
Maximality in the α-c.a.

Degrees

by

Katherine Arthur

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Master of Science

in Mathematics.

Victoria University of Wellington

2016

Abstract

In [4], Downey and Greenberg define the notion of totally α-c.a. for appro-

priately small ordinals α, and discuss the hierarchy this notion begets on the

Turing degrees. The hierarchy is of particular interest because it has already

given rise to several natural definability results, and provides a definable

antichain in the c.e. degrees. Following on from the work of [4], we solve

problems which are left open in the aforementioned relating to this hierar-

chy. Our proofs are all constructive, using strategy trees to build c.e. sets,

usually with some form of permitting. We identify levels of the hierarchy

where there is absolutely no collapse above any totally α-c.a. c.e. degree,

and construct, for every α 6 ε0, both a totally α-c.a. c.e. minimal cover and

a chain of totally α-c.a. c.e. degrees cofinal in the totally α-c.a. c.e. degrees

in the cone above the chain’s least member.

ii

Acknowledgments

I would first like to acknowledge my late father, whose final gift allowed me

to return to my studies sooner than I’d hoped. I would also like to thank

Robin, my mother, and my grandmother, for their valiant efforts as my per-

sonal cheerleading squad.

I have had the distinct benefit of not one, but two exemplary supervisors.

It is with gratitude that I mention Noam and Rod for their kind encour-

agement, endless patience and sage guidance, and my particular thanks to

Noam for generously funding my Masters year.

iii

iv

Contents

1 Introduction 1

1.1 The Mind-Change Function 3

1.2 R-c.a. Functions . 4

1.3 The Cantor Normal Form . 7

1.4 The Totally α-c.a. Hierarchy 9

1.5 Strategy Trees . 10

2 The New Theorems 13

2.1 Maximal Totally α-c.a. Degrees 13

2.2 A Construction Without Permitting 32

2.3 Above a Superlow c.e. Degree 41

2.4 A Minimal Cover and a Cofinal Chain 48

2.5 Uniformly Totally α-c.a. Degrees 61

3 Concluding Remarks 73

v

vi CONTENTS

Chapter 1

Introduction

This thesis follows on from Downey and Greenberg’s recent collaborative

work titled A transfinite hierarchy of lowness notions in the computably

enumerable degrees, unifying classes, and natural definability ([4]). In the

authors’ own words, [4] is written in furtherance of “[understanding] the

relationship between dynamic properties of sets and functions and their al-

gorithmic complexity”. In pursuit of this goal, [4] introduces a new hierarchy

on the Turing degrees based on the relative complexity of approximations to

the functions in those degrees. The contribution of this thesis, which is joint

work with Downey and Greenberg, is to provide answers to specific questions

which arise from the aforementioned hierarchy, particularly in relation to the

c.e. degrees, and which are left open by [4]. The overarching goal is to un-

derstand the extent to which the hierarchy collapses, and to identify unusual

or interesting features.

In this thesis, we prove a number of new results about this hierarchy. We

prove the following theorems (which will be explained by formal definitions

in the sections to follow):

(1) for α < ε0, above any α-c.a. c.e. degree there is no collapse in level αω

and above;

(2) above any ω-c.a. c.e. degree there is a c.e. degree which is totally ω3-c.a.

but not totally ω-c.a.;

1

2 CHAPTER 1. INTRODUCTION

(3) there is no collapse (in any level) above any superlow c.e. degree;

(4) there is a pair of c.e. degrees a < d such that d is totally ω-c.a., and

every totally ω-c.a. c.e. degree above a is bounded by d;

(5) there is a totally ω-c.a. c.e. degree which is bounded by no maximal

totally ω-c.a. c.e. degree; and,

(6) for α 6 ε0, every c.e. degree which is not totally α-c.a. bounds a non-

uniformly totally α-c.a. degree.

Though the details are not given explicitly in this thesis, results (2), (4) and

(5) can be generalised with minor modification to their respective proofs.

Thus, we further assert that:

(2)* for n > 1, above any ωn-c.a. c.e. degree there is a degree which is

totally ωn+2-c.a. and not totally ωn-c.a.;

for α 6 ε0 a power of ω,

(4)* there is a pair of c.e. degrees a < d such that d is totally α-c.a., and

every totally α-c.a. c.e. degree above a is bounded by d; and,

(5)* there is a totally α-c.a. c.e. degree which is bounded by no maximal

totally α-c.a. c.e. degree.

Not only do we solve these questions, but in doing so we introduce new

techniques for their solution. For instance, we have the first example of a

construction of one of these bounded classes where there is infinitary pos-

itive activity along the true path of the strategy tree (see Theorem 2.1.3).

We believe that our techniques will have wider applications. To clarify the

meaning and implications of the stated theorems above, we now discuss the

terms and clarify the context from which the theorems arise.

1.1. THE MIND-CHANGE FUNCTION 3

1.1. The Mind-Change Function

To explain the new hierarchy and its origins, we begin with the Shoenfield

Limit Lemma [11]. This states that a function f is computable from ∅′ if,

and only if, f has a computable approximation; that is, there is a uniformly

computable sequence 〈fs〉 such that, for all x, lims fs(x) = f(x). It is clear

that for every c.e. degree d, every function f ∈ d has a computable ap-

proximation. We then have the mind-change function of 〈fs〉 (on x), which

is just as one might guess: m〈fs〉(x) = #{s | fs(x) 6= fs+1(x)}, the num-

ber of times the approximation 〈fs〉 ‘changes its mind’ on value x. We can

compare functions, and the degrees that contain them, by the relative com-

plexity of functions that bound their respective mind change functions. This

method of comparison and classification forms the basis of the new hierarchy.

The mind-change function is central to the definition of the class of array

computable degrees, as defined by Downey, Jockusch and Stob [6] [7]. A c.e.

Turing degree a is array computable if every function f ∈ a has a com-

putable approximation 〈fs〉 such that for all n there are at most n-many

stages s for which fs(n) 6= fs+1(n). In other words, for every function f ∈ a,

the mind-change function of 〈fs〉 is bounded by the identity function. The

class of array computable degrees is particularly noteworthy for an uncom-

mon characteristic it possesses: it captures the combinatorics of a number of

constructions. A c.e. degree is array noncomputable if and only if it contains

a perfect, thin Π0
1 class [2], if and only if it contains a c.e. set with maximal

Kolmogorov complexity [9], if and only if it does not have a strong minimal

cover in the Turing degrees [8] 1. There are further equivalences in addition

to these which are detailed in [4] and cement the natural definability of the

class of array noncomputable degrees.

1It’s not important what exactly these terms are; we intend to convey that the class of

array noncomputable degrees is a ubiquitous class.

4 CHAPTER 1. INTRODUCTION

A minor but consequential variation on the definition of the array computable

degrees was put forth by J. Miller (unpublished, 2005). We call a function

ω-computably approximable, or ω-c.a., if it has a computable approximation

for which the mind change function is bounded by a computable function.

This turns out to be equivalent to being weak truth-table reducible to ∅′. We

then say that a c.e. degree is totally ω-c.a. if every function in the degree

is ω-c.a.. Downey, Greenberg and Weber [5] showed that the class of totally

ω-c.a. degrees (referred to there as totally ω-c.e., and sometimes elsewhere

as totally ω-r.e.) do in fact capture the dynamics of some constructions,

providing natural definability results. Notably, the class of not totally ω-c.a.

degrees is precisely that of the c.e. degrees which bound a (weak) critical

triple, and that of the c.e. degrees which bound a (weak) wtt triple. Yet

another equivalence is presented in [4], relating the class of not totally ω-

c.a. degrees to presentations of left-c.e. reals, and several other equivalences

(listed in [4]) have been proven by various authors 2. It is also of note that

maximal totally ω-c.a. degrees exist, forming a naturally definable antichain

in the c.e. degrees. The only other such known antichain is formed by the

maximal contiguous degrees [3].

1.2. R-c.a. Functions

Given the promise shown by the class of totally ω-c.a. degrees, we want to

take this idea further in the hopes of obtaining yet more natural definability

results and otherwise noteworthy results (such as definable antichains). The

approach taken in [4] is to extend, or generalise, the notion of “(totally) ω-

c.a.”. Downey and Greenberg begin with the notion of R-c.a. functions for

a computable well-ordering R, and then identify an appropriate association

of ordinals to computable well-orderings in order to produce a meaningful

2The intent in listing these equivalences is the same as behind those given for the array

noncomputable degrees: the specifics are not important, just the fact that the equivalences

exist.

1.2. R-C.A. FUNCTIONS 5

definition of α-c.a. functions and, by extension, totally α-c.a. degrees.

Definition 1.2.1: Let R = 〈R,<R〉 be a computable well-ordering on a

computable set R. An R-computable approximation of f : ω → ω is a com-

putable approximation 〈fs〉s<ω of f , equipped with a uniformly computable

sequence 〈os〉s<ω of functions from ω into R such that for all x and all s:

(i) os+1(x) 6R os(x); and,

(ii) if fs+1(x) 6= fs(x), then os+1(x) <R os(x).

Given that R is a well-ordering, 〈os(x)〉s<ω cannot be an infinite descending

sequence for any x. As such, {s | fs(x) 6= fs+1(x)} is finite, and lims fs(x)

certainly exists. We then refer to a function f : ω → ω as R-computably

approximable, or R-c.a., if it has an R-computable approximation.

Similarly, we define a partial R-computable approximation of a function f :

ω → ω to be a computable approximation 〈fs〉s<ω of f , equipped with a

uniformly computable sequence 〈os〉s<ω of partial functions such that:

(i) for all s, dom os is an initial segment of ω, and dom os ⊆ dom os+1;

(ii) 〈dom os〉s<ω is uniformly computable;

(iii) for all s, and all x 6∈ dom os, fs(x) = 0; and,

(iv) for all s and all x ∈ dom os, os+1(x) 6R os(x), and if fs+1(x) 6= fs(x)

then os+1(x) <R os(x).

We say that a list 〈〈f es , oes〉s<ω〉e<ω of partial R-computable approximations

is effective if the functions f es are computable, uniformly in both e and s,

the functions oes are partial computable, uniformly in both e and s, and their

domains dom oes are computable, uniformly in both e and s. The following

proposition is proved in [4]:

6 CHAPTER 1. INTRODUCTION

Proposition 1.2.2: There is an effective list 〈〈f es , oes〉s<ω〉e<ω of partial R-

computable approximations such that, letting f e = lims f
e
s , the list 〈f e〉e<ω

contains every R-c.a. function.

There is no uniform listing of total R-computable approximations for all

R-c.a. functions, so we will need to rely on this effective list of partial ap-

proximations instead. However, if the context requiring the list is able to

accommodate the addition of a new, terminal element to (the order type

of) R, we can produce an effective list 〈〈f es , oes〉s<ω〉e<ω of total (R + 1)-

computable approximations by altering the partial approximations given by

Proposition 1.2.2. 3 The list 〈f e〉e<ω, where f e = lims f
e
s , then contains every

R-c.a. function.

A näıve attempt to define the α-c.a. functions might be to let f be α-c.a. if

and only if it is R-c.a. for some computable well-ordering R of order type

α. However, it is a result of Ershov that every ∆0
2 function is R-c.a. for

some computable well-ordering R of order type ω. It is clearly no good to

us to build a hierarchy on the c.e. degrees if it will only have one level, so

we dismiss this approach.

Another suggestion is to fix some Π1
1 path through Kleene’s O, and restrict

the computable well-orderings we consider to those given by notations on

that path, but this has its own problems. Firstly, though the path may be

cofinal in O and thus provide a notation for every computable ordinal, it will

not exhaust every ∆0
2 function. Secondly, the choice of any such path would

be arbitrary, as there is no canonical way to select one. We would then have

different hierarchies for different choices of path, which is substantially less

than ideal. What we really seek, or indeed require for the notion of “α-c.a.”

to be at all useful, is invariance.

The solution found by Downey and Greenberg is to restrict attention to a

3Let 〈〈ges ,me
s〉s<ω〉e<ω be given by Proposition 1.2.2. Then, for all e, s, x, we define

fe
s (x) = ges(x). If me

s(x) ↑, define oes(x) to be the new terminal element; otherwise define

oes(x) = me
s(x).

1.3. THE CANTOR NORMAL FORM 7

particularly well-behaved class of computable well-orderings. For computable

well-orderings R and S , if R and S are computably isomorphic then a

function is R-c.a. if, and only if, it is S -c.a.. Hence, it is stipulated that all

members of this well-behaved class which are of the same length should also

be computably isomorphic. To achieve canonicity, it is also required that

all (reasonable) associated functions such as successor, predecessor etc. are

computable. Downey and Greenberg discovered that, up to ordinal ε0, the

Cantor normal form encapsulates the required information to produce the

sought-after class of ordinals.

1.3. The Cantor Normal Form

Let α be an ordinal; α can be uniquely expressed as the sum

α = ωα1 · n1 + ωα2 · n2 + · · ·+ ωαk · nk

where α1 > α2 > · · · > αk are ordinals, and n1, n2, . . . , nk are non-zero

natural numbers. This is the Cantor normal form [1] of α. We denote

ε0 = sup{ω, ωω, ωωω
, ωω

ωω

, . . .},

the least ordinal γ such that ωγ = γ. For all ordinals α < ε0, every ordinal

appearing in the Cantor normal form of α is strictly less than α.

Let R = 〈R,<R〉 be a computable well-ordering, and let | · | : R → otp(R)

be the unique isomorphism between R and its order type. We define the

Cantor normal form function nfR on R by letting

nfR(z) = 〈(z1, n1), (z2, n2), . . . , (zk, nk)〉 for z ∈ R,

where each zi ∈ R, z1 >R z2 >R · · · >R zk, and n1, n2, . . . , nk are nonzero

natural numbers, and

|z| = ω|z1| · n1 + ω|z2| · n2 + · · ·+ ω|zk| · nk.

8 CHAPTER 1. INTRODUCTION

Definition 1.3.1: A computable well-ordering R is canonical if its associ-

ated Cantor normal form function nfR is also computable.

We note that if the relations of ordinal addition and exponentiation by ω

in R are computable, then R is canonical. It is shown in [4] that there is

a canonical, computable well-ordering of order type ε0. Further, if R is a

canonical, computable well-ordering, then R � z (the initial segment of R

up to z ∈ R) is also a canonical, computable well-ordering. Hence, for every

α 6 ε0, there must be a canonical, computable well-ordering of order type α.

We now have the well-behaved class of well-orderings required to produce a

meaningful definition of α-c.a. functions for α 6 ε0.

Definition 1.3.2: Let α 6 ε0. A function f is α-computably approximable

if it is R-c.a. for some (all) canonical well-ordering R of order type α.

We then say that a Turing degree d is totally α-c.a. if every function f ∈ d

is α-c.a.; then, equivalently, d is totally α-c.a. if and only if every function

f 6T d is α-c.a.. Further, if d is totally α-c.a., then it is low2.

