpσq ˆ j, we declare τi, jpσq as confirmed, remove τi, jpσq from

L, and define Φspτi, jpσqq “ Φpσqˆ j. If i P ω, then we say that Rn`1

is able to work above τi, jpσq at stage s` 1.

End of Construction

�

214 CHAPTER 4. MULTIPLE GENERICITY

4.5 Downward density of generics in the ∆0
2 degrees

4.5.1 Downward density of 1-generics

In [14], Chong and Jockusch showed that the 1-generic degrees be-

low H1 are downward dense. That is, if A 6T H
1 is 1-generic and

B 6T A is noncomputable, then there is C 6T B that is 1-generic.

This was extended by Haught ([24]) who showed that if A 6T H
1 is

1-generic and B 6T A is noncomputable, then there is C ”T B that

is 1-generic. We give another proof of Haught’s theorem.

We say that a partial function v from strings to strings is an ex-

tension function if vpαq < α for every α P dom v. A set is 1-generic

if it meets or avoids every c.e. set of strings. Equivalently, a set is

1-generic if it meets or avoids the range of every partial computable

extension function.

Theorem 4.5.1 (Haught [24]). Let a be a ∆0
2 1-generic Turing de-

gree. Then every noncomputable degree below a is 1-generic.

Proof. Let A P a be 1-generic with computable approximation xAsy.

Suppose that Φ is a Turing functional such that ΦpAq is noncom-

putable. We build Turing functionals Γ and ∆, such that ΓpΦpAqq is

1-generic and ∆pΓpΦpAqqq “ ΦpAq.

Let xS eyeăω be an effective enumeration of all c.e. sets of strings.

We must meet the requirements

Re : ΓpΦpAqq meets or avoids S e.

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 215

We first discuss how the definition of Γ and the strategies to meet

the requirements interact. We discuss the definition of ∆ later. We

write σ ă τ to denote that σ is a proper initial segment of τ. For a

string ρ, let the sibling of ρ be the string ρ̂ of the same length as ρ,

and which differs from ρ on only its last bit.

Suppose that at stage s we have have a string α ă As with α ă At

for all t > s (and so α ă A) such that ΓpΦpαqq meets or avoids

S d for all d ă e. To meet Re, we look for strings σ P S e with

σ ą ΓpΦpαqq. We may never see such a string, and so we will work

towards satisfying requirements of weaker priority. Suppose that at

stage s1 we see µ P S f ,s1 with µ ą ΓpΦpαqq, for some f ą e. We

then define Γs1pΦpα
1qq “ µ for some α1 ă As1 with Φpα1q ą Φpαq.

At stage s2 ą s1 we see σ P S e,s2 with σ ą ΓpΦpαqq. If

ΦpAqrs2s ą Φpα1q, then ΓpΦpAqqrs2s ą µ. Therefore if σ is in-

comparable with µ, ΓpΦpAqqrs2s does not extend σ. We will want

ΦpAq to later become incomparable with Φpα1q so that we may de-

fine ΓpΦpAqq to extend σ. We however have no way of ensuring this

occurs. We may haveΦpα1q ă ΦpAqrts for all t > s2, and so ΓpΦpAqq

does not extend σ. This is of no concern to us at stage s2, but if we

act as above infinitely many times for requirements of weaker prior-

ity than Re, only to later see a string enter S e that ΓpΦpAqq does not

extend, then ΓpΦpAqq will neither meet nor avoid S e.

We therefore need some way of forcing ΦpAq to change. We

make use of the totality and noncomputability ofΦpAq, as well as the

1-genericity of A. We will want a configuration ΦpAtq of ΦpAq that

216 CHAPTER 4. MULTIPLE GENERICITY

extends Φpαq but is incomparable with Φpα1q. Then if at some stage

we see a string σ P S e that extends ΓpΦpAqq but is incomparable

with µ, we can use the 1-genericity of A to force A to extend At,

which in turn forces ΦpAq to extend ΦpAtq, and allows us to define

ΓpΦpAqq to extend σ.

As ΦpAq is total and noncomputable, if α ă A, then there are

infinitely many Φ-splits above α. Therefore, if at stage t1 we see µ P

S f ,t1 with µ ą ΓpΦpαqq, before defining Γ on any string extending

Φpαq, we wait until a stage t2 > t1 where we find Φ-splits τ1, τ2

above α. We are then free to set ΓpΦpτ2qq “ µ. Then if at stage t3 we

see σ P S e,t3 with σ incomparable with ΓpΦpτ2qq, we start to define

the partial computable extension function ve. We set vepαq “ τ1. We

also define ΓpΦpvepαqqq “ σ. This puts pressure on A to change to

extend vepαq, so thatΦpAq extendsΦpvepαqq, and ΓpΦpAqqmeets S e.

Of course, A does not need to extend vepαq for it to be 1-generic.

However, if we act as above infinitely many times and define vepαq

for infinitely many α, then range ve will be dense in A. As A is 1-

generic, it will have to extend some vepαq, which means that ΓpΦpAqq

must meet S e.

We are keeping the string Φpτ1q in reserve for Re, in case we

see some stage t3 and some string σ P S e,t3 with σ ą ΓpΦpαqq

but incomparable with ΓpΦpτ2qq. Suppose that at stage u2 ą t2 we

have ΦpAqru2s ą Φpτ1q, but there is no string σ P S e,u2 with σ ą

ΓpΦpαqq. We are not ready to define Γ on any string extendingΦpτ1q,

because we may run into the same trouble as before where we had

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 217

no way of forcing ΦpAq to change later if necessary. If ΦpAqrts ą

Φpτ1q for all t > u2, then we must define Γ on some string extending

Φpτ1q so that ΓpΦpAqq is total. However, if this is the case, then

Φpτ1q ă ΦpAq. As A is ∆0
2, there is some stage u3 > u2 and a string

φ with φ ă Au for all u > u3 such that Φpφq < Φpτ1q. Then as

φ is an initial segment of A, at some later stage u4 we will find Φ-

splits τ3, τ4 above φ such that Φpτ3q,Φpτ4q ą Φpτ1q. If Au4 ą τ4,

then we can define ΓpΦpτ4qq however we wish, as long as Γ is kept

consistent, and keep the stringΦpτ3q in reserve, as we did withΦpτ1q

before. Lemma 4.5.3 below uses the 1-genericity of A to show that

this cannot repeat infinitely many times, and we eventually come to

a final string we keep in reserve for Re.

We will let ΓpΦpτ4qq “ ΓpΦpτ2qq. If we do see at some stage

t4 ą u4 a string σ P S e,t4 that is incomparable with ΓpΦpτ2qq, then

we can still define vepφq “ τ3 as an attempt to force A to change, so

that we may define ΓpΦpAqq to extend σ.

More generally, suppose that at stage s, γ ă ΦspAsq is maximal in

domΓs´1, and that we would like to define Γpγ1q “ µ for some γ1 ą

γ with γ1 ă ΦspAsq in order to satisify R f . Then we must ensure

that for all e ă f , if µ does not meet S e,s, then there is some string,

which we write as resγ,e,s, which extends γ but is incomparable with

γ1, which we keep in reserve for Re. This means that we will need

to find many Φ-splits at stage s before we define Γpγ1q “ µ. This

causes us no concern, as there are infinitely manyΦ-splits above any

initial segment of A.

218 CHAPTER 4. MULTIPLE GENERICITY

The last situation we must consider in the definition of Γ is the

following. Suppose that at stage s, γ ă ΦspAsq is the greatest string

such that Γs´1pγq Ó. If ΦspAsq is incomparable with all resγ1,i,s´1

for all γ1 ą γ with γ1 P domΓs´1 and all i, then we can define

ΓpΦspAsqq however we would like, as long as Γ is kept consistent.

The most progress that we have made above Γpγq is the last string

that we enumerated into the range of Γ which extends Γpγq. So we

let ΓpΦspAsqq be that string.

We now discuss the definition of ∆. Suppose that we have α and

s as above, and we have defined ν “ ∆pΓpΦpαqqq 4 Φpαq ă ΦpAq.

We see the string µ P S f ,s1 at stage s1, find the Φ-splits τ1, τ2 above

α at stage s2, and if As2 ą τ2, define ΓpΦpτ2qq “ µ. We will want to

define ∆ on some string extending ΓpΦpαqq so that we can compute

more of ΦpAq. We must make sure that ∆ is consistent, and that

∆pΓpΦpAqqq correctly computes ΦpAq. We ask that if µ ă ΓpΦpAqq,

then ∆pµq computes the next bit of ΦpAq after ν. We therefore have

to guess at stage s2 what the next bit of ΦpAq will be. We have to

guess in such a way that if we are wrong, then we are able to correct

ourselves later on.

If Φs2pAs2q < Φpτ2q ą ν ˆ j, then our guess at stage s2 is that j

is the next bit of ΦpAq. If we knew that our guess were correct, we

could define ∆pµq “ ν ˆ j. However, even if our guess is wrong, we

might still like ΓpΦpAqq to extend µ in order to meet R f . But then

∆pµq is wrong about ΦpAq. We instead define Γt1pΦpτ2qq “ µˆ j and

∆pµˆ jq “ νˆ j.

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 219

Now suppose that at stage s3 we see that ΦpAqrs3s ą Φpαq,

but is incomparable with both Φpτ1q and Φpτ2q. If ΦpAqrs3s ą

νˆp1´ jq, we guess at stage s3 that 1´ j is the next bit of ΦpAq. We

would like ΓpΦpAqqrs3s to still extend µ to satisfy R f , and so define

ΓpΦpAqqrs3s “ µˆp1´ jq and ∆pµˆp1´ jqq “ νˆp1´ jq.

Now suppose at stage s4 we have ΦpAqrs4s ą ΦpAqrs3s, but see

σ P S e,s4 that is incomparable with with ΓpΦpAqqrs3s “ µ ˆp1 ´ jq.

If σ ą µˆ j, then we would not want ΓpΦpAqq to extend µˆ j, because

at stage s4 we are guessing that p1 ´ jq is the next bit of ΦpAq, but

∆pµˆ jq “ νˆ j. The trouble is that we have defined ΓpΦpAqqrs3s and

ΓpΦpτ2qq to be siblings.