Application of Proposition 1.2.2 to a canonical, computable well-ordering R

of order type α will produce an effective list 〈f es , oes〉 of partial α-computable

approximations such that, letting f e = lims f
e
s , the list 〈f e〉e<ω contains ev-

ery α-c.a. function. If we fix a canonical well-ordering Rε0 of order type

ε0, we can, uniformly in α < ε0, fix an effective list 〈fα,es , oα,es 〉 of partial

α-computable approximations.

It is prudent that the class of ω-c.a. functions by this definition be precisely

that of the ω-c.a. functions by Miller’s definition. Let f be a function with

an R-computable approximation 〈fs, os〉 for canonical well-ordering R of

order type ω. For all x, define h(x) = o0(x); then the mind-change function

for 〈fs〉 is bounded by computable h. Conversely, let f be a function that

has a computable approximation 〈fs〉 for which the mind-change function is

bounded by a computable function h. For all x, define o0(x) = h(x). For

1.4. THE TOTALLY α-C.A. HIERARCHY 9

any stage s > 0, if fs(x) = fs−1(x), define os(x) = os−1(x); otherwise, define

os(x) = os−1(x) − 1. Then 〈fs, os〉 is an ω-computable approximation of f .

Hence the two notions are equivalent, as required.

1.4. The Totally α-c.a. Hierarchy

Let γ < α 6 ε0; it is fairly clear that any totally γ-c.a. degree is also totally

α-c.a.. It is then natural to ask whether the set of totally γ-c.a. degrees is

in fact a proper subset of the totally α-c.a. degrees. The following theorem

from [4] confirms this to be the case when α is a power of ω.

Theorem 1.4.1: Let α 6 ε0. There is a totally α-c.a. degree which is not

totally γ-c.a. for any γ < α if, and only if, α is a power of ω. If α is a

power of ω, then in fact there is a c.e. degree which is totally α-c.a. but not

totally γ-c.a. for any γ < α.

Hence, there is a totally ω2-c.a. degree which is not totally ω-c.a., a totally

ω3-c.a. degree which is not totally ω2-c.a., and so forth. This forms the first

picture of the hierarchy of totally α-c.a. degrees; it collapses (above 0) only

between powers of ω. What is not addressed by this theorem is whether the

hierarchy exhibits further collapse in the cone above or below any given c.e.

degree.

Let α 6 ε0 be a power of ω. We say that there is no collapse above degree a

in level α of the hierarchy if there is a degree d > a which is totally α-c.a. but

not totally γ-c.a. for any γ < α. That is, that level of the hierarchy contains

at least one member (not contained in any lower level) when restricted to

the cone above a. Recall the beginning of this chapter where we stated the

theorems proved in this thesis; their meaning should now be mostly clear.

First, we examine collapse in the hierarchy. In Section 2.1 we introduce the

notion of maximal totally α-c.a. degrees, and prove that each level αω and

above contains a maximal member in the cone above any totally α-c.a. c.e.

degree (for α < ε0). The existence of these maximal members implies no

10 CHAPTER 1. INTRODUCTION

collapse in these levels. Then in Section 2.2, above a given totally ω-c.a. c.e.

degree a we build a degree d > a for which every f 6T d is ω3-c.a. but

there is a g 6T d which is not ω-c.a.. This is our only construction which

does not use some form of permitting to build a c.e. set. In Section 2.3 we

prove that there is a maximal member in every level above a superlow c.e.

degree (which is necessarily totally ω-c.a.), implying no further collapse in

any level of the hierarchy above such a degree. There are still situations in

which collapse (or lack thereof) remains to be proved, particularly in the ω2

level above any (non-superlow) totally ω-c.a. c.e. degree.

We then turn our attention to interesting features of the hierarchy. In Section

2.4, we construct a local ‘minimal cover’ that bounds all totally ω-c.a. c.e.

degrees above a constructed c.e. degree a. We then extend this in Theorem

2.4.9 into a chain of totally ω-c.a. c.e. degrees cofinal in the totally ω-c.a.

c.e. degrees above a constructed c.e. degree a. Finally, in Section 2.5 we

introduce the notion of uniformly totally α-c.a., and use non-totally α-c.a.

permitting to construct a totally, but not uniformly totally, α-c.a. c.e. degree

bounded by a given not totally α-c.a. c.e. degree.

1.5. Strategy Trees

Each construction in this text is a priority construction that employs a strat-

egy tree to meet an infinite set of requirements. Each element, or node of

the tree, is a finite sequence of symbols. We describe the strategy tree by

specifying the following:

(i) An association of requirements to nodes. We then say that a node

works for the requirement with which it is associated. Often, all nodes

of the same level will work for the same requirement, though this is not

always the case.

(ii) For each node that works for a requirement, all possible outcomes.

1.5. STRATEGY TREES 11

From this base, we are able to define the tree recursively. We begin with the

fact that the empty node is always on the tree. If we have established that

a node σ is on the tree, and σ is associated with requirement R, then the

immediate successor nodes of σ on the tree are of the form σ ô, where o is

an outcome of nodes working for R.

We specify a linear ordering, denoted <, on the collection of outcomes of any

node. We then say that outcome o is stronger than outcome o′ if o < o′; on

the tree, outcome o will then be to the left of outcome o′. We proceed to

extend this ordering to the entire tree; for nodes σ, τ we say σ < τ if:

(i) σ ≺ τ , in which case we refer to σ as being stronger than τ ; or,

(ii) there are η, o, o′ such that σ � η̂ o and τ � η̂ o′, where o < o′; we then

say σ lies to the left of τ .

If σ < τ by either case above, τ is described as weaker than σ.

The construction then describes, for each stage s, the collection γs of nodes

accessible at s. We may choose to leave γs empty at a stage s if the con-

struction warrants it, but if γs is non-empty we assume it to contain at least

the empty node. For the constructions in this text, for each s at which γs is

non-empty, there is a node σ on the tree such that γs comprises {η | η � σ},
the downward closure of σ.

We say that a node σ lies on the true path γω of the tree if σ ∈ γs for infinitely

many s, and the same cannot be said for any node τ which lies to the left of

σ. The true path γω is linearly ordered under �; it will need to be proved in

each construction that γω is infinite and thus contains, for each requirement,

an associated node which should ensure the requirement’s satisfaction.

Often, at the conclusion of a stage, we will initialise specified nodes. To

initialise a node is to cancel, or remove, any current parameters (such as fol-

lowers) associated with the node. We ensure that, if we initialise a node τ at

s, every node weaker than τ is also initialised at s. We say the construction

is fair to a node τ if τ is only initialised finitely often; this is a crucial quality

for nodes on the true path. We refer to a follower or computation as perma-

12 CHAPTER 1. INTRODUCTION

nent if, after the stage of its definition, it is never cancelled or destroyed.

We use notation and conventions consistent with those in [4].

Chapter 2

The New Theorems

2.1. Maximal Totally α-c.a. Degrees

Let α 6 ε0, and let d be a Turing degree which is totally α-c.a.. We refer

to d as maximal totally α-c.a. if there is no a > d such that a is totally

α-c.a.. It is established in [4] that maximal totally α-c.a. c.e. degrees do

exist for every α 6 ε0 which is a power of ω (and thus exist in every level of

the hierarchy), in addition to the following theorem:

Theorem 2.1.1: Let β < ε0. Every totally ωβ-c.a. c.e. degree is bounded by

a strictly greater totally ωβ+1-c.a. c.e. degree.

Corollary 2.1.2: Let α 6 ε0 be a power of ω, let a be a maximal totally

α-c.a. c.e. degree. Then a is not totally γ-c.a. for any γ < α.

Proof. Suppose instead that a is totally γ-c.a. for some γ < α. By Theorem

2.1.1, there is a c.e. degree d > a which is totally γ · ω-c.a.. Since γ · ω 6 α,

d is also totally α-c.a., a contradiction to the maximality of a.

Given Corollary 2.1.2, to show that there is no collapse in level α 6 ε0 above

a c.e. degree a, it is sufficient to show that there is a maximal totally α-c.a.

degree d such that d > a. Our first new theorem shows that for any α < ε0,

13

14 CHAPTER 2. THE NEW THEOREMS

any totally α-c.a. c.e. degree a is bounded by a maximal totally β-c.a. de-

gree d for β > αω. Thus, the cone above a does not exhibit any collapse of

the hierarchy in the levels αω and above.

Theorem 2.1.3: Let α < ε0 be a power of ω. Let a be a c.e. degree which is

totally α-c.a., and let β > αω also be a power of ω. There is then a maximal

totally β-c.a. c.e. degree b such that b > a.

Let α, β, a be fixed. Given 〈As〉s<ω, a computable enumeration of some

A ∈ a, we proceed to build a c.e. set D with the intent that degT(A⊕D) is

the required b. For convenience, we may safely assume that for every e, j, s,

if j enters We at stage s, then all k such that j 6 k < s enter We at s.

Requirements:

Let 〈Φe〉e<ω be an enumeration of all consistent functionals. To ensure that

degT(A ⊕ D) is totally β-c.a., we must meet the set of requirements given

by:

for all e < ω, Qe : If Φe(A,D) is total, then it is β-c.a.

We must also ensure the maximality of degT(A ⊕ D); we achieve this by

requiring, for all e < ω, that either We 6T A ⊕ D or degT(A ⊕ D ⊕We) is

not totally β-c.a. To this end, we enumerate a Turing functional Λe with the

intent that either We 6T A ⊕ D, or Λe(D,We) is not β-c.a. Normally we

would build Λe(A,D,We), but in this case we discover that A is not required

as an oracle of Λ.

By Proposition 1.2.2, let 〈〈f is, ois〉s<ω〉i<ω be an effective list of partial β-

computable approximations such that letting f i = lims f
i
s, the sequence

〈f i〉i<ω contains every β-c.a. function. We may assume that any β-c.a.

function f appears in this sequence as some f i, and that for this approxi-

mation 〈f i〉, we have
⋃
s dom ois = ω. As there is no uniform listing of total

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 15

β-computable approximations for all β-c.a. functions, we use this latter as-

sumption to identify appropriate candidates to work with in the sequence

〈f i〉i<ω.

With the preceding in mind, we meet the following set of requirements:

for all e, i < ω, P i
e : If

⋃
s dom ois = ω, either ∆i

e(A,D) = We, or

Λe(D,We) 6= f i.

Discussion:

To meet the P and Q requirements, we build a strategy tree.

Let τ be a node working for Qd. To meet Qd, for every x < ω, τ must certify

the computation Φd(A,D, x) by appointing an ordinal (below β) when we

first see Φd(A,D, x) ↓. In order to produce a β-computable approximation,

this ordinal should correctly bound the ‘number of times’ that the computa-

tion Φd(A,D, x) will be destroyed.

To meet a requirement P i
e in isolation, a node σ working for P i

e selects a

follower p = p(σ, j). Whenever f is(p) = Λe(D,We, p)[s], we then enumerate

λe,s(p) into Ds+1. However, this change in D may destroy a computation

Φd(A,D, x)[s], and could thus be problematic to a bound appointed by a

node working for Qd.

Suppose at a stage s we first see Φd(A,D, x) ↓, and ois(p) ↓ for follower

p = p(σ, j) of σ working for P i
e . Then we are immediately able to give an

ordinal bound (the actual value ois(p)) on σ acting for p, and we can allow

Φd(A,D, x) to be injured by p. We do so by ensuring that the value of ois(p)

is taken into account when deciding the bound appointed to the Φd(A,D, x)

computation.

If instead ois(p) ↑, we cannot give a bound at this stage on action for p. Be-

cause of this uncertainty, we must not allow p to injure Φd(A,D, x). If we

appoint p and do not define λe(p) in that same stage, it is possible that p

is never cancelled and σ is never again visited, so Λe could end up partial;

16 CHAPTER 2. THE NEW THEOREMS

hence, we must define λe(p) immediately when p is appointed. If τ certifies a

computation Φd(A,D, x) after p is appointed (and λe(p) defined) but before

we see ois(p) ↓, then λe(p) may be too small to avoid injuring Φd(A,D, x).

We cannot allow τ to wait for oi(p) ↓ before appointing a bound to the com-

putation, as 〈f is, ois〉s<ω〉i<ω is a list of partial approximations, so we cannot

guarantee that this will ever occur. However, if we are able to redefine the

use λe,t+1(p) to be large at a stage at which Φd(A,D, x) ↓ [t], before allowing

σ to act for p, we could prevent injury to the computation.

Before we see oi(p) ↓, σ will certainly not need to act for p; this is because

σ would act for p when we see f is(p) = Λe(D,We, p)[s], but f is(p) ↓ implies

ois(p) ↓. Hence, we can wait until we see oi(p) ↓ to redefine the use. Then, if

We 66T D, we use j ↓ We to permit σ to increase the use λe(p) to be large,

allowing σ to attack with p. As we cannot be sure that any given follower

will be able to be permitted in this manner, we continue to appoint followers

to σ while none is permitted.

We note that the stage at which we see j ↓ We may not be a stage at which σ

is accessible. We need to define λe(p) to ensure that Λe(D,We) is total, and

we cannot be sure that σ will become accessible thereafter; hence, we need

to act on permissions regardless of what nodes are accessible at that stage.

We only allow a follower p to be permitted and act if Φd(A,D, x) ↓ for all

〈d, x〉 such that p may not injure Φd(A,D, x). The lifted use λe(p) is then

larger than that of all computations p may not injure. We use ∆ to ensure

this by defining ∆σ(A,D, j) to have the same use as the maximum use of

any protected computation Φd(A,D, x) of p. If ∆σ(A,D, j) ↓ when σ next

becomes accessible after p’s permission, we can be certain that all protected

computations converged at the stage at which p became permitted.

Since A is beyond our control, we also need to be aware of the manner in

which enumeration into A can affect the requirements. Of course, it is pos-

sible that σ has a permitted follower p, and at some later stage there is an

enumeration into A that destroys a computation Φd(A,D, x) that p may not

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 17

injure. In this case, we cannot guarantee that λe(p) is still greater than ϕd(x)

when the computation Φd(A,D, x) converges again, and we cannot lift the

use of p (by permission from We) a second time. The follower p would then

be in a position to cause injury to Φd(A,D, x), so must be cancelled when σ

is next accessible to prevent unacceptable injury. It is possible that infinitely

many followers will be appointed to σ only to be cancelled in response to

enumeration into A; in this case we show that ∆σ(A,D) = We. As a tech-

nical note, this proof is unusual in that it allows this potentially infinitary

action at a node on the true path.

To keep track of change in A, we build a shadow functional Φ̂d(A) such that if

Φd(A,D) is total, then Φ̂d(A) is total. We call c < ω the tracker of x < ω if c is

the input for which we define Φ̂d(A, c) to have use ϕe(x). Let 〈〈gis,mi
s〉s<ω〉i<ω

be an effective list of partial α-computable approximations such that letting

gi = lims g
i
s, the sequence 〈gi〉i<ω contains every α-c.a. function. We know

that a is totally α-c.a.; hence there is an i such that Φ̂d(A) = gi. As the

strategy progresses, we guess this index i (correctly) using the fact that A is

low2. This is a Σ0
3 guessing process, requiring infinitely many outcomes. On

finding the correct i, the value mi(c) is a bound for the A-changes that can

affect Φd(A,D, x) while x is tracked by c.