We need to ensure that if we define ΓpΦpτqq “ ρ at stage t, then

for every string σ incomparable with ρ, there is some σ1 ą σ where

∆t´1pσ
1qÒ. Then if we see a change in ΦpAq that allows us to define

ΓpΦpAqq to extend σ, we can define ΓpΦpAqq to extend σ1 and let

∆tpσ
1q guess however it wishes about the next bit of ΦpAq. There-

fore, the domain of ∆, and so the range of Γ, must be sparse. We

will define Γ so that at every stage t, range Γt does not contain both a

string and its sibling. Then there will be some σ1 as above. We now

turn to the formal details of the construction. For convenience, we

let Θ “ Γ ˝ Φ.

Construction

Stage 0: Define Γpλq “ λ and ∆pλq “ λ, where λ is the empty

string.

Stage s, s > 1:

220 CHAPTER 4. MULTIPLE GENERICITY

Step 1: defining Γ and ∆.

Let γ ă ΦspAsq be greatest such that Γs´1pγq Ó, and let α ă As

be such that Φspαq “ γ.

1. γ is not maximal in domΓs´1.

(a) There is some e such that resγ,e,s´1Ó andΦspAsq ą resγ,e,s´1.

If Γs´1presγ,e,s´1qÓ, then we proceed to the next step. Oth-

erwise, if there areΦ-splits τ1, τ2 above α such thatΦpτ1q,Φpτ2q ą

resγ,e,s´1, if As ą τ2, we set resγ,e,s “ Φpτ1q.

(b) There is some β with α ă β 4 As such that Φpβq is in-

comparable with γ1 for all γ1 P domΓs´1 with γ1 ą γ, and

resγ,e,s´1 for all e. Let β be the least such.

Then with τ “ τ2 in subcase (a), or τ “ β in subcase (b),

we do the following. Let f be least such that for some γ1 P

domΓs´1 with γ1 ą γ, Γpγ1q was defined for R f . Let σ P

S f ,s. Choose some σ1 ą σ such that the sibling of σ1 is not

in range Γs´1. Define ΓpΦpτqq “ σ1. Let j be such that Φpτq ą

∆pΓpΦpαqqqˆ j. Define ∆pσ1q “ ∆pΓpΦpαqqqˆ j.

2. γ is maximal in dom Γs´1, and there is e 6 s such that Γpγq does

not meet S e,s, but there is σ P S e,s with σ ą Γpγq. (We choose

the least such e, and for this e, the least such σ.) Suppose

i1, . . . , in are the indices i ă e such that σ does not meet S i,s.

If there are n` 1 many Φ-splits ρ1, . . . , ρn`1 at stage s above α,

then we choose some string σ1 ą σ such that the sibling of σ1

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 221

is not in range Γs´1. Assume As < ρn`1. Define ΓspΦpρn`1qq “

σ1 and set resγ,ik,s “ Φpρkq for all k “ 1, . . . , n. We say that

ΓpΦpρn`1qq was defined for Re. Let j be such that Φpρn`1q ą

∆pΓpΦpαqqqˆ j. Define ∆pσ1q “ ∆pΓpΦpαqqqˆ j. We set vepαq “

ρn`1.

Step 2: defining ve.

For each γ1 ă ΦspAsq with γ1 P domΓs, and e 6 s, we do the

following. Let γ ă γ1 be greatest such that γ P domΓs. If Γpγ1q was

defined for R f at stage t 6 s and f ą e, and if there is σ P S e,s such

that σ ą Γpγq but σ ⊀ Γpγ1q, we do the following. Suppose τ and

u 6 s are such that Φpτq “ resγ,e,s with τ 4 Au. If α ă τ is such

that Φpαq “ γ, then set vepαq “ τ. Choose some σ1 ą σ such that

the sibling of σ1 is not in range Γs´1. Define ΓspΦpvepαqqq “ σ1.

Let j be such that Φpvepαqq ą ∆pΓpΦpαqqq ˆ j. Define ∆pσ1q “

∆pΓpΦpαqqqˆ j. We say that ΓpΦpvepαqq was defined for Re.

End of Construction

It is immediate that Γ and ∆ are consistent. We isolate the fol-

lowing simple lemma, which will be used in the remaining parts of

the verification.

Lemma 4.5.2. Suppose xAsy is a computable approximation of a ∆0
2

set A, and Φ is a Turing functional. Let T be an infinite c.e. set of

strings which are initial segments of some As. Then T is dense in A.

222 CHAPTER 4. MULTIPLE GENERICITY

Proof. As T is as infinite set of binary strings, it contains string of

arbitrary length. Furthermore, for any length l and any stage s, T

must contain a string of length at least l which was enumerated after

stage s.

Let σ ă A, and let s be such that σ ă At for all t > s. We

show that there is τ P T with τ ą σ. Let τ be a string of length

greater than |σ| which was enumerated into T after stage s. Then

τ ą σ. �

Lemma 4.5.3. Suppose that Γpγq was defined at stage s. For t > s

and e P ω, let Tγ,e,t be the set of strings γ1 P domΓt such that γ1 ą γ,

Γpγ1q was defined for R f with f ą e at stage t1 6 t, but Γpγ1q does

not meet S e,t1. Then if Tγ,e,t is nonempty, there is a string resγ,e,t ą γ

such that

1. resγ,e,t “ Φpτq for some τ 4 Au and some u 6 t,

2. if ΓtpξqÓ for any ξ < resγ,e,t, then Γtpresγ,e,tqÓ and meets S e,t,

3. resγ,e,t is incomparable with γ1 for all γ1 P Tγ,e,t, and

4. t resγ,e,t : resγ,e,t Ó u is a set of pairwise incomparable strings.

Furthermore, if Tγ,e,t is nonempty at some stage t > s, then

limu resγ,e,v exists. That is, there is some v such that resγ,e,v1 “ resγ,e,v
for all v1 > v.

Proof. For the first part of the lemma, we suppose by induction that

the lemma holds for stage s´1, and analyse the different subcases of

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 223

the construction. As in the construction, let γ ă ΦspAsq be greatest

such that γ P domΓs´1, and α be such that Φpαq “ γ.

It is clear that the result holds if we define Γpγ1q at stage s via

Case 2 of Step 1, or via Step 2. Suppose that we act in Subcase 1(a)

at stage s, ΦspAsq ą resγ,e,s´1, and we find the Φ-splits τ1, τ2 above

α. We set resγ,e,s “ Φpτ1q, so point 1 of the lemma holds, and we

define Φpτ2q. Then resγ,e,s is incomparable with Φpτ2q because τ1

and τ2 are Φ-splits. For all resγ,i,s´1 Ó with i , e, resγ,i,s “ resγ,i,s´1,

and point 4 holds by the inductive assumption. Finally suppose that

we act in Subcase 1(b) at stage s. Then we define ΓpΦpβqq, where

Φpβq is incomparable with γ1 for all γ1 P domΓs´1 with γ1 ą γ, and

resγ,e,s´1 for all e. We have resγ,e,s´1 “ resγ,e,s for all e, and the result

holds at stage s by the inductive assumption.

For the second part of the lemma, suppose for contradiction that

limu resγ,e,u does not exist. Then there is an infinite sequence t1, t2, . . .

of stages where resγ,e,t j´1 , resγ,e,t j. We have resγ,e,t j ą resγ,e,t j´1 for

all j. We redefine resγ,e,s at a stage s whereΦspAsq ą resγ,e,s´1. Sup-

pose at stage t j we find the splits τ1,t j and τ2,t j above αt j ă At j. Then

resγ,e,t j “ Φpτ1,t jq. For all j, ΦtpAtq ą Φpτ1,t jq for infinitely many t,

and so ΦpAq ą Φpτ1,t jq. As τ1,t j and τ2,t j are Φ-splits, Φpτ1,t jq and

Φpτ2,t jq are incomparable, and so ΦpAq � Φpτ2,t jq.

The set T “ t τ2,t j | j P ω u is an infinite c.e. set of strings which

are initial segments of some As. By Lemma 4.5.2, T is dense in A.

As A is 1-generic, A ą τ2,t j for some j. Therefore ΦpAq ą Φpτ2,t jq,

contradicting our observation above.

224 CHAPTER 4. MULTIPLE GENERICITY

�

Lemma 4.5.4. The range of Γ is infinite.

Proof. Suppose for contradiction that range Γ is finite, and that we

do not enumerate any new strings into range Γ after stage s1. We

cannot act in Step 2 after stage s1 because we would then enumerate

a new string into range Γ.

Suppose s2 > s1 is such that resγ,e,s has reached its limit by stage

s2 for all γ P domΓs1 and e. Then we cannot act in Case 1(a) after

stage s2.

Consider the set

C “ domΓs2 Y t resγ,e,s2 : γ P domΓs2, resγ,e,s2 Ó u.

Let C1 “ t ρ̂ : ρ 4 ν, ν P C u. Then by the way that β is chosen in

Subcase 1(b) of the construction, dom Γ Ď C1. As C1 is finite, domΓ

is finite too. Let s3 > s2 be such that domΓ “ domΓs3.

As domΓ is finite andΦpAq is total, let γ be the maximal string in

domΓ such thatΦpAq ą γ. As we do not act in Case 1 after stage s3,

γ is maximal in dom Γ. Let α be such that γ “ Φpαq, and suppose

that s4 > s3 is such that α ă As for all s > s4.

Let s5 > s4 be least such that there is e 6 s5 with σ P S e,s5,

σ ą Γpγq, i1, . . . , in are the indices i ă e such that σ does not meet

S i,s5, and there are n` 1 many Φ-splits above α. Such a stage exists

because there are infinitely many indices e such that S e contains a

string extending Γpγq, and there are infinitely many Φ-splits above

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 225

any initial segment of A. Then at stage s5 we will enumerate an

axiom into Γ. This is a contradiction, and so the range of Γ is infinite.

�

Lemma 4.5.5. ΓpΦpAqq is total.