Suppose then that a change in D is responsible for the destruction of a com-

putation Φd(A,D, x). If A was correct up to the use of x, then Φ̂d(A, c) is

correct. However, as a tracker, c has become useless: we cannot continue to

use c as a tracker for future Φd(A,D, x) computations, as we are unable to

redefine its use to match the new use of x. We must immediately cancel c,

and replace it with a new tracker at the next expansionary stage for Φd(A,D).

Strategy Tree Construction:

A node τ working for requirement Qd has outcomes∞ and f, ordered∞ < f,

which measure lim sups dom Φd(A,D)[s]. The node τˆ∞ has outcomes∞i, fi

for all i < ω, ordered in the manner ∞0 < f0 < ∞1 < f1 < · · · which guess

18 CHAPTER 2. THE NEW THEOREMS

whether or not Φ̂τ (A) is total. Each τˆ∞ˆ∞i node has outcomes j < ω,

ordered 0 < 1 < 2 < · · · , where each node τˆ∞ˆ∞ij guesses that Φ̂τ (A) is

the jth member of the enumeration containing all total α-c.a. functions. The

nodes τ f̂, τˆ∞ f̂i for all i, and τˆ∞ˆ∞ij for all i, j all work for the next, lower

priority requirement.

The node τ is responsible for the enumeration of the shadow functional

Φ̂τ (A), such that if Φd(A,D) is total, then Φ̂τ (A) is also total.

Since A is low2, the set of indices of functionals Ψ such that Ψ(A) is total is

Σ0
3. We can translate the question of membership in a Π0

2 set into whether or

not a given non-decreasing sequence is bounded. By the recursion theorem,

the index of the functional Φ̂τ (A) enumerated by τ is known to us. We thus

obtain a computable list ls(τ, n) of sequences, non-decreasing in s, such that

Φ̂τ (A) is total if and only if the sequence 〈ls(τ, n)〉 is unbounded for some n.

It is this list of sequences that we check against when τˆ∞ is accessible.

A node σ working for requirement P i
e has outcomes ∞ and f, with ∞ < f,

which guess whether σ will act infinitely or finitely often (respectively). Both

of these outcomes work for the next (lower) priority requirement.

The node σ is responsible for the enumeration of the functional ∆σ(A,D),

to the end that either ∆σ(A,D) = We, or Λe(D,We) 6= f i. (The functionals

Λe are all enumerated at the root node.)

Suppose τ works for requirement Qd; we let τ ∈ prec∞(σ) if τˆ∞ˆ∞n ≺ σ for

some n, and let τ ∈ precf(σ) if τˆ∞ f̂y � σ for some y. Suppose a follower

p = p(σ, j) of σ is appointed at stage s. Let t > s; if t is least such that σ

is accessible at stage t and oit(p) ↓, for each τ ∈ prec∞(σ) we define mτ (p)

and we declare p to be realised from stage t onward. Our intent for the value

mτ (p) is that, supposing τ works for Qd, any computation Φd(A,D, x) for

x < mτ (p) is protected from the machinations of p; that is, at any stage s,

we want λe,s(p) > ϕd,s(x).

For x < ω, p may not injure Φd(A,D, x) if τ works for Qd, and either:

(i) τ ∈ prec∞(σ), and x < mτ (p); or,

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 19

(ii) τ ∈ precf(σ), and x < y.

We may also refer to such a Φd(A,D, x) as a protected computation (w.r.t.

p). If p is realised and j ↓ We,r, and we increase the use of p to be large at

stage r, then we refer to p as permitted from stage r onward.

Let all requirements be ordered in order type ω, and let s be a stage.

First at s, we must check for any follower on the tree for which we may lift its

use. We do this by asking: is there a node σ working for a requirement P i
e with

a realised follower p = p(σ, j), such that j ∈ We,s \We,s−1? If there is, then

Λe(D,We, p) ↑ [s], as j < λe,s(p) = p; we take the strongest such σ, cancel

all followers p′ of σ such that p′ > p, and redefine Λe(D,We, p)[s+ 1] = s+ 1

with large use. We now consider this p to be permitted, and initialise all

nodes weaker than σ f̂, inclusive. We repeat this entire process until no fur-

ther followers may be permitted, then proceed to define the collection γs of

accessible nodes.

Let τ ∈ γs work for requirement Qe. Let t < s be the last stage be-

fore s at which τˆ∞ was accessible, or t = 0 if there is no such stage. If

dom Φe(A,D)[s] 6 t, let τ f̂ be next accessible (added to γs); otherwise, s

appears expansionary for Φe(A,D)[s], so we let τˆ∞ ∈ γs instead.

Suppose τˆ∞ ∈ γs. Let y be least such that either Φe(A,D, y) ↑ [t] or the

computation Φe(A,D, y)[t] was destroyed since stage t. For each n < s, let

tn be the last stage before s at which τˆ∞ˆ∞n was accessible, or tn = 0 if

there is no such stage. If there is some n 6 y such that ls(τ, n) > tn, then we

guess that the sequence l(τ, n) is unbounded (i.e. that Φ̂τ (A) is total), and

we let τˆ∞ˆ∞n be next accessible for the least such n. If there is no such

n 6 y, we let τˆ∞ f̂y be next accessible.

At this point, when τˆ∞ is accessible, we take the opportunity to maintain

20 CHAPTER 2. THE NEW THEOREMS

our shadow functional, Φ̂. Let x < ω be such that c = trs(τ, x) is defined. If

Φ̂τ (A, c) ↑ [s], and either

• τˆ∞ f̂y is next accessible, and x < y; or,

• τˆ∞ˆ∞n is next accessible, and x < t

holds, we define Φ̂τ,s+1(As, c) = s with use ϕe,s(x). If any c < s is not a

tracker for any x at τ , and Φ̂τ (A, c) ↑ [s], we define Φ̂τ,s+1(As, c) = 0 with

use 0. To conclude this series of (possible) definitions, for all x < s that have

no defined tracker, we define a new, large tracker trs+1(τ, x).

Suppose then that τˆ∞ˆ∞n is accessible at s for some n. For each i < s,

let ri be the last stage before s at which τˆ∞ˆ∞ni was accessible, or ri = 0

if there was no such stage. Recall that the sequence 〈gi〉i<ω contains every

α-c.a. function. We let τˆ∞ˆ∞ni be next accessible for the least i 6 s such

that for all x < ri, c = trs(τ, x) is defined, mi
s(c) ↓, and Φ̂τ (A, c)[s] = gis(c).

We note that rs = 0, so such an i must exist, even if it merely satisfies these

conditions trivially.

Let σ ∈ γs work for requirement P i
e . There are several possible circumstances

for σ which require individual attention.

(i) σ has permitted follower p = p(σ, j).

(a) If ∆σ(A,D, j) ↑ [s], cancel the follower p, and set ∆σ(A,D, j) = 1

with use 0. We then let σˆ∞ be next accessible.

(b) If ∆σ(A,D, j) ↓ [s] and Λe(D,We, p)[s] 6= f is(p), we let σ f̂ be next

accessible.

(c) If ∆σ(A,D, j) ↓ [s] and Λe(D,We, p)[s] = f is(p), we enumerate

λe,s(p) into Ds+1, and redefine Λe(D,We, p)[s + 1] = s + 1 with

large use. We then initialise all nodes weaker than σ f̂ (inclusive),

and cancel all trackers for x > mτ (p) for all τ ∈ prec∞(σ). We then

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 21

maintain the functional Λ as detailed at the end of the construction,

and complete the stage s.

(ii) σ has a follower p such that ois(p) ↑. We immediately let σ f̂ be next

accessible.

(iii) For every follower p of σ, ois(p) ↓ but p is not permitted; this includes if

σ has no followers, in which case we skip straight to appointing a new

follower.

Let t < s be the last stage at which σ was accessible. If there is a

follower p = p(σ, j) of σ for which either: (a) oit(p) ↑ while ois(p) ↓, or (b)

∆σ(A,D, j) ↑ [s], we proceed to define ∆σ(A,D, j)[s+ 1] = We,s+1(j).

If We,s(j) = 1, we set the use δσ,s+1(j) to be 0 and cancel p.

If We,s(j) = 0, then we set the use to be:

δσ,s+1(j) = max{ϕd,s(x) : p may not injure Φd(A,D, x)}+ 1.

Finally, if (a) holds and if We,s(j) = 0, then this is the stage at which

p becomes realised. Then for each τ ∈ prec∞(σ), if τ works for Qd we

define mτ (p) = domΦd(A,D)[s].

Let k be largest such that p(σ, k) is a follower of σ. Let m > k be least

such that m 6∈ We,s. For any k < n < m, if ∆σ(A,D, n) ↑ [s], define

∆σ(A,D, n)[s+1] = 1 with use 0. We then appoint a new, large follower

p(σ,m), define Λe(D,We, p)[s + 1] = s + 1 with use λe,s+1(p) = p, and

let σˆ∞ be next accessible.

We end stage s when |γs| = s, if not ended sooner by enumeration into D.

At the conclusion of stage s, we maintain the functional Λ to ensure its to-

tality. For any pair (e, p) 6 s for which λe(p) was not already redefined at

s, if p 6∈ domΛe,s(Ds+1,We,s+1) we let Λe(D,We, p)[s + 1] = s + 1. If p is

a follower of a node σ working for requirement P i
e , let λe,s+1(p) = λe,s(p);

22 CHAPTER 2. THE NEW THEOREMS

otherwise, let λe,s+1(p) = 0.

Verification:

For a node µ on the tree, we denote s to be a µ-stage if µ ∈ γs. First, we

prove that a follower p will never injure a computation that is protected from

it.

Lemma 2.1.4: Let σ be a node working for requirement P i
d, and let p = p(σ, j)

be a follower. Suppose that p is permitted at or prior to stage s, where s is

a σ-stage.

Let r < s be the last stage at which ∆σ(A,D, j) was defined. If p is not

cancelled at s, then for every computation Φe(A,D, x) that p may not injure,

we have:

Φe(A,D, x)[r] ↓= Φe(A,D, x)[s].

Proof. Since ∆σ(A,D, j) is defined at r, r is a σ-stage. Suppose Φe(A,D, x)

may not be injured by p, then there is a node τ working for Qe such that

either:

(i) τ ∈ prec∞(σ), and x < mτ (p); or,

(ii) τˆ∞ f̂y � σ, and x < y.

If (i) is the case, then r is a τˆ∞ˆ∞n stage for some n. Hence, domΦe(A,D)[r] >

mτ (p), so certainly Φe(A,D, x) ↓ [r]. If instead (ii) holds, then y is least such

that Φe(A,D, y) was destroyed at or since the previous τˆ∞-stage. Hence,

for all x < y, we have Φe(A,D, x) ↓ [r]. Thus, for all protected computations

Φe(A,D, x), at r we define δσ,r(j) > ϕe,r(x).

Suppose p is not cancelled at s, then ∆σ(A,D, j)[s] ↓= ∆σ(A,D, j)[r], and

δσ,s(j) = δσ,r(j). Hence, for any protected computation Φe(A,D, x), we have

δσ,s(j) > ϕe,r(x). Since ∆σ(A,D, j)[r] persists until stage s, there is no

change in either A or D below δσ,s(j); there must then be no change below

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 23

ϕe,r(x) on the interval [r, s). Therefore, Φe(A,D, x)[r] = Φe(A,D, x)[s].

Corollary 2.1.5: Let e, x < ω be fixed. Let σ working for P i
d have a fol-

lower p = p(σ, j); suppose σ enumerates λd,s(p) into Ds+1. If Φe(A,D, x)

is a protected computation with respect to p, then Φe(A,D, x) ↓ [s] and

λd,s(p) > ϕe,s(x).

Proof. Since σ enumerates λd,s(p) into Ds+1, the follower p must have been

permitted prior to stage s. Let t < s be this stage. Then the use of p was

lifted at this stage to be larger than all computations protected from p. If

any such computation did not converge at stage t, then by Lemma 2.1.4, p

would be cancelled at or before stage s. Hence, for all protected computations

Φe(A,D, x), when λd,t(p) is lifted to be large we have λd,t(p) > ϕe,t(x).

If for any protected computation Φe(A,D, x) we have ϕe,s(x) 6= ϕe,t(x) (or

indeed, if Φe(A,D, x) ↑ [s]), then Φe(A,D, x)[s] 6= Φe(A,D, x)[t] and by

Lemma 2.1.4 p is cancelled at, or prior to, stage s. Hence, Φe(A,D, x) ↓ [s]

and ϕe,s(x) = ϕe,t(x), so λd,s(p) > ϕe,s(x).

Hence, if p is permitted at a stage at which Φe(A,D, x) ↑, where Φe(A,D, x)

is protected from p, p will be cancelled at the next σ-stage thereafter and

thus cannot injure the computation. Further, while p is not cancelled, its use

is always too large to injure Φe(A,D, x).

We now need to be sure that, if a computation is destroyed by change in

D, its tracker is cancelled immediately to allow us to correctly anticipate

A-change.

Lemma 2.1.6: Let τ be a node working for requirement Qe. Let s be a stage;

let x < ω be such that c = trs(τ, x) is defined. Suppose that Φ̂τ (A, c) ↓ [s],

and let u = ϕ̂τ,s(c). Then:

(i) Φe(A,D, x) ↓ [s] and u = ϕe,s(x); and,

(ii) If Ds � u 6= Ds+1 � u, then the tracker c is cancelled at s.

24 CHAPTER 2. THE NEW THEOREMS

Proof. Suppose (i) and (ii) hold up to stage s, and that the lemma hypothe-

ses hold at s. Let t < s be the stage at which the computation Φ̂τ (A, c)[s]

was defined; then At � u = As � u. Applying the lemma at stage t, we

have Φe(A,D, x) ↓ [t] and u = ϕe,t(x). Since trackers are chosen to be large,

c = trt(τ, x).

Since c is not cancelled in the interval [t, s), using part (ii) we may infer

that Dt � u = Dt+1 � u = · · · = Ds � u. Combined with the fact that

At � u = As � u, this show that the computation Φe(A,D, x)[t] is not de-

stroyed in the interval [t, s); hence, (i) holds at s.

Suppose that Ds � u 6= Ds+1 � u; then at s we enumerate a number

λd,s(p) < u into D, where p = p(σ, j) and σ works for requirement P i
d.

By Corollary 2.1.5, p is allowed to injure the computation Φe(A,D, x)[s],

and since followers are appointed large, we may infer that p was appointed,

realised and permitted prior to stage t. If τ is weaker than σ f̂ (inclusive),

then τ is initialised at s and c is thus cancelled. If τ � σˆ∞, we note that by

construction we only let σˆ∞ be accessible at s if ∆σ(A,D, j)[s] ↑. Then we

cancel p at s upon visiting σ, so σ cannot enumerate λd,s(p) into D at this

stage.

Let r be the last τˆ∞-stage before s. If σ � τ f̂, or σ is to the right of τ ,

then σ was initialised at r. Since r > t and p was permitted by stage t, p

was cancelled by this initialisation.