Proof. Let L>k “ tα : |ΓpΦppαqq| > ku. By Lemma 4.5.4, range Γ

is infinite, and so contains arbitrarily long strings. Therefore for any

k, L>k is an infinite c.e. set of strings which are initial segments of

some As. By Lemma 4.5.2, L>k is dense in A. As A is 1-generic, A

meets L>k, and ΓpΦpAqq is total.

�

Lemma 4.5.6. Each requirement is met, and so ΓpΦpAqq is 1-generic.

Proof. Suppose for contradiction that ΓpΦpAqq neither meets nor

avoids S e.

If vepαq ă A for some α, then ΓpΦpAqq meets S e. As ΓpΦpAqq

is total and ΓpΦpAqq neither meets nor avoids S e, we act in Step 2

of the construction at infinitely many stages, and so define vepαq for

infinitely many strings α. Then range ve is an infinite c.e. set of

strings. By Lemma 4.5.2, range ve is dense in A. As A is 1-generic,

there is α such that vepαq ă A. Then ΓpΦpAqq meets S e, and this is

a contradiction.

�

Lemma 4.5.7. ∆pΓpΦpAqqq “ ΦpAq.

226 CHAPTER 4. MULTIPLE GENERICITY

Proof. Suppose that we have α ă A, and ∆pΓpΦpαqqq ă ΦpAq. Let

α1 ă A with α1 ą α be such that ΓpΦpα1qq is the least initial segment

of ΓpΦpAqq extending ΓpΦpαqq. Such an α1 exists because ΓpΦpAqq

is total.

Suppose that γ1 P domΓ, and that γ P domΓ is greatest with

γ ă γ1. Let j be γ1p|γ|q. Then ∆pΓpγ1qq “ ∆pΓpγqqˆ j.

As α1 ă A,Φpα1q ă ΦpAq. Let j beΦpα1qp|Φpαq|q. Then we have

∆pΓpΦpα1qqq “ ∆pΓpΦpαqqq ˆ j. So ∆pΓpΦpα1qqq ą ∆pΓpΦpαqqq and

∆pΓpΦpα1qqq ă ΦpAq.

�

�

4.5.2 Failure of downward density for ω-change generics

Downward density for pb-generics was shown to fail by Schaeffer

in [40]. He constructed a pb-generic A belowH1 that bounds a non-

computable array computable set B. As all pb-generics must be ar-

ray noncomputable and array noncomputability is upwards closed,

we see that B cannot bound a pb-generic set.

Martin (see [26]) showed that downward density holds for 2-

generics, so we might wonder whether downward density can be

recovered when we move to the stronger genericity notion of ω-

change genericity. We conjecture that this fails, and give a sketch

of what seems to be the most difficult part of the proof. We hope to

confirm this in future work.

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 227

Conjecture 4.5.8. Downward density for ω-change generics below

H1 fails.

Sketch of proof.

We construct a ∆0
2 set A which is ω-change generic, and a Turing

functional Φ such that ΦpAq is noncomputable and does not bound

an ω-change generic set. We therefore meet the requirements

Pe : A is ω-change generic

Ne : ΦpAq is noncomputable

Qe : if ΓepΦpAqq is total, then ΓepΦpAqq is not ω-change generic

where xΓey is an effective list of all Turing functionals.

The strategy to meet Pe is familiar. We choose a length p and

then look for extensions to As � p in range fe. If we see at stage

s1 some x and k such that fepx, kqrs1s ą As1 � p, we say that the

strategy is realised at stage s1. We ensure that fepx, k1q ă A, where k1

is greatest such that fepx, k1qÓ. We know that after stage s1, we must

act at most hepxq many times in order to satisfy Pe.

The strategy to meet Ne is also familiar. We choose a length n and

wait until a stage s where ϕe, the eth partial computable function,

successfully computes the first n bits of ΦpAqrss. In this case we say

228 CHAPTER 4. MULTIPLE GENERICITY

that the strategy has been realised. We then change ΦpAq on its nth

bit to diagonalise against ϕe.

In order to meet Qe, if ΓepΦpAqq is total, then we must build an ω-

change set of strings T such that ΓepΦpAqq neither meets nor avoids

T . As such a set T must be infinite, we see that action for this type

of requirement may be infinitary. We place the construction on a

tree of strategies. A strategy working for a Q-requirement will have

two outcomes. The infinite outcome guesses that ΓepΦpAqq is total,

and therefore that we must act infinitely many times to build the ω-

change set of strings T . The finite outcome guesses that ΓepΦpAqq is

not total, and so no further action is required to meet the requirement

after some stage.

The strategy τ for Qe will pick some length q and will wait for

Γe to give a definition on some string extending ΦpAqrss � q. If Γe

never gives such a definition, then we keep ΦpAqrss � q as an initial

segment of ΦpAq. Then Γe is not total on ΦpAq, which gives us a

global win on Qe. If we do see such a definition at some stage s,

then we will begin to define the ω-change set of strings T which

we would like for ΓepΦpAqq to neither meet nor avoid. We pick

some new x and define gpx, 0q to be some string incomparable with

ΓepΦpAqrss � qq.

We must also declare a value for hpxq. The length q might be

quite long. In particular, there may be many lengths n with n ă

q belonging to N-requirements of weaker priority than τ that have

not yet been realised. We let hpxq be twice the number of such N-

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 229

requirements. This is unavoidable, since there must be infinitely

many strategies working for N-requirements below the node τ.

Suppose that at some later stage t we see that an N-strategy of

weaker priority than τ with length n ă q is realised. We must create

a split in ΦpAq, and so a split in A, and redirect A through this split.

Suppose that we create the split σ in A and let A extend σ. We con-

tinue the construction with A above σ, which will inevitably involve

creating further splits in A above σ. This situation is dangerous for

us. Splits in ΦpAq are beneficial for our opponent. Suppose we have

defined Φpρq for some string ρ with ρ ą σ, but Γe has not been

defined on any string equal to or extending Φpρq. Then he is free

to define ΓepΦpρqq “ gpx, 0q. He can then press the genericity of A

to force A to pass through ρ, in which case ΦpAq must pass through

Φpρq, so that ΓepΦpAqq extends gpx, 0q. Then ΓepΦpAqq will meet

our set T .

Suppose that µ is a strategy working for a P-requirement, and

that µ lies below the infinite outcome of τ. Further suppose that µ

is realised at some stage u, where we see fepx, kqrus Óą σ. There

may be many splits ρ that we have created in A with ρ < fepx, kq,

and for which Γe has given no definition for ΓepΦpρqq. If we allow

the multiple genericity of A to force us to extend such splits, then as

above, Γe can give a definition which will mean that ΓepΦpAqqmeets

our set T .

At stage u, we will instead redirect A through a string ν1 which

is incomparable with σ. If ρ1 was a split in A with ρ1 < fepx, kq for

230 CHAPTER 4. MULTIPLE GENERICITY

which no definition ΓepΦpρ1qqrus has been made, then we choose

some extension ν1 ą ν1, and define Φpν1q “ Φpρ1q. We force the

opponent to make a Γe definition on a string extending Φpρ1q. If

he never makes such a definition, then we let A extend ν1 forever, so

that Γe is not total onΦpAq. This gives us a global win on τ. As µ lies

below the infinite outcome of τ, this particular strategy for meeting

Pe is abandoned, but some strategy for Pe below the finite outcome

of τ can ensure that Pe is still met. Similarly, we can attempt to meet

the requirement Ne under the finite outcome of τ. If Γe does give us

such a definition on some string γ < Φpρ1q, we know that if ΦpAq

extends γ, ΓepΦpAqq must extend Γepγq.

Note that it is of no benefit to our opponent if he defines Γe on

some string properly extending Φpρq. If he does define Γe on γ ą

Φpρq and uses the genericity of A to make A pass through ρ, we are

only required to have ΦpAq pass through Φpρq. We can therefore

let A pass through ρ and choose ΦpAq to pass through some string

extending Φpρq but not γ. Then we have satisfied the commitment

to the genericity of A, but do not need to worry about ΓepΦpAqq

extending gpx, 0q. We therefore assume that if ρ is a split, and so

Φpρq is defined, that if Γe gives a definition on some string extending

Φpρq, it gives a definition on Φpρq.

We repeat the actions in the previous paragraph for every split

ρi for which ρi < fepx, kq at stage u. If Γe demonstrates that it is

total in each case, we know all of the definitions ΓepΦpρiqq that it

can make. Once we have seen all such definitions, we let gpx, 1q

4.5. DOWNWARD DENSITY OF GENERICS IN THE ∆0
2 DEGREES 231

be a string that is incomparable with ΓepΦpρiqq for all i, and can

then let A extend fepx, kq. If fepx, kq is equal to some ρi, then we

are currently meeting the genericity requirement of A, and ΓepΦpAqq

does not extend gpx, 1q. In this case, if we later see that fepx, k`1qÓ,

then fepx, k ` 1q < fepx, kq, and so letting A extend fepx, k ` 1q will

do no harm since ΓepΦpAqq will still not extend gpx, 1q.

Otherwise, if at some later stage v we see fepx, k ` 1qrvs Ó, then

fepx, k`1qmight either extend a split ρi which was above fepx, kq at

stage u, or there may be further splits ρ1 extending fepx, k ` 1q that

were defined after we let A extend fepx, kq, but before stage v. In the

former case, we can let A extend fepx, k ` 1q, and as in the previous

paragraph, ΓepΦpAqqwill not extend gpx, 1q. In the latter case, a split

that we create after we let A extend fepx, kq but before stage v must

either extend a split that was there at stage u, or be created for the

sake of a weaker priority N-requirement with length n ă q. We then

may be forced to extend such a split, in which case ΓepΦpAqq might

extend gpx, 1q, but there are only hpxq many such N-requirements.

Therefore we may repeat the above strategies, and will reach some

stage where we satisfy the genericity of A and ensure that ΓepΦpAqq

does not extend gpx, kq, for some k with k ă 2hpxq.

232 CHAPTER 4. MULTIPLE GENERICITY

Bibliography

[1] Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., and Slaman,

T. A. Comparing DNR and WWKL. J. Symbolic Logic 69,

4 (2004), 1089–1104.