If σ � τˆ∞ f̂y, then since Φe(A,D, x) ↓ [s] we may infer that x < y. Then

Φe(A,D, x) is protected from p, so enumeration by σ for p would not alter

Ds � u.

Finally, if σ � τˆ∞ˆ∞n we must have x > mτ (p), as Φe(A,D, x) is not pro-

tected from p. Then, when σ enumerates λd,s(p) into Ds+1 at s, we cancel c

by construction.

Let γω be the true path, the leftmost path of the tree visited infinitely often.

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 25

Lemma 2.1.7: Suppose τ ∈ γω works for Qe. Then Φe(A,D) is total if and

only if for some n < ω, τˆ∞ˆ∞n is on the true path if and only if Φ̂τ (A) is

total.

Proof. Suppose that Φe(A,D) is total so τˆ∞ is on the true path, and let

c < ω. If c is chosen as a tracker for some x and later cancelled, let t be the

stage at which c is cancelled; if c is never chosen as a tracker, let t = c. Let

s be the least stage s > t at which τˆ∞ is accessible and Φ̂τ (A, c) ↑ [s]. We

then define Φ̂τ,s+1(As, c) = 0 with use 0.

Suppose then that c is chosen as a tracker for some x at stage r and is never

cancelled. Since Φe(A,D) is total, there must be a stage s beyond which

all y 6 x are in dom Φe(A,D, y)[t] for all t > s. Therefore, it must be that

eventually no fy outcome is ever guessed for y 6 x. At every stage t beyond s

at which τˆ∞ is accessible, if Φ̂(A, c) ↑ [t], then we redefine Φ̂τ,t+1(At, c) = t

with use ϕe,t(x). This use must stabilise, and eventually A must stabilise be-

low that use, so there will eventually be an A-correct computation Φ̂τ (A, c).

Therefore, Φ̂τ (A) is total, and so there must then be an n such that 〈ls(τ, n)〉
is an unbounded sequence; for the least such n, τˆ∞ˆ∞n must be on the true

path.

Suppose instead that lim sups dom Φe(A,D)[s] < ∞. Then there is a stage

s such that for all t > s, we have τˆ∞ 6∈ γt. Since we only define Φ̂τ (A) at

τˆ∞ stages, Φ̂τ (A) is necessarily partial.

Suppose instead that τˆ∞ is accessible infinitely often. Let x < ω. Any

tracker trs(τ, x) can only be cancelled by a node σ � τˆ∞ working for a

requirement P i
d, with a follower p = p(σ, j), such that x > mτ (p). Let

p′ = p(µ, k) be a follower of a node working for a P requirement such that

µ � τˆ∞. The value mτ (p) is static and defined at the σ-stage at which p be-

comes realised; hence if mτ (p) is defined at stage s and mτ (p′) defined at stage

t, with s < t, then mτ (p) < mτ (p′). This is because s, t are both τˆ∞-stages;

mτ (p) = dom Φe(A,D)[s] < s and mτ (p′) = dom Φe(A,D)[t] > r > s,

where r is the last τˆ∞-stage prior to t.

26 CHAPTER 2. THE NEW THEOREMS

Therefore, for any x, the number of pairs 〈σ, p〉 such that x > mτ (p) must

be finite. Each 〈σ, p〉 pair may only cause finitely many cancellations of

a tracker of x. Otherwise σ acts infinitely often for p; let {sj : j ∈ ω},
with s0 < s1 < · · · , be the stages at which this occurs. If σ acts at

a stage s, it must be because Λe(D,We, p)[s] = f is(p). We then redefine

Λe(D,We, p)[s + 1] = s + 1 6= f is(p). Then f is0(p) 6= f is1(p) 6= · · · , and hence

we have an infinite descending chain of ordinals ois0(p) > ois1(p) > · · · - a

contradiction.

Hence x can have its tracker cancelled only finitely many times, so there must

eventually be a tracker for x which is never cancelled.

Let y = domΦe(A,D), and let c be the tracker that is eventually assigned to

y and never cancelled. If Φ̂τ (A, c) ↓ with use u, then eventually we will have

a stage s at which both As � u and Ds � u are correct. By Lemma 2.1.6, we

would then have a computation for Φe(A,D, y) correct in both A and D - a

contradiction. Hence if Φe(A,D) is partial, then Φ̂τ (A) is also partial.

Lemma 2.1.8: The true path, γω, is infinite. The construction is then fair

to nodes on the true path.

Proof. Suppose µ is a node on the true path; we must show that a child of µ

is also on the true path. If µ does not work for a P requirement, then µ = τ ,

µ = τˆ∞, or µ = τˆ∞ˆ∞n for some n, where τ works for some requirement

Qe. By Lemma 2.1.7, if µ = τˆ∞, then there is an n such that τˆ∞ˆ∞n is on

the true path. If µ = τˆ∞ˆ∞n for some n and no one outcome is accessible

infinitely often, then Φ̂τ (A) 6= f i for any f i in the enumeration containing

all α-c.a. functions; this contradicts the fact that A is totally α-c.a..

Otherwise, µ has finitely many outcomes. In any case, (at least) one of the

child nodes of µ must be accessible infinitely often, and therefore on the true

path.

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 27

Otherwise, µ works for a requirement P i
e . For neither child of µ to be ac-

cessible infinitely often, µ must act and end the stage at almost every stage

that it is accessible.

As shown in the proof of Lemma 2.1.7, µ cannot act infinitely often on any

particular follower. Then µ must have infinitely many followers permitted

and later cancelled. However, when we cancel a follower of µ, we let µ̂∞ be

next accessible. Hence, the child node µ̂∞ is accessible infinitely often, and

thus on the true path.

The true path then contains, for every P and Q requirement, a node that

works for it. If we can prove that every node which appears on the true path is

successful in meeting its requirement, then Theorem 2.1.3 is proved. Firstly,

we must ensure that for every e < ω, the functional Λe is total; otherwise,

even if Λe(D,We, p) 6= f i(p) for some follower p of a node σ working for P i
e ,

we cannot support a claim that degT(A⊕D ⊕We) is not totally β-c.a..

Lemma 2.1.9: For all e < ω, Λe(D,We) is total.

Proof. Fix e, and let p < ω. Let t = 0 if p is never appointed as a follower,

or, if p is appointed to a node working for P i
e and later cancelled, let t be

the stage of cancellation. Then at the least stage s > t such that s > (e, p),

at the conclusion of the stage we define Λe(D,We, p)[s+1] = s+1 with use 0.

Suppose then that p is appointed as a follower to a node σ working for P i
e .

Assuming p is not cancelled and is permitted, we redefine Λe(D,We, p) at

any stage thereafter where we see Λe(D,We, p)[s] = f is(p); we do so by let-

ting Λe(D,We, p)[s+ 1] = s+ 1 6= f is(p). We know that this can happen only

finitely-many times, as shown in Lemma 2.1.7. Let t be the stage at which

p is permitted; there is then a final stage s∗ > t such that, for all s > s∗,

Λe(D,We, p)[s] 6= f is(p).

After this stage, we only redefine Λe(D,We, p) when it is destroyed by enu-

meration into A or D below the use λe,s∗(p). If p is never permitted, this is

28 CHAPTER 2. THE NEW THEOREMS

the only occasion at which we redefine the computation. In this case, let s∗

be the stage at which p was appointed. Then, when we redefine Λe(D,We, p),

the use remains the same; hence, if Λe(D,We, p) is redefined infinitely often,

then either A, D, or We change infinitely often below λe,s∗(p). This cannot be

the case, so there is a stage s > s∗ at which Λe(D,We, p)[s] = Λe(D,We, p).

Lemma 2.1.10: For all e and all i, the requirement P i
e is met.

Proof. Let σ be a node on the true path working for requirement P i
e . There

are three possible circumstances for σ.

(i) σ has a follower p that is never realised;

(ii) σ (eventually) has a follower p that is realised, permitted, and never

cancelled;

(iii) every follower appointed to σ that is permitted is eventually cancelled.

In case (i), we have oi(p) ↑, and P i
e is met by false hypothesis.

Suppose then that case (ii) holds, and there is a follower p = p(σ, j) of σ

such that p is permitted at some stage s′ and never cancelled thereafter. We

know σ must only act finitely often for p, so let t > s′ be the least stage such

that σ never acts for p after stage t.

Suppose that, despite our action for p at σ, f i(p) = Λe(D,We, p)[t + 1]. At

stage t we defined Λe(D,We, p)[t+1] = t+1 6= f it (p). Therefore f i(p) 6= f it (p),

so there is a stage s > t at which we see f is(p) = f i(p). Since σ is on the true

path, it must become accessible again at some stage r > s; at this stage, we

redefine Λe(D,We, p)[r] 6= f i(p).

Hence, case (ii) meets the requirement P i
e .

Finally, suppose that case (iii) holds, and let j < ω. Then σˆ∞ is accessible

infinitely often, and hence is on the true path. In this case, we require that

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 29

∆σ(A,D) = We.

Let s∗ be the final stage at which σ is initialised, and let p = p(σ, j) be the fol-

lower appointed to σ for j after s∗. If no such p exists, there must be a stage

s > s∗ at which we consider appointing a follower but choose not to because

we see j ∈ We,s already. Then we define ∆σ(A,D, j)[s + 1] = 1 = We(j)

with use 0, which is permanent. If the follower p exists but is cancelled

at some stage s > s∗, it is cancelled because of A-change which occurred

after p was permitted, i.e. after j ↓ We. At the next σ-stage we set

∆σ(A,D, j)[s+ 1] = 1 = We(j) with use 0.

Suppose then that p = p(σ, j) exists, and is not cancelled; p must not

become permitted or it is in fact case (ii), so We(j) = 0. Suppose that

lims δσ,s(j) = ∞. Then δσ(j) must be redefined infinitely often, and thus

there are infinitely many stages s at which ∆σ(A,D, j) ↑ [s]. At each such

s where σ is accessible, we redefine ∆σ(A,D, j)[s + 1] = We,s+1(j) = 0 with

use δσ,s+1(j) = max{ϕd,s(x) : x < mτ (p), τ ∈ prec∞(σ), τ works for Qd}+ 1.

The set {x : x < mτ (p)} for any τ ∈ prec∞(σ) is fixed at the σ-stage at

or immediately following the first stage t at which oit(p) ↓, and is never al-

tered. Hence if lims δσ,s(j) = ∞, then there is a τ ∈ prec∞(σ) such that

lims ϕd,s(x) = ∞ for some x < mτ (p). However, τ ∈ prec∞(σ), so τˆ∞ˆ∞n

is on the true path for some n. By Lemma 2.1.7, Φd(A,D) must be total, so

lims ϕd,s(y) is finite for every y < ω - a contradiction. Hence, lims δσ,s(j) is

finite, so ∆σ(A,D, j) ↓= 0 = We(j).

To show that the Q requirements are met, we require the commutative ad-

dition operation on ordinals. Let γ, δ be ordinals with respective Cantor

normal forms γ = ωγ1 · n1 + · · ·+ωγk · nk, δ = ωδ1 ·m1 + · · ·+ωδl ·ml. Let S

be the set formed by collecting all exponents that appear in each form, i.e.

let S = {γi | 1 6 i 6 k} ∪ {δi | 1 6 i 6 l}, and let the members of S be

ordered α1 > α2 > · · · > αn by the usual ordering on ordinals.

We then write γ = ωα1 ·q1+· · ·+ωαn ·qn, where for all 1 6 i 6 n, we let qi = nj

if αi = γj and let qi = 0 otherwise. Similarly, δ = ωα1 · r1 + · · · + ωαn · rn,

30 CHAPTER 2. THE NEW THEOREMS

where for all 1 6 i 6 n, ri = mj if αi = δj and ri = 0 otherwise.

The commutative sum of γ and δ is then:

γ ⊕ δ = ωα1 · (q1 + r1) + · · ·+ ωαn · (qn + rn).

For ordinals α, β, γ, we then have γ⊕β = β⊕γ and (α+β)+γ = α+(β+γ),

by virtue of the commutativity and associativity of addition on the natural

numbers. We borrow directly from [4] the following lemmata of use.

Lemma 2.1.11: Any power of ω is closed under ⊕.

Lemma 2.1.12: Let β1, β2, . . . , βn and γ1, γ2, . . . , γn be two n-tuples of ordi-

nals. Suppose that for all i 6 n, βi 6 γi. Then
⊕

i6n βi 6
⊕

i6n γi, and⊕
i6n βi <

⊕
i6n γi if, and only if, there is some i 6 n such that βi < γi.

We now prove that the Q requirements are met.

Lemma 2.1.13: For all e < ω, the requirement Qe is met.

Proof. Suppose that Φe(A,D) is total, and τ is the node on the true path

working for Qe. We proceed to build functions f̂ , ô such that 〈f̂s, ôs〉s<ω is a

β-computable approximation of Φe(A,D).

Since Φe(A,D) is total, by Lemma 2.1.7 there are n, i < ω such that ρ =

τˆ∞ˆ∞n̂ i is on the true path. Let s∗ be the last stage at which ρ is initialised,

and let s0 < s1 < s2 < · · · be the stages after s∗ at which ρ is accessible.

Fix x < ω. Let i(x) be the least i such that x < domΦe(A,D)[si−1]. Let

a(x) be the collection of pairs (σ, p) such that τ ∈ prec∞(σ) or τˆ∞ f̂y � σ

for y > x, and p is a follower for σ that was realised before stage si(x) but not

cancelled by stage si(x). Then a(x) comprises all followers that may injure

the computation Φe(A,D, x) by enumerating into D.

For all x < ω and all j > i(x), we define f̂j(x) = Φe(A,D, x)[sj].

2.1. MAXIMAL TOTALLY α-C.A. DEGREES 31

For all j > i(x), let aj(x) be the collection of pairs (σ, p) ∈ a(x) such

that σ is not initialised at any stage r ∈ [si(x), sj), and p is still a fol-

lower for σ at the beginning of stage sj. We note that for any j > i(x),

we have Φe(A,D, x) ↓ [sj], cj = cj(x) = trsj(τ, x) is defined, mi
sj

(cj) ↓, and

Φ̂τ (A, cj) ↓ [sj] = gisj(cj).

Suppose 〈σ1, p1〉, . . . , 〈σn, pn〉 are the members of aj(x), and that σk works

for the requirement P ik
dk

. For each k, let tk,j be the last stage prior to sj at

which σk acted for pk (including permission), or if there is no such stage, let

tk,j be the stage at which pk was appointed.

Let ηj(x) = oi1t1,j(p1)⊕ o
i2
t2,j(p2)⊕ · · · ⊕ o

in
tn,j

(pn).

For j > i(x) we then define:

ôj(x) = α · ηj(x) +mi
sj

(c).