[2] Barmpalias, G., Day, A., and Lewis, A. E. M. The typical Tur-

ing degree. Proc. Lond. Math. Soc. 109, 1 (2014), 1–39.

[3] Barmpalias, G., Downey, R., andMcInerney, M. Integer valued

betting strategies and Turing degrees. Journal of Computer and

System Sciences 81 (2015), 1387–1412.

[4] Barmpalias, G., Downey, R. G., and Ng, K.-M. Jump inver-

sions inside effectively closed sets and applications to random-

ness. J. Symbolic Logic 76, 2 (2011), 491–518.

[5] Bienvenu, L., Stephan, F., and Teutsch, J. How powerful are

integer-valued martingales? Theory of Computing Systems 51,

3 (2012), 330–351.

[6] Cai, M. A 2-minimal non-GL2 degree. J. Math. Log. 10, 1-2

(2010), 1–30.

233

234 BIBLIOGRAPHY

[7] Cai, M. A hyperimmune minimal degree and an ANR 2-

minimal degree. Notre Dame J. Form. Log. 51, 4 (2010), 443–

455.

[8] Cai, M. Elements of Classical Recursion Theory: Degree-

Theoretic Properties and Combinatorial Properties. PhD the-

sis, Cornell University, 2011.

[9] Cai, M. 2-minimality, jump classes and a note on natural de-

finability. Ann. Pure Appl. Logic 165, 2 (2014), 724–741.

[10] Cai, M., Greenberg, N., and McInerney, M. DNR and in-

comparable Turing degrees. Forum of Mathematics, Sigma 4

(2016), 44 pages.

[11] Cholak, P., Coles, R., Downey, R. G., and Herrmann, E. Au-

tomorphisms of the lattice of Π0
1 classes: perfect thin classes

and anc degrees. Transactions of the American Mathematical

Society 353 (2001), 4899–4924.

[12] Chong, C. T., and Downey, R. Degrees bounding minimal de-

grees below 01. Proc. Cambridge Phil. Soc 105 (1989), 211–

222.

[13] Chong, C. T., and Downey, R. G. Minimal degrees recursive in

1-generic degrees. Ann. Pure Appl. Logic 48 (1990), 215–225.

[14] Chong, C. T., and Jockusch, Jr., C. G. Minimal degrees and

1-generic sets below 01. In Computation and Proof Theory

BIBLIOGRAPHY 235

(Aachen, 1983), vol. 1104 of Lecture Notes in Math. Springer,

1984, pp. 63–77.

[15] Conidis, C. A measure-theoretic proof of Turing incomparabil-

ity. Ann. Pure Appl. Logic 162, 1 (2010), 83–88.

[16] Downey, R. G., and Greenberg, N. Turing degrees of reals

of positive packing dimension. Information Processing Letters

108 (2008), 198–203.

[17] Downey, R. G., and Greenberg, N. A transfinite hierarchy of

computably enumerable degrees, unifying classes and natural

definability. 2016. Submitted.

[18] Downey, R. G., and Hirshfeldt, D. Algorithmic Randomness

and Complexity. Springer, 2010.

[19] Downey, R. G., Jockusch, Jr., C. G., and Stob, M. Array non-

recursive sets and multiple permitting arguments. In In Re-

cursion Theory Week, Oberwolfach 1989, eds. K. Ambos-Spies

and G. H. Muller and G. E. Sacks, vol. 1432 of Lecture Notes

in Mathematics. Springer-Verlag, 1990, pp. 141–174.

[20] Downey, R. G., Jockusch, Jr., C. G., and Stob, M. Array non-

recursive sets and genericity. In Computability, Enumerabil-

ity, Unsolvability: Directions in Recursion Theory, vol. 224

of London Mathematical Society Lecture Notes Series. Cam-

bridge University Press, 1996, pp. 93–104.

236 BIBLIOGRAPHY

[21] Downey, R. G., and Miller, J. S. A basis theorem for Π0
1

classes of positive measure and jump inversion for random

reals. Proc. Amer. Math. Soc. 134, 1 (2006), 283–288 (elec-

tronic).

[22] Downey, R. G., and Stob, M. Minimal pairs in initial segment

of the recursively enumerable degrees. Israel Journal of Math-

ematics 100, 1 (1997), 7–27.

[23] Greenberg, N., and Miller, J. S. Diagonally non-recursive

functions and effective Hausdorff dimension. Bull. Lond. Math.

Soc. 43, 4 (2011), 636–654.

[24] Haught, C. A. The degrees below a 1-generic degree ă 01. J.

Symbolic Logic 51, 3 (1986), 770–777.

[25] Ishmukhametov, S. Weak recursive degrees and a problem of

Spector. In Recursion Theory and Complexity, M. Arslanov and

S. Lempp, eds. de Gruyter, Berlin, 1999, pp. 81–88.

[26] Jockusch, Jr., C. G. Degrees of generic sets. In Recursion

Theory: its Generalisations and Applications, London Math-

ematical Society Lecutre Note Series. Cambridge University

Press, 1980, pp. 110–139.

[27] Jockusch, Jr., C. G. Degrees of functions with no fixed

points. In Logic, methodology and philosophy of science, VIII

(Moscow, 1987), vol. 126 of Stud. Logic Found. Math. North-

Holland, Amsterdam, 1989, pp. 191–201.