Let j > i(x), and let u = ϕe,sj(x). If f̂j(x) 6= f̂j+1(x), and this discrep-

ancy is caused by change in A alone, we see Dsj � u = Dsj+1
� u, but

Asj � u 6= Asj+1
� u. By Lemma 2.1.6, u = ϕ̂τ (cj)[sj], so the enumera-

tion into A that destroys the computation Φe,sj(A,D, x) will also destroy

the computation Φ̂τ (A, cj)[sj]. When Φ̂τ (A, cj) is redefined, it is defined

to be the stage number, so certainly Φ̂τ (A, cj)[sj+1] > sj. In particular,

Φ̂τ (A, cj)[sj] 6= Φ̂τ (A, cj)[sj+1]. Then gisj(cj) 6= gisj+1
(cj), and it follows that

mi
sj

(cj) > mi
sj+1

(cj).

If f̂j(x) 6= f̂j+1(x) is caused by change in D, then Dsj � u 6= Dsj+1
� u. This

change in D is caused by a pair 〈σ, p〉 = 〈σk, pk〉 ∈ aj(x), by σ enumerating

λdk,sj(p) into D at stage sj in response to seeing f iksj (p) = Λdk(D,Wdk , p)[sj].

At stage tk,j, we defined Λdk(D,Wdk , p)[tk,j + 1] = tk,j + 1 > f iktk,j(p). Hence

f iksj (p) = Λdk(D,Wdk , p)[sj] implies f iktk,j(p) 6= f iksj (p), and consequently, given

that tk,j+1 = sj, we have oiktk,j(p) > oiktk,j+1
(p). By Lemma 2.1.12, ηj(x) >

ηj+1(x); then α · ηj(x) > α · (ηj+1(x) + 1) > α · ηj+1(x) +mi
sj+1

(cj+1).

32 CHAPTER 2. THE NEW THEOREMS

Hence, whether the computation is destroyed by change in A or D, if f̂j(x) 6=
f̂j+1(x) then α · ηj(x) +mi

sj
(cj) > α · ηj+1(x) +mi

sj+1
(cj+1).

By definition, it is clear that lims f̂s = Φe(A,D).

If mi
sj

(cj) < mi
sj+1

(cj+1), then cj 6= cj+1; this implies that Dsj � u 6= Dsj+1
� u

for u = ϕe,sj(x), and as shown above, ôj(x) > ôj+1(x) in this case. Otherwise,

the function ô inherits the non-increasing nature of the oik ,mi functions that

comprise it, and ô is therefore non-increasing.

Since each oik(pk) term is bounded by β and β is a power of ω, by Lemma

2.1.11 the sum ηj(x) is also bounded by β. Since α · β = β, the term

α · ηj(x) is bounded by β. Finally, as β is closed under (regular) addition,

ôj(x) = α · ηj(x) +mi
sj

(cj) is bounded by β.

Therefore, 〈f̂s, ôs〉s<ω is a β-computable approximation of Φe(A,D).

Every node on the true path then ensures that its requirement is met; this

concludes the proof of Theorem 2.1.3.

2.2. A Construction Without Permitting

Our next theorem has a similar construction to Theorem 2.1.3, and borrows

much of its verification. However, as we are not building a maximal totally

ω3-c.a. degree, we lack a mechanism by which to permit followers and lift

their use. This alters which followers we can allow to injure a computation

and prevents us from producing a bound lower than ω3 in this construction.

Further work might be to show that any totally ω-c.a. c.e. degree is bounded

by a totally ω2-c.a. c.e. degree which is not totally ω-c.a. (or by a maximal

totally ω2-c.a. c.e. degree). This has already been proven when a is a su-

perlow c.e. degree, see Theorem 2.3.1.

2.2. A CONSTRUCTION WITHOUT PERMITTING 33

Theorem 2.2.1: Let a be any totally ω-c.a., c.e. degree. There is a c.e.

degree b > a such that b is totally ω3-c.a., but not totally ω-c.a..

Fix a, and let 〈As〉s<ω be a given computable enumeration of A ∈ a. We

proceed to build a set D such that degT(A⊕D) is the required b.

Requirements:

Let 〈Φe〉e<ω be an enumeration of all consistent functionals. Our require-

ments are simple; firstly, we require that A ⊕ D is totally ω3-c.a.. This is

achieved with the set of requirements

for all e < ω, Qe : If Φe(A,D) is total, then it is ω3-c.a..

We then, of course, require thatA⊕D is not totally ω-c.a.. Let 〈〈f is, ois〉s<ω〉i<ω
be an effective list of partial ω-computable approximations such that letting

f i = lims f
i
s, the sequence 〈f i〉i<ω contains every ω-c.a. function. We enu-

merate a functional Λ, and diagonalise this against all members of 〈f i〉i<ω.

This process is captured in the requirements

for all i < ω, P i : If
⋃
s dom ois = ω, then Λ(A,D) 6= f i.

Discussion:

To meet the P and Q requirements, we build a strategy tree. For a node σ to

meet a requirement P i in isolation, we appoint to it a follower p. Thereafter,

whenever we see Λ(A,D, p)[s] = f is(p), we enumerate λs(p) into Ds+1 and

redefine Λ(A,D, p)[s+ 1] = s+ 1 to be larger than all previously seen values

of f i(p). A node τ working for Qe will attempt to meet its requirement by ap-

pointing, to every x < ω, an ordinal below ω3 when it first sees Φe(A,D, x) ↓.
However, enumeration by σ into D can upset a bound appointed by τ , by

destroying the computation Φe(A,D, x).

Suppose that we first see Φe(A,D, x) ↓ at stage s, and ois(p) ↓. Then we have

a bound on the amount of times that σ will act for p, a bound for the amount

34 CHAPTER 2. THE NEW THEOREMS

of times that Φe(A,D, x) can be destroyed by p. We can then account for

this exact ordinal when appointing a bound to x.

If instead ois(p) ↑, we cannot give an exact bound at this stage. However,

we do know that if we eventually see a bound it must be less than ω. We

can then use ω as an interim bound, until we eventually see oi(p) ↓ and can

update to the ‘true’ bound. It is this initial use of ω as a bound on action

that requires an ω3 bound on Φe(A,D), as opposed to ω2.

Enumeration into A can also destroy a computation Φe(A,D, x); but A is

provided by the opponent, and therefore beyond our control. To counter this,

we use the fact that a is totally ω-c.a.. We build a shadow functional Φ̂e(A)

to monitor change in A, ensuring that Φ̂e(A) is total if Φe(A,D) is total. We

define, for each x < ω, a tracker c < ω for which Φ̂e(A, c) has use ϕe(x).

Suppose that Φe(A,D, x) is destroyed by change in D. If A was correct up

to the use of x, then c is now useless as a tracker. We immediately cancel c,

and replace it with a new tracker when Φe(A,D) is next expansionary.

Since a is totally ω-c.a., if Φ̂e(A) is total, there must be some j such that

Φ̂e(A) = f j (the jth member of the enumeration containing all ω-c.a. func-

tions). As the strategy progresses, we (correctly) guess this j; then oj(c)

bounds destruction caused by A-change against the computation Φe(A,D, x)

while c remains the tracker of x.

Strategy Tree Construction:

Suppose τ works for requirement Qe; then τ is responsible for building the

shadow functional Φ̂τ (A). The node τ has two outcomes, ∞ and f, ordered

∞ < f. This first tier below τ measures whether or not Φe(A,D) is expan-

sionary at the current stage.

Then τˆ∞ has outcomes ∞i, fi for all i < ω, ordered ∞0 < f0 < ∞1 < · · · ,
which guess whether Φ̂τ (A) is total. To make this guess, we use the same

trick employed in Theorem 2.1.3: we obtain a computable list ls(τ, n) of se-

2.2. A CONSTRUCTION WITHOUT PERMITTING 35

quences, non-decreasing in s, such that Φ̂τ (A) is total if, and only if, there is

an n such that the sequence 〈ls(τ, n)〉 is unbounded.

The node τˆ∞ˆ∞n, for any n, has outcomes j < ω, ordered with the usual

natural number ordering. This tier guesses for which j we have Φ̂τ (A) = f j.

The nodes τ f, τˆ∞fi for any i, and τˆ∞ˆ∞ni for any n, i, all work for the

next priority requirement.

A node σ working for requirement P i has a unique outcome, which works

for the next priority requirement. Suppose a follower p is appointed to σ

at stage s. Unlike many of our other constructions, we have no mechanism

by which to permit p; as such, we need to protect all computations already

in place at stage s from action for p. We define mτ (p), for all τ such that

τˆ∞ˆ∞n � σ for some n, to indicate these computations.

Suppose τ works for requirement Qe; we let τ ∈ prec∞(σ) if τˆ∞ˆ∞n ≺ σ for

some n, and let τ ∈ precf(σ) if τˆ∞ f̂y � σ for some y. For x < ω, p may not

injure Φe(A,D, x) if τ works for Qe, and either:

(i) τ ∈ prec∞(σ), and x < mτ (p); or,

(ii) τ ∈ precf(σ), and x < y.

Let the requirements be ordered in order type ω, and let s be a stage. Let

γs denote the set of nodes accessible at stage s.

Let τ working for Qe be accessible at stage s. Let t < s be the last stage

before s at which τˆ∞ was accessible, or let t = 0 if there is no such stage.

If dom Φe(A,D)[s] 6 t, let τ f̂ ∈ γs; otherwise, let τˆ∞ ∈ γs.

Suppose that we have τˆ∞ ∈ γs. Let y be least such that either Φe(A,D, y) ↑
[t], or the computation Φe(A,D, y)[t] has been destroyed since stage t. For

each n < s, let tn < s be the last stage before s at which τˆ∞ˆ∞n was

accessible, or tn = 0 if there is no such stage. If there is an n 6 y such that

36 CHAPTER 2. THE NEW THEOREMS

ls(τ, n) > tn, let τˆ∞ˆ∞n ∈ γs. Otherwise, let τˆ∞ f̂y ∈ γs.

While τˆ∞ is accessible, we maintain the shadow functional Φ̂τ (A). Let

x < ω be such that x has a defined tracker c = trs(τ, x). If Φ̂τ (A, c) ↑ [s],

and either

• τˆ∞ f̂y is next accessible, and x < y; or,

• τˆ∞ˆ∞n is next accessible, and x < t

holds, we define Φ̂τ,s+1(As, c) = s with use ϕe,s(x). For any c < s, if c is not

a tracker for any x at τ and Φ̂τ (A, c) ↑ [s], we define Φ̂τ,s+1(As, c) = 0 with

use 0. Finally, for all x < s with no current tracker, we define a new, large

tracker trs+1(τ, x).

Suppose τˆ∞ˆ∞n ∈ γs. For each i < s, let ri < s be the last stage prior to

s at which τˆ∞ˆ∞ni was accessible, or ri = 0 if there is no such stage. We

let rs = 0. Let τˆ∞ˆ∞ni ∈ γs for the least i 6 s such that for all x < ri,

c = trs(τ, x) is defined, ois(c) ↓, and Φ̂τ (A, c)[s] = f is(c).

Let σ working for P i be accessible at s, and let π be the unique child node

of σ. One of several cases will apply to σ.

(i) σ has no follower. We appoint a new, large follower p = p(σ, s + 1).

We then define Λ(A,D, p)[s + 1] = s + 1 with use λs+1(p) = p, and

define, for all τ ∈ prec∞(σ), the value mτ (p) = domΦd(A,D)[s] where

τ works for Qd. Finally, let π ∈ γs.

(ii) σ has a follower p = p(σ, s), but ois(p) ↑. We immediately let π ∈ γs.

(iii) σ has a follower p = p(σ, s) and ois(p) ↓. If Λ(A,D, p)[s] 6= f is(p), im-

mediately let π ∈ γs. Otherwise Λ(A,D, p)[s] = f is(p), so we enumerate

λs(p) into Ds+1 and redefine Λ(A,D, p)[s + 1] = s + 1 with large use.

We then cancel trackers for x > mτ (p) for all τ ∈ prec∞(σ), initialise

all weaker nodes, and end the stage.

2.2. A CONSTRUCTION WITHOUT PERMITTING 37

At the end of stage s, we maintain our functional Λ. For any p 6 s for

which λ(p) was not already redefined at s, if p 6∈ domΛs(As+1, Ds+1) we let

Λ(A,D, p)[s + 1] = s + 1. If p is a follower of a node σ working for require-

ment P i, let λs+1(p) = λs(p); otherwise, let λs+1(p) = 0. For any follower

p = p(σ, s) not cancelled at stage s (by initialisation), let p(σ, s+ 1) = p.

Verification:

First, we ensure that any follower p(σ, s) is prevented from injuring any of

its protected computations.

Lemma 2.2.2: Let σ be a node working for requirement P i, and let p = p(σ, s)

be a follower appointed at stage r 6 s and not cancelled since. For every

computation Φe(A,D, x) that p may not injure,

Φe(A,D, x)[r] ↓= Φe(A,D, x)[s].

Proof. Certainly Φe(A,D, x) ↓ at r, the stage of p’s appointment, as this is

the defining factor of a computation that p may not injure.

Suppose then that Φe(A,D, x)[r] 6= Φe(A,D, x)[s]. At some stage t ∈ [r, s),

some node σ′ working for P i′ acted for its follower p′ = p(σ′, t), with use

λt(p) < ϕe,t(x) = ϕe,r(x). If σ′ is stronger than or to the left of σ, then p

would be cancelled at stage t. Hence, σ′ is weaker than σ, and p′ must have

been appointed at a stage r′ ∈ [r, t).

If τ working for Qe is in prec∞(σ), then since r, r′ are both τˆ∞-stages,

mτ (p′) = dom Φe(A,D)[r′] > dom Φe(A,D)[r] = mτ (p). Then λr′(p
′) is

defined to be large; certainly λr′(p
′) > ϕe,t(x).

If τ is instead in precf(σ), there is a y > x which is least such that Φe(A,D, y)

was destroyed at or since the previous τˆ∞-stage before r′. Hence, we have

Φe(A,D, x) ↓ [r′], and we define λr′(p
′) > ϕe,t(x).

Hence, if a protected computation Φe(A,D, x) (w.r.t. p) is destroyed, then

p is cancelled. Then p is prevented from injuring the computation when it

38 CHAPTER 2. THE NEW THEOREMS

later reconverges with a larger use.

We note that the construction is identical to that of Theorem 2.1.3 with

regards to Q requirements and definition of Λ, and very similar with regards

to P requirements. As such, we may borrow Corollary 2.1.5 and Lemmata

2.1.6, 2.1.7, 2.1.8, and 2.1.9 from the verification of Theorem 2.1.3 with at

most superficial modification to their proofs. Thus, Λ is total, the true path

is infinite, and the λ use of any follower p is always larger than the ϕ use of

any computation it may not injure. We also have the following lemmata:

Lemma 2.2.3: Let τ be a node working for requirement Qe. Let s be a stage;

let x < ω be such that c = trs(τ, x) is defined. Suppose that Φ̂τ (A, c) ↓ [s],

and let u = ϕ̂τ,s(c). Then:

(i) Φe(A,D, x) ↓ [s] and u = ϕe,s(x); and,

(ii) If Ds � u 6= Ds+1 � u, then the tracker c is cancelled at s.

Lemma 2.2.4: Let τ be the node on the true path working for Qe. Then

Φe(A,D) is total if and only if for some n < ω, τˆ∞ˆ∞n is on the true path,

if and only if Φ̂τ (A) is total.

With these facts established, we now proceed to prove that the P and Q

requirements are met.

Lemma 2.2.5: For every i < ω, the requirement P i is met.

Proof. Fix i < ω, and let σ be the node on the true path working for re-

quirement P i. Let s∗ be the final stage at which σ is initialised, and s > s∗

be the next σ-stage. If there is no stage t > s at which we see oit(p) ↓ for

p = p(σ, s + 1), then P i is met by false hypothesis. Suppose instead that

there is such a stage. The node σ can act only finitely often for p, so let t > s

be the least stage such that σ does not act for p after stage t.

Suppose that f i(p) = Λ(A,D, p)[t+ 1]. At stage t we defined Λ(A,D, p)[t+

1] = t+1 6= f it (p). Therefore f i(p) 6= f it (p), so there is a stage t′ > t at which

2.2. A CONSTRUCTION WITHOUT PERMITTING 39

we see f it′(p) = f i(p). Since σ is on the true path, it must become accessible

again at some stage r > t′; at this stage, we redefine Λ(A,D, p)[r] 6= f i(p),

so P i is met.

Lemma 2.2.6: For every e < ω, the requirement Qe is met.

Proof. Fix e < ω, and let τ be the node on the true path working for Qe;

if Φe(A,D) is total, by Lemma 2.2.4 we have ρ = τˆ∞ˆ∞ni on the true

path for some n, i. Let s∗ be the last stage at which ρ is initialised, and let

s0 < s1 < · · · be the ρ-stages following s∗. We proceed to build functions

g,m such that 〈gs,ms〉s<ω is an ω3-computable approximation for Φe(A,D).

Fix x < ω. Let i(x) be the least j such that x < dom Φe(A,D)[sj−1]. Let

a(x) be the set of all pairs 〈σ, p〉 such that τ ∈ prec∞(σ) or τˆ∞ f̂y � σ for

y > x, and p is a follower for σ that was appointed before, but not cancelled

by, stage si(x) for which we have oisi(x)(p) ↓. For each j > i(x), we refine the

set a(x) to the set aj(x): let aj(x) be the set of all 〈σ, p〉 ∈ a(x) such that p

has not been cancelled by stage sj.

Similarly, let b(x) be the set of all pairs 〈σ, p〉 such that τ ∈ prec∞(σ) or

τˆ∞ f̂y � σ for y > x, and p is a follower for σ that was appointed before,

but not cancelled by, stage si(x) but for which oisi(x)(p) ↑ if σ works for P i.

For all j > i(x), we also produce the set bj(x): let bj(x) be the set of all

〈σ, p〉 ∈ b(x) such that we still see oisj(p) ↑ if σ works for P i and p has not

been cancelled by stage sj.

We see that the sets a(x) and b(x) together comprise all followers that are ca-

pable of injuring the computation Φe(AD, x). We note that if 〈σ, p〉 ∈ bj(x)

for some j > i(x), and oisj+1
(p) ↓ but p is not cancelled on the interval

[sj, sj+1), then 〈σ, p〉 ∈ aj+1(x).

Let j > i(x), and let 〈σ0, p0〉, 〈σ1, p1〉, . . . , 〈σn, pn〉 be the members of aj(x).

Suppose that for all 0 6 k 6 n, the node σk works for the requirement P ik .

For each k, let tk,j be the last stage prior to sj at which σk acted for pk, or if

40 CHAPTER 2. THE NEW THEOREMS

there is no such stage, let tk,j be the stage at which pk was appointed. Given

that Φ̂τ (A) = f i, we note that for any j > i(x), we have Φe(A,D, x) ↓ [sj],

cj = cj(x) = trsj(τ, x) is defined, oisj(cj) ↓, and Φ̂τ (A, cj) ↓ [sj] = f isj(cj).

We then define gj(x) = Φe(A,D, x)[sj], and letting ηj(x) = oi0t0,j(p0) + . . . +

ointn,j
(pn), we also define

mj(x) = ω2 · |bj(x)|+ ω · ηj(x) + oisj(cj).

It is clear that lims gs(x) = Φe(A,D, x). For any j, x, the values |bj(x)|,
oiktk,j(pk) for any 0 6 k 6 n, and oisj(cj) are all bounded by ω, and hence the

sum mj(x) is bounded by ω3.

Suppose that gj(x) 6= gj+1(x). If this is caused by change in A alone, then

cj = cj+1 and at r ∈ [sj, sj+1) there is some enumeration into A below

ϕe,r(x). By Lemma 2.2.3, this implies that Φ̂τ (A, cj) ↑ [r + 1], but we know

Φ̂τ (A, cj) ↓ [sj] and Φ̂τ (A, cj) ↓ [sj+1]. Then Φ̂τ (A, cj)[sj] 6= Φ̂τ (A, cj)[sj+1],

so f isj(cj) 6= f isj+1
(cj). Therefore, oisj(cj) > oisj+1

(cj), and consequently

mj(x) > mj+1(x).

If the inequality is instead caused by change in D, then there is an enumer-

ation into D below ϕe,sj(x) at stage sj by some (σ, p) ∈ aj(x). Hence we

must have Λ(A,D, p)[sj] = f isj(p). Let k be such that σ = σk, p = pk. At

stage tk,j, we defined Λ(A,D, p)[tk,j + 1] = tk,j + 1 > f iktk,j(p). Hence from

f iksj (p) = Λ(A,D, p)[sj] we may conclude that f iktk,j(p) 6= f iksj (p), and hence

oiktk,j(p) > oiksj(p). Since tk,j+1 = sj, we then have oiktk,j(p) > oiktk,j+1
(p).

Since all summands of η are natural numbers, it then follows from oiktk,j(p) >

oiktk,j+1
(p) that ηj(x) > ηj+1(x), and further that mj(x) > mj+1(x), as-

suming that there is no σ′ stronger than σ such that 〈σ′, p′〉 ∈ bj(x) and

〈σ′, p′〉 ∈ aj+1(x).

Suppose instead that there is such a pair 〈σ′, p′〉. Then |bj+1(x)| < |bj(x)|. As

|bj+1(x)| is the factor on the ω2 term of mj+1(x), this decrease ‘outweighs’

2.3. ABOVE A SUPERLOW C.E. DEGREE 41

any possible increase in ηj+1(x), as ω · ηj+1(x) is bounded by ω2. Hence,

mj(x) > mj+1(x).

Therefore, gj(x) 6= gj+1(x) implies that mj(x) > mj+1(x). Finally, we require

that m is non-increasing. Since oi and oik for all k are non-increasing, as is

|bj(x)| w.r.t. j, we would only see mj(x) < mj+1(x) if cj 6= cj+1. However,

this implies that Dsj � u 6= Dsj+1
� u for u = ϕe,sj(x). As shown above, this

results in either |bj(x)| > |bj+1(x)| or |bj(x)| = |bj+1(x)| and ηj(x) > ηj+1(x),

and hence mj(x) > mj+1(x).

Therefore, 〈gs,ms〉s<ω is an ω3-computable approximation of Φe(A,D).

This concludes the proof of Theorem 2.2.1.

2.3. Above a Superlow c.e. Degree

Let A be a set; then A is superlow if A′ ≡tt ∅′. A Turing degree a is superlow

if some A ∈ a is superlow. It is a result of Schaeffer [10] that every superlow

c.e. degree is array computable; thus, every superlow c.e. degree is totally

ω-c.a..

Let 〈Φe〉 be an enumeration of all consistent functionals. The jump function

of a set A is a binary function JA(−,−) such that, for all e and n, JA(e, n)

gives whether or not Φe(A, n) halts, the stage at which it halts, and the out-

put. If A is superlow, then the jump function of A is ω-c.a..

Theorem 2.3.1 proves that above every superlow c.e. degree a, there is a

degree which is ω2-c.a., but not ω-c.a.. This proof could be easily modified

to produce a degree bounding a which is maximal α-c.a. for any α > ω2;

thus, for every ω2 6 α 6 ε0, there is a degree bounding a which is totally α-

c.a., and not totally γ-c.a. for any γ < α. Hence, there is no collapse in any

level of the hierarchy of totally α-c.a. degrees above any superlow c.e. degree.

42 CHAPTER 2. THE NEW THEOREMS

Theorem 2.3.1: Let c.e. A be superlow, and let a = degT(A). Then there

is a c.e. degree d > a which is maximal totally ω2-c.a..

Let 〈As〉 be a given computable enumeration of A. We proceed to build a

c.e. set D such that d = degT(A⊕D) is maximal totally ω2-c.a..

Requirements:

Let 〈Φe〉e<ω be an enumeration of all consistent functionals. First, we must

ensure that d is totally ω2-c.a. with the requirements

for all e < ω, Qe : If Φe(A,D) is total, then it is ω2-c.a..

Further, we must ensure its maximality with the requirements

for all e, i < ω, P i
e : Either Λe(A,D,We) 6= fω

2,i, or We = ∆i
e(A,D),

where Λe and ∆i
e are functionals enumerated by us, and fω

2,i = f i = lims f
i
s

where 〈〈f is, ois〉s<ω〉i<ω is an effective list of partial ω2-computable approxi-

mations.

Discussion:

To meet a requirement P i
e in isolation, a node σ working for P i

e must appoint

a follower p = p(σ, j). Thereafter, at any stage for which Λe(A,D,We, p)[s] =

f is(p), σ enumerates λe,s(p) into Ds+1. However, this enumeration could de-

stroy a computation Φd(A,D, x)[s]; any node working for Qd that could be

affected by enumeration at σ needs to know a bound on this action to meet

its requirement. The strategy we employ to ensure this is the same as that

which we use repeatedly in this text: we only allow p to injure Φd(A,D, x) if

oi(p) ↓ by the stage at which we first see Φd(A,D, x) ↓. We then use j ↓ We

to permit p, regardless of whether σ is accessible at that stage, allowing us

to redefine λe(p) to be large and commence an attack with p. We cannot

2.3. ABOVE A SUPERLOW C.E. DEGREE 43

guarantee that any one follower be permitted, so we continue to appoint fol-

lowers if no current follower has been permitted.

Where we differ from Theorem 2.1.3 is in our handling of injury to Φd(A,D)

computations caused by enumeration into A. The enumeration 〈As〉 of A is

again beyond our control, necessitating the building of a shadow functional

Φ̂τ (A) at each node τ working for Qd. In Theorem 2.1.3, we are allowed only

one tracker for x < ω to be in place at any time. Otherwise, we run the risk

that Φ̂τ (A) ends up partial, which could prevent us from meeting Q require-

ments. However, here we have the advantage that A is superlow, and its jump

function JA is therefore ω-c.a.. Let 〈fs, os〉s<ω be an ω-computable approx-

imation of JA; there is then a d′ known to us such that 〈fs(d′,−), os(d
′,−)〉

is an ω-computable approximation to Φ̂τ (A). For simplicity we will drop

reference to d′, and refer to the approximation only as 〈fs, os〉 for every τ ,

though remembering that d′ will actually vary with τ .

For each x < ω we assign, using Cantor’s pairing function, an infinite set

{π(a, n) | n < ω} (also referred to as the column π(a,−)) of natural numbers

from which we select trackers for x. From this column, at stage s we reserve

as many trackers as there are foreseeable injuries caused by D-change. At

stages progress, we may change the number of reserved trackers as we see

updated predictions of injuries. Each enumeration into D by a follower p of

a node σ working for a P -requirement cancels the current tracker of x.

For the current tracker c of x, we define Φ̂τ (A, c)[s + 1] = s + 1 so as to

intentionally differ from fs(c). The number of times that f(c) will change

value is bounded by o(c), and lims fs(c) = Φ̂τ (A, c); since we define Φ̂τ (A, c)

to have the same use as Φd(A,D, x), the value o(c) then also bounds the

number of times Φd(A,D, x) will be destroyed by A-change while c remains

a tracker of x, as long as we only believe the computation Φd(A,D, x) (i.e.

define the ω2-computable approximation to Φd(A,D) on x) at stages where

Φ̂τ (A, c) = f(c).

Suppose however that c is the tracker of x at stage s, and c′ the tracker of

44 CHAPTER 2. THE NEW THEOREMS

x at stage t > s; it is entirely possible that os(c) < ot(c
′). If 〈f̂s, ôs〉s<ω is

the approximation to Φd(A,D) we are building, then including os(c) as a

summand of ôs(x) for only the current tracker is not conducive to fulfilling

the non-increasing requirement imposed on ô. Hence, at stage s, we use the

sum of os(c) for all reserved trackers from column π(a,−).

Strategy Tree Construction:

Every node on the tree, whichever requirement it works for, has two out-

comes ∞ < f. For a node τ working for a requirement Qe, these outcomes

respectively measure whether or not Φe(A,D) is expansionary when τ is vis-

ited. The node τˆ∞ has outcomes < ø, which measure whether or not

Φ̂τ (A) appears to agree with f at that stage. If Φe(A,D) is total, and τ is

on the true path, then τˆ∞ ̂ will clearly be on the true path.

For a node σ working for a requirement P i
e , the outcomes ∞, f measure

whether we believe σ will not, or will, succeed in completing an attack with

a follower p, and force Λe(A,D,We, p) 6= f i(p). Both outcomes of σ, both

outcomes of τˆ∞, and τ f̂ all work for the next (lower) priority requirement.

Order the requirements in order type ω, and let s be a stage. Let γs denote

the set of accessible nodes at stage s.

First at s: is there a node σ working for a requirement P i
e with a realised

follower p = p(σ, j), such that j ∈ We,s \ We,s−1? If there is, take the

strongest such σ, cancel all followers p′ of σ such that p′ > p, and redefine

Λe(A,D,We, p)[s+ 1] = s+ 1 with large use λe,s+1(p). We initialise all nodes

weaker than σ f̂, inclusive, and repeat this process until no further followers

may be permitted.

If τ ∈ γs works for Qe, let t < s be the last stage at which τˆ∞ was accessible,

or t = 0 if there was no such stage. If dom Φe(A,D)[s] < t, let τ f̂ ∈ γs.

2.3. ABOVE A SUPERLOW C.E. DEGREE 45

Otherwise, let τˆ∞ ∈ γs.
While τˆ∞ is accessible, we assign new trackers and maintain Φ̂τ (A). For

all x < s, if x is not assigned a column π(a,−) at τ , then assign to x

the least (w.r.t. a) unassigned column. If x has no current tracker, and

π(a,−) is its column, let b be least such that π(a, b) has not previously been

a tracker for x; we appoint π(a, b) to be the new tracker of x at τ by setting

trs+1(τ, x) = π(a, b).

Let c = trs(τ, x) be the current tracker for x at τ at stage s. If Φ̂τ (A, c) ↑ [s],

we redefine Φ̂τ (As, c)[s+ 1] = s+ 1 with use ϕe,s(x).

If τˆ∞ ∈ γs, let r < s be the last stage at which τˆ∞ ̂ was accessible.