BIBLIOGRAPHY 237

[28] Jockusch, Jr., C. G., and Posner, D. Double jumps of minimal

degrees. J. Symbolic Logic 43, 4 (1978), 715–724.

[29] Khan, M., and Miller, J. S. Forcing with bushy trees. In

Preparation.

[30] Kučera, A. Measure, Π0
1-classes and complete extensions of

PA. In Recursion theory week (Oberwolfach, 1984), vol. 1141

of Lecture Notes in Math. Springer, Berlin, 1985, pp. 245–259.

[31] Kučera, A., and Slaman, T. A. Turing incomparability in Scott

sets. Proc. Amer. Math. Soc. 135, 11 (2007), 3723–3731.

[32] Kumabe, M., and Lewis, A. E. M. A fixed-point-free minimal

degree. J. Lond. Math. Soc. (2) 80, 3 (2009), 785–797.

[33] Kummer, M. Kolmogorov complexity and instance complexity

of recursively enumerable sets. SIAM J. Comput. 25, 6 (1996),

1123–1143.

[34] Kurtz, S. Randomness and genericity in the degrees of un-

solvability. PhD thesis, University of Illinois at Urbana-

Champaign, 1981.

[35] Lerman, M. Degrees of Unsolvability. Springer- Verlag, 1983.

[36] Martin-Löf, P. The definition of random sequences. Informa-

tion and Control 9 (1966), 602–619.

[37] Nies, A. Computability and Randomness. Oxford University

Press, 2009.

238 BIBLIOGRAPHY

[38] Nies, A., Stephan, F., and Terwijn, S. A. Randomness, rela-

tivization and Turing degrees. J. Symbolic Logic 70, 2 (2005),

515–535.

[39] Sacks, G. E. Some open questions in recursion theory. In

Recursion Theory Week, G. H. M. . Heinz-Dieter Ebbinghaus

and G. E. Sacks, Eds., vol. 1141. Springer, 1985, pp. 333–342.

[40] Schaeffer, B. Dynamic notions of genericity and array non-

computability. Ann. Pure Appl. Logic 96 (1998), 37–69.

[41] Schnorr., C. P. Zufälligkeit und Wahrscheinlichkeit. Eine algo-

rithmische Begründung der Wahrscheinlichkeitstheorie. Vol-

ume 218 of Lecture Notes in Mathematics. Springer-Verlag,

Berlin–New York, 1971.

[42] Shore, R. A. The Turing Degrees: An Introduction. In Forc-

ing, Iterated Ultrapowers, and Turing Degrees, C. T. Chong,

Q. Feng, T. A. Slaman, and W. H. Woodin, Eds., vol. 29 of

Lecture Notes Series, Institute for Mathematical Sciences, Na-

tional University of Singapore. World Scientific, 2015.

[43] Soare, R. I. Recursively Enumerable Sets and Degrees. Per-

spectives in Mathematical Logic. Springer-Verlag, 1987.

[44] Terwijn, S., and Zambella, D. Algorithmic randomness and

lowness. 1199–1205.

[45] von Mises, R. Grundlagen der wahrscheinlichkeitsrechnung.

Mathematische Zeitschrift 5 (1919), 52–99.

	Acknowledgments
	Introduction
	Integer-valued randomness
	Introduction
	Martingales and randomness
	Why integer-valued martingales?
	Integer randomness notions and computability
	Our results, in context

	Genericity and partial integer-valued randoms
	Proof of Theorem 2.1.3
	An integer-valued random which is not partial integer-valued random
	Integer-valued randoms not computing partial integer-valued randoms

	Computable enumerability and IVRs
	Degrees of left-c.e. integer-valued randoms
	Array computable c.e. degrees do not compute integer-valued randoms

	Jump inversion for integer-valued randoms
	A low c.e. degree containing an integer-valued random
	The full jump inversion theorem for integer-valued randoms
	Degrees of left-c.e. partial integer-valued randoms

	C.e. degrees not containing IVRs
	C.e. array noncomputable degrees not containing IVRs
	A high-2 c.e. degree not containing integer-valued randoms

	DNR and incomparable Turing degrees
	Introduction
	Fast-growing functions
	Other notation and conventions
	Compactness, splittings and computability
	Forcing with closed sets
	Simplified iterated forcing
	The plan

	A DNC minimal degree
	Trees and forests
	Bushy notions of largeness
	The notion of forcing and the generic
	Totality
	Minimality

	A relatively DNC SMC of a DNC minimal degree
	Length 2 tree systems
	Bushiness for forest systems
	The notion of forcing and the generic
	Minimal cover
	Strong minimal cover

	The general step
	Length n forest systems
	The notion of forcing and restriction maps
	Minimality

	Proof of the main theorem

	Multiple genericity
	Introduction
	Definitions
	Computing -change generics
	Forcing arguments
	A c.e. permitting argument

	Degrees computable in generics
	Computable in a 1-generic
	Computable in an -change generic

	Downward density of generics in the 02 degrees
	Downward density of 1-generics
	Failure of downward density for -change generics