We let τˆ∞ ̂ ∈ γs if, for all x < r, c = trs(τ, x) is defined, os(c) ↓, and

Φ̂τ (A, c)[s] = fs(c). Otherwise, let τˆ∞ ø̂ ∈ γs.

If σ ∈ γs works for P i
e , and:

(i) σ has permitted follower p = p(σ, j).

(a) If ∆σ(A,D, j) ↑ [s], cancel the follower p, and set ∆σ(A,D, j) = 1

with use 0. We then let σˆ∞ be next accessible.

(b) If ∆σ(A,D, j) ↓ [s] and Λe(D,We, p)[s] 6= f is(p), we let σ f̂ be next

accessible.

(c) If ∆σ(A,D, j) ↓ [s] and Λe(D,We, p)[s] = f is(p), we enumerate

λe,s(p) into Ds+1, and redefine Λe(D,We, p)[s + 1] = s + 1 with

large use. We then initialise all nodes weaker than σ f̂ (inclusive),

and cancel the least tracker for each x > mτ (p) for all τ ∈ prec∞(σ).

We then end the stage.

(ii) σ has a follower p such that ois(p) ↑. We immediately let σ f̂ be next

accessible.

(iii) For every follower p of σ, ois(p) ↓ but p is not permitted. Let t < s

be the last stage at which σ was accessible, if it exists. If for a fol-

46 CHAPTER 2. THE NEW THEOREMS

lower p = p(σ, j) of σ we have either: (a) oit(p) ↑ while ois(p) ↓, or (b)

∆σ(A,D, j) ↑ [s], we proceed to define ∆σ(A,D, j)[s+ 1] = We,s+1(j).

If We,s(j) = 1, we set the use of this computation to be 0 and cancel p.

If (a) holds and if We,s(j) = 0, then this is the stage at which p be-

comes realised. Then for each τ ∈ prec∞(σ), if τ works for Qd we define

mτ (p) = domΦd(A,D)[s].

If We,s(j) = 0, then set the use of ∆σ(A,D, j)[s+ 1] to be:

δσ,s+1(j) = max{ϕd,s(x) : p may not injure Φd(A,D, x)}+ 1.

Let k be largest such that p(σ, k) is a follower of σ. Let m > k be least

such that m 6∈ We,s. For any k < n < m, if ∆σ(A,D, n) ↑ [s], define

∆σ(A,D, n)[s+1] = 1 with use 0. We then appoint a new, large follower

p(σ,m), define Λe(D,We, p)[s + 1] = s + 1 with use λe,s+1(p) = p, and

let σˆ∞ be next accessible.

At the conclusion of stage s, we maintain the functional Λ to ensure its to-

tality. For any pair (e, p) 6 s for which λe(p) was not already redefined at

s, if p 6∈ dom Λe,s(Ds+1,We,s+1) we let Λe(D,We, p)[s + 1] = s + 1. If p is

a follower of a node σ working for requirement P i
e , let λe,s+1(p) = λe,s(p);

otherwise, let λe,s+1(p) = 0.

Verification:

Due to the similarity of this construction to that of Theorem 2.1.3, we may

borrow several lemmata from its verification with at most minor modifica-

tion. Namely, Lemmata 2.1.4, 2.1.6, 2.1.8, 2.1.9, and 2.1.10 all hold. It only

remains to be shown that our construction meets the Q requirements.

Lemma 2.3.2: For all e < ω, the requirement Qe is met.

Proof. For fixed e < ω, suppose that Φe(A,D) is total, and let τ be the node

on the true path working for Qe; then τˆ∞ ̂ is also on the true path. Let s∗

be the last stage at which τ is initialised, and let s0 < s1 < · · · be the stages

2.3. ABOVE A SUPERLOW C.E. DEGREE 47

after s∗ at which τˆ∞ is accessible. We proceed to build an ω2-computable

approximation 〈f̂s, ôs〉s<ω for Φe(A,D).

Fix x < ω. We define i(x) to be the least j such that x < dom Φe(A,D)[sj−1],

and define a set a(x) such that 〈σ, p〉 ∈ a(x) if, and only if, σ works for some

requirement P i
d, and p is a follower of σ appointed and realised but not

cancelled prior to stage si(x). For all j > i(x), we define aj(x) such that

〈σ, p〉 ∈ aj(x) if, and only if, (σ, p) ∈ a(x) and p is not cancelled prior to sj.

We note that for every j > i(x), c = trsj(τ, x) is defined, osj(c) ↓, and

Φ̂τ (A, c)[sj] = fsj(c).

For j > i(x), we define f̂j(x) = Φe(A,D, x)[sj].

Let 〈σ1, p1〉, . . . , 〈σn, pn〉 be the members of aj(x), with each σl working for

requirement P il
dl

. For each 1 6 l 6 n, let tl,j be the last stage before stage

sj at which σl acted for pl, including granting permission; if there is no such

stage, then let tl,j be the stage at which pl was appointed. Let ml,j, kl,j be

the natural numbers such that oiltl,j(pl) = ω ·ml,j + kl,j. Using these, we then

define the sums mj = m1,j + · · ·+mn,j and kj = k1,j + · · ·+ kn,j.

Suppose that c = π(a, b). If j = i(x), or if j > i(x) and kj > kj−1, we define

the set Cj(x) = {π(a, b′) | b 6 b′ 6 b + kj}. If instead kj 6 kj−1, we define

Cj(x) = Cj−1(x).

We then define ôj(x) = ω ·mj + Σc′∈Cj(x)osj(c
′) + kj.

It is clear that lims f̂s(x) = Φe(A,D, x), and as all mj, kj, and osj(c
′) are

natural numbers, ôj(x) is bounded by ω2.

To show that ôs(x) is non-increasing with respect to s, it suffices to show

that if Σc′∈Cj(x)osj(c
′) < Σc′∈Cj+1(x)osj+1

(c′), then mj > mj+1. Suppose the

antecedent of this implication to be true for some j > i(x); then kj+1 > kj,

otherwise Cj+1(x) = Cj(x) and we would have a contradiction. We must

then have kl,j+1 > kl,j for some l, but since o is non-increasing, this implies

that ml,j+1 < ml,j which in turn implies mj+1 < mj.

48 CHAPTER 2. THE NEW THEOREMS

Finally, we must show that if f̂j(x) 6= f̂j+1(x), then ôj(x) > ôj+1(x). Suppose

Φe(A,D, x)[sj] 6= Φe(A,D, x)[sj+1], and let u = ϕe,sj(x).

Suppose that Dsj � u 6= Dsj+1
� u. Then there is a pair 〈σ, p〉 = 〈σl, pl〉 ∈

aj(x) (working for P i
d = P il

dl
) such that, at stage sj = tl,j+1, σ enumerates

λd,sj(p) < u into Dsj+1 because Λ(A,D,Wd, p)[sj] = f isj(p).

At stage tl,j, we previously acted for p, and redefined Λ(A,D,Wd, p)[tl,j+1] =

tl,j + 1 > f itl,j(p). Then f itl,j(p) 6= f isj(p) = f itl,j+1
(p), so oitl,j(p) > oitl,j+1

(p).

Either kl,j > kl,j+1, or kl,j 6 kl,j+1 and ml,j > ml,j+1; in either case, ôj(x) >

ôj+1(x).

Suppose instead that Asj � u 6= Asj+1
� u, but D does not change below u on

this interval. Then at some stage r ∈ [sj, sj+1), a number below u enters A.

Let c be the tracker of x at τ at stage sj; then c persists until stage sj+1. By

Lemma 2.1.6, u = ϕ̂τ,sj(c), so the computation Φ̂τ (A, c)[sj] is also destroyed

at r. Hence, Φ̂τ (A, c)[sj] 6= Φ̂τ (A, c)[sj+1], and therefore fsj(c) 6= fsj+1
(c).

Then osj(c) > osj+1
(c) and certainly c ∈ Cj(x) and c ∈ Cj+1(x); consequently,

ôj(x) > ôj+1(x).

Hence, 〈f̂s, ôs〉s<ω is an ω2-computable approximation for Φe(A,D), and Qe

is met.

This concludes the proof of Theorem 2.3.1.

2.4. A Minimal Cover and a Cofinal Chain

We refer to the following theorem as producing a minimal cover in the hier-

archy. What we mean is that we construct a pair a,d of c.e. degrees such

that every totally ω-c.a. c.e. degree above a is bounded by the totally ω-c.a.

degree d. This is not unique to ω; this proof can, with minor modification,

produce such a pair for every α 6 ε0.

Theorem 2.4.1: There are c.e. degrees a < d such that d is totally ω-c.a.

and for any degree â > a, if â is totally ω-c.a., then â 6 d.

2.4. A MINIMAL COVER AND A COFINAL CHAIN 49

We proceed to enumerate c.e. sets A and B such that degT(A) = a and

degT(A⊕B) = d.

Requirements:

Let 〈Ψe〉e<ω, 〈Φe〉e<ω each be an enumeration of all consistent functionals.

Firstly, we must ensure that A 6>T B, and thus A <T A⊕B, by meeting the

following requirements:

for all e < ω, Re : Ψe(A) 6= B.

We also require that A⊕B is totally ω-c.a., and achieve this with the set of

requirements

for all e < ω, Qe : If Φe(A,B) is total, then it is ω-c.a.

We must lastly ensure that degT(A⊕ B) is indeed a minimal cover. To this

end we require, for all e < ω, that either We 6T A ⊕ B or degT(A ⊕We) is

not totally ω-c.a..

Let 〈〈f is, ois〉s<ω〉i<ω be an effective list of partial ω-computable approxima-

tions such that letting f i = lims f
i
s, the sequence 〈f i〉i<ω contains every ω-c.a.

function. As stated in the proof of Theorem 2.1.3, we assume that for any

ω-c.a. function f , there is an i such that f = f i, and for this i we have⋃
s dom ois = ω. We then aim to meet the requirements

for all i, e < ω, P i
e : If

⋃
s dom ois = ω, either Λe(A,We) 6= f i

or We 6T A⊕B.

Discussion:

To meet the P,Q,R requirements, we build a strategy tree.

In isolation, we meet an Re requirement by choosing a follower x. We then

wait until we see Ψe(A, x)[s] = 0 = Bs(x). If this never happens, then Ψe(A)

and B disagree on x without our intervention; if it does occur, then we enu-

merate x into Bs+1 and force a disagreement by freezing the computation

50 CHAPTER 2. THE NEW THEOREMS

Φe(A, x)[s].

To meet a requirement Qe when Φe(A,B) is total we must, for each x < ω,

associate x with an ordinal bound n < ω upon first seeing Φe(A,D, x) ↓. Of

course, this ordinal n must correctly bound the number of changes that the

computation Φe(A,D, x) will undergo.

To meet requirement P i
e in isolation, we select a follower p. At any stage

where we see Λe(A,We, p)[s] = f i(p)[s], we enumerate λe,s(p) into As+1.

However, in trying to meet these simultaneously, it is clear that enumeration

into A or B for the sake of a P or R requirement may destroy a computation

Φe(A,B, x); we then require that a node working for Qe must be able to

account for this action when it appoints an ordinal bound to Φe(A,B, x).

Our strategy here is similar to that of Theorem 2.1.3, but simplified by the

fact that any injury to Φe(A,B, x) must be caused by us, and not by an

opponent-played set.

Suppose we first see Φe(A,B, x) ↓ at stage s. If a node ρ working for Rd

already has an appointed follower y = y(ρ, s), we can allow ρ to act for y and

injure Φe(A,B, x) as we know it will do so at most once. In a similar fashion,

if a node σ working for P i
d has a follower p = p(σ, j) at s such that ois(p) ↓, we

can allow σ to injure Φe(A,B, x) when acting for p. This is because ois(p) is a

bound on σ acting for p, and can be taken into account when appointing the

bound to Φe(A,B, x) for Qe. If ois(p) ↑ instead, then we cannot immediately

provide a bound for action by σ with respect to p and must prevent p from

injuring the computation Φe(A,B, x).

For the sake of totality of Λd, we must define λd(p) at the stage at which we

appoint p. However, if τ working for Qe certifies a computation Φe(A,B, x)

after we appoint p but before ois(p) ↓, then λd(p) may be small enough to

injure Φe(A,B, x). Since oi may be partial, we cannot allow τ to wait for

oi(p) ↓ before appointing a bound to Φe(A,B, x). We can, however, prevent

p from causing injury to Φe(A,B, x) if we are able to redefine the use λd,t(p)

to be large before σ ever acts for p, at a stage at which Φe(A,D, x) ↓ [t].

Before we see oi(p) ↓, σ does not need to act for p, so there is no conflict

2.4. A MINIMAL COVER AND A COFINAL CHAIN 51

in waiting until we see oi(p) ↓ to redefine λd(p). We then use j ↓ We to

permit σ to increase the use λd(p) to be large, allowing σ to attack with p

without causing injury to Φe(A,B, x). Since we cannot guarantee that any

one follower will be permitted, we appoint a sequence of followers and wait

until one of them is permitted. We only allow a follower p to be permitted

if Φe(A,B, x) ↓ for all 〈e, x〉 such that p may not injure Φe(A,B, x). The

new, lifted use λd(p) is then too large to cause injury to any computation

protected from p.

We note that the stage at which we see j ↓ We may not be a σ-stage, but we

need to ensure that λd(p) is redefined, and we cannot guarantee that σ will

be accessible again. Hence, we carry out the permission whether or not it is

a σ-stage.

Strategy Tree Construction:

Let τ be a node working for requirement Qe. We give τ two child nodes,

∞ and f, with ∞ < f. Both child nodes work for the next lower priority

requirement, with τˆ∞ guessing that Φe(A,B) is total by being accessible at

expansionary stages.

Let σ be a node working for P i
e . Then σ has only one child node, working

for the next requirement in the priority ordering. Suppose τ works for Qd.

We define τ ∈ prec(σ) if τˆ∞ � σ.

Suppose a follower p = p(σ, j) is appointed at some stage s; p is initially

unrealised, but if t is the least stage after s at which we see oit(p) ↓, then we

refer to p as realised at and after the next σ-stage t′ > t. At stage t′, for every

τ ∈ prec(σ) we define the value mτ (p). The intent of mτ (p), as in Theorem

2.1.3, is that for all x < mτ (p), if τ works for Qd then p is not allowed to

injure the computation Φd(A,B, x). We may also refer to such a Φd(A,B, x)

as a protected computation (with respect to p).

If p is a realised follower at stage t and we see j ↓ We,t, if all protected com-

52 CHAPTER 2. THE NEW THEOREMS

putations with respect to p halt at stage t, we may increase the use λe(p) to

be large. If this occurs, we refer to p as permitted from stage t.

Let ρ be a node working for Re. Like σ above, ρ has a unique child node

working for the next priority requirement, and if τ works for Qd we define

τ ∈ prec(ρ) if τˆ∞ � ρ.

Suppose a follower y = y(ρ, s) is appointed at stage s. At stage s, for every

τ ∈ prec(σ) we define mτ (y) to serve the same function as mτ (p) does for a

follower p of σ.

Let all P,Q,R requirements be ordered in order type ω, and let s be a stage.

First at s, we check for any followers that may be permitted. We search for

a node σ working for P i
e such that:

(i) σ has a realised follower p = p(σ, j);

(ii) j ∈ We,s \We,s−1; and,

(iii) For all τ ∈ prec(σ), if τ works for Qd, then mτ (p) 6 dom Φd(A,B)[s].

If there is such a node, we take the strongest such σ, cancel all followers of σ

other than p, and redefine λe,s+1(p) to be large. We then initialise all nodes

weaker than σ.

Let γs be the set of nodes accessible at stage s. We define this set recursively

as follows.

Let ρ ∈ γs work for requirement Re, and let π be the unique child node of ρ.

(i) ρ has no follower. We appoint a new, large follower y = y(ρ, s + 1)

to ρ. For all τ ∈ prec(ρ), if τ works for Qd, we define mτ (y) =

domΦd(A,B)[s]. We then initialise all weaker nodes, and end the stage.

(ii) ρ has a follower y = y(ρ, s), and Ψe(A, y)[s] 6= Bs(y). We let π ∈ γs.

2.4. A MINIMAL COVER AND A COFINAL CHAIN 53

(iii) ρ has a follower y, and Ψe(A, y)[s] = Bs(y). We enumerate y into Bs+1,

initialise all weaker nodes, and end the stage.

Let τ ∈ γs work for Qe. Let t < s be the last stage before s at which

τˆ∞ ∈ γt, or t = 0 if there is no such stage. If domΦe(A,B)[s] 6 t, let τ f̂

∈ γs; otherwise, let τˆ∞ ∈ γs.

Let σ ∈ γs work for P i
e , and let π be the child node of σ.

(i) σ has a permitted follower p = p(σ, j). If Λe(A,We, p)[s] 6= f is(p), we

let π ∈ γs.
Otherwise Λe(A,We, p)[s] = f is(p), so we enumerate λe,s(p) into As+1.

We then redefine Λe(A,We, p)[s + 1] = s + 1 with large use, initialise

all weaker nodes and end the stage.

(ii) σ has a follower p = p(σ, j) such that ois(p) ↑. We immediately let

π ∈ γs.

(iii) For every follower p of σ, we have ois(p) ↓ but p is not permitted. This

includes if σ has no followers, in which case we immediately appoint a

new follower.

Let t < s be the last stage such that σ ∈ γt. For the most recently

appointed follower p, if oit(p) ↑ then for each τ ∈ prec(σ), if τ works for

Qd we define mτ (p) = dom Φd(A,B)[s].

Let k be largest such that p(σ, k) is a follower of σ. Let m > k be least

such that m 6∈ We,s. We then appoint a new, large follower p(σ,m),

define Λe(A,We, p)[s+ 1] = s+ 1 with use λe,s+1(p) = p, and let π ∈ γs.

When the stage is ended, we maintain the functional Λ to ensure that it is

total. For any pair (e, p) 6 s for which λe(p) was not already redefined at

s, if p 6∈ dom Λe,s(As+1,We,s+1) we let Λe(A,We, p)[s + 1] = s + 1. If p is

a follower of a node σ working for requirement P i
e , let λe,s+1(p) = λe,s(p);

otherwise, let λe,s+1(p) = 0.

54 CHAPTER 2. THE NEW THEOREMS

For every follower y(ρ, s) not cancelled at stage s, let y(ρ, s+ 1) = y(ρ, s).

Verification:

To begin, we show that the construction is fair to nodes on the true path,

and that the true path γω is therefore infinite.

Lemma 2.4.2: Let π be a node on the true path. Then π is initialised only

finitely often.

Proof. Suppose the lemma is true for all ξ ≺ π, and suppose that ν is the

parent node of π. Let s be the last stage at which ν is initialised. For action

at ν after s to initialise π, ν must work for either a P or R requirement.

Suppose ν works for requirement Re. Then ν will only initialise π when

it appoints a follower y = y(ν, t) at the next ν-stage t > s, and if it later

enumerates this follower into B.

Suppose instead that ν works for P i
e . Then π will be initialised if ν permits

a follower p = p(ν, j), and if ν subsequently enumerates λe,t(p) into At+1

for some t > s. After p is permitted, ν enumerates into A whenever we see

Λe(A,We, p)[t] = f it (p), and we then redefine Λe(A,We, p)[t + 1] = t + 1 6=
f it (p). Since f i is ω-c.a., the amount of times this can occur is bounded by

some finite n < ω.

Now that we know that the true path contains a node for every P , Q, and R

requirement, we proceed to prove that each such node does indeed ensure the

satisfaction of its associated requirement. We first handle theR requirements,

which are the simplest.

Lemma 2.4.3: For all e < ω, the requirement Re is met.

Proof. Fix e, and let ρ be the node on the true path working for Re. By

Lemma 2.4.2, let s∗ be the last stage at which ρ is initialised. At the next ρ-

stage s > s∗, ρ is appointed a follower y = y(ρ, s+1) which is never cancelled.

2.4. A MINIMAL COVER AND A COFINAL CHAIN 55

If Ψe(A, y) = B(y), then there is a stage t∗ such that for all t > t∗, we have

Ψe(A, y)[t] = 0 = Bt(y). Since ρ is on the true path, there is a least ρ-stage

t > t∗. At this stage, we enumerate y into Bt+1, so Bt+1(y) = Bt(y) = 1. We

then initialise all weaker nodes, so any followers they appoint after stage t

are too large to injure the computation Ψe(A, y)[t]. All nodes stronger than

or to the left of ρ have finished acting by stage s; therefore Ψe(A, y)[t] =

Ψe(A, y) 6= B(y).

For the lemmata that follow, we now define several helpful apparatus. Fix

x < ω, and suppose τˆ∞ is on the true path, where τ works for Qe. Let s∗

be the last stage at which τˆ∞ is initialised, and let s0 < s1 < s2 < · · · be

the stages after s∗ at which τˆ∞ is accessible.

Let i(x) be the least i such that x < dom Φe(A,B)[si]. Let a(x) be the set

of all pairs 〈σ, p〉 such that σ works for a P i
d requirement, τ ∈ prec(σ), and p

is a follower of σ realised prior to stage si(x) but not cancelled by si(x). For

each j > i(x), let aj(x) be the set of all pairs 〈σ, p〉 ∈ a(x) such that p is not

cancelled by stage sj.

Similarly, let b(x) be the set of all pairs 〈ρ, y〉 such that ρ works for an Rd

requirement, τ ∈ prec(ρ), and y is a follower of ρ appointed prior to si(x) but

not cancelled by stage si(x). For each j > i(x), let bj(x) be the set of all pairs

〈ρ, y〉 ∈ a(x) such that y is not cancelled by stage sj, and y 6∈ Bsj .

Lemmata 2.4.4 and 2.4.5 show that a(x) and b(x) together comprise all pairs

of nodes and followers that are capable of causing injury to the computation

Φe(A,B, x).

Lemma 2.4.4: Let τ be a node working for Qe. Let σ � τˆ∞ be a node

working for P i
d, and let p be a follower of σ such that p is permitted by stage

s > si(x). Suppose that 〈σ, p〉 6∈ a(x). Then:

(i) mτ (p) > x;

(ii) Let t be the stage at which p became permitted. Then x ∈ dom Φe(A,B)[t]

and At ⊕Bt � ϕe,t(x) = As ⊕Bs � ϕe,t(x);

56 CHAPTER 2. THE NEW THEOREMS

(iii) λd,s(p) > ϕe,s(x).

Proof. (i) Let r∗ be the stage at which p is realised. If r∗ < si(x), we would

have 〈σ, p〉 ∈ a(x); hence r∗ > si(x) and t > si(x). Stage r∗ is a σ-stage, so

r∗ = sj for some j > i(x), and therefore x < dom Φe(A,B)[r∗] = mτ (p).

(ii) Since p is permitted at t, we must have dom Φe(A,B)[t] > mτ (p) > x,

so ϕe,t(x) is defined. Suppose At ⊕ Bt � ϕe,t(x) 6= As ⊕ Bs � ϕe,t(x); if this

was caused by a pair 〈ν, z〉 with ν stronger than σ, then p would have been

cancelled in the interval [t, s). If ν is weaker than σ, then ν was initialised

at t, and z must have been appointed (and later permitted, if ν works for

a P requirement) at some stage r ∈ (t, s). If ν works for an R require-

ment, z > ϕe,t(x); if ν works for a P requirement, we lift the use of z to be

large when it is permitted. In either case, ν cannot injure the computation

Φe(A,B, x)[t].

Hence the injury must have been caused by 〈σ, p〉; but at stage t we set

λd,t+1(p) > ϕe,t(x), so it is too large to injure A below ϕe,t(x). Hence

At ⊕Bt � ϕe,t(x) = As ⊕Bs � ϕe,t(x).

(iii) Since At⊕Bt � ϕe,t(x) = As⊕Bs � ϕe,t(x), we must have ϕe,s(x) = ϕe,t(x).

Then λd,s(p) > λd,t+1(p) > ϕe,t(x) = ϕe,s(x).

Lemma 2.4.5: Let τ be a node working for Qe. Let ρ � τˆ∞ be a node

working for Rd, and let y be a follower of ρ such that y is appointed by stage

s > si(x). Suppose that 〈ρ, y〉 6∈ b(x). Then:

(i) Let t be the stage at which y was appointed. Then mτ (y) > x and

x ∈ dom Φe(A,B)[t];

(ii) At ⊕Bt � ϕe,t(x) = As ⊕Bs � ϕe,t(x);

(iii) y > ϕe,s(x).

2.4. A MINIMAL COVER AND A COFINAL CHAIN 57

Proof. (i) Since y is appointed at t it must be a ρ-stage, and since we have

〈ρ, y〉 6∈ b(x), t > si(x); thus t must be sj for some j > i(x). Therefore

x < dom Φe(A,B)[t] = mτ (y).

(ii) By the same reasoning as Lemma 2.4.4 (ii), if At⊕Bt � ϕe,t(x) 6= As⊕Bs �

ϕe,t(x) then this is caused by 〈ρ, y〉 itself. However, y is appointed to be large

at t, so certainly y > ϕe,t(x).

(iii) Since At ⊕ Bt � ϕe,t(x) = As ⊕ Bs � ϕe,t(x), we have ϕe,t(x) = ϕe,s(x);

hence y > ϕe,s(x).

Lemma 2.4.6: Let τ be a node on the true path working for Qe. Then τˆ∞
is on the true path if, and only if, Φe(A,B) is total.

Proof. ⇒ Suppose that τˆ∞ is on the true path, and fix x < ω. The

sets a(x) and b(x) are both finite, and any pair 〈ν, z〉 from either a(x) or

b(x) can act and destroy the computation Φe(A,B, x) only finitely many

times. Therefore, there are only finitely many j > i(x) such that either

Asj � ϕe,sj(x) 6= Asj+1
� ϕe,sj(x) or Bsj � ϕe,sj(x) 6= Bsj+1

� ϕe,sj(x), and

hence x ∈ dom Φe(A,B).

⇐ Suppose that Φe(A,B) is total. Then there are infinitely many expan-

sionary stages for Φe(A,B), and so infinitely many τ -stages will also be τˆ∞-

stages. Hence, τˆ∞ is on the true path.

We now prove that the P requirements are met. This, of course, requires

that Λe is total for every e; the proof of this is precisely that of Lemma 2.1.9.

Lemma 2.4.7: For all i, e < ω, the requirement P i
e is met.

Proof. Fix i, e, and let σ be the node on the true path working for P i
e . Let s∗

be the last stage at which σ is initialised. There are then three possibilities

for σ:

58 CHAPTER 2. THE NEW THEOREMS

(i) σ has a follower p = p(σ, j) that is never realised;

(ii) All followers of σ are realised but none is permitted;

(iii) A follower of σ is permitted.

If case (i) holds, then p 6∈ dom oi, and P i
e is met by false hypothesis.

Suppose then that case (ii) holds. Then σ appoints an infinite sequence of fol-

lowers after stage s∗. Suppose p = p(σ, j) is appointed at some stage s0 > s∗.

Let t be the stage at which p becomes realised; at t, we define mτ (p) for all

τ ∈ prec(σ). For each such τ , we have τˆ∞ on the true path. By Lemma

2.4.6, there is a stage s at which for all τ ∈ prec(σ), for all x < mτ (p),

x ∈ dom Φe(A,B)[s] by an A-, B-correct computation. Given A and B we

can find such an s. Then We,s � j + 1 = We � j + 1, as for all k < j, if

k 6∈ We,s then p(σ, k) was appointed and realised before p was. Hence, for

all k 6 j, for all τ ∈ prec(σ), mτ (p(σ, k)) 6 mτ (p). If k 6 j is such that

k 6∈ We,s but k ∈ We,s′ for some s′ > s, then p(σ, k) would be permitted at

s′.

Finally, suppose case (iii) holds, and let p = p(σ, j) be the permitted follower.

By Lemma 2.4.2, σ must only act finitely often for p, so let t be the least

stage such that σ never acts for p after stage t.

At stage t we define Λe(A,We, p)[t + 1] = t + 1 6= f it (p). Suppose that

f i(p) = Λe(A,We, p)[t + 1]. Then f i(p) 6= f it (p), so there is a stage s > t

such that for all r > s we see f ir(p) = f i(p). Since σ is on the true path, it

must become accessible again at some stage r > s; at this stage, we redefine

Λe(A,We, p)[r] 6= f i(p).

Finally, we ensure that there is an ω-computable approximation for every

Φe(A,B) which is total, and thus prove that the Q requirements are satisfied.

Lemma 2.4.8: For all e < ω, the requirement Qe is met.

2.4. A MINIMAL COVER AND A COFINAL CHAIN 59

Proof. Suppose that Φe(A,B) is total, and τ is the node on the true path

working for Qe. We proceed to build functions g,m such that 〈gs,ms〉s<ω is

an ω-computable approximation for Φe(A,B). Let s∗, 〈si〉i<ω, i(x), a(x), b(x)

be as defined prior to Lemma 2.4.4.

For all x < ω, and all j > i(x), we define gj(x) = Φe(A,B, x)[sj].

Fix x < ω, and let j > i(x). Let 〈σ1, p1〉, 〈σ2, p2〉, . . . , 〈σn, pn〉 be the mem-

bers of aj(x). For each 1 6 k 6 n, suppose σk works for requirement P ik
dk

,

and let tk,j be the last stage prior to sj at which σk acted for pk, including

granting permission. If there is no such stage, let tk,j be the stage at which

pk was appointed.

We then define mj(x) = oi1t1,j(p1) + oi2t2,j(p2) + . . .+ ointn,j
(pn) + |bj(x)|.

It is clear that lims gs(x) = Φe(A,B, x), and that m is non-increasing. We

then require that if gj(x) 6= gj+1(x), we see mj(x) > mj+1(x). Since all the

summands of mj(x) are smaller than ω and as such are natural numbers, if

there is a decrease in any one summand, then the entire sum will decrease.

The value of mj(x) is also bounded by ω.

If gj(x) 6= gj+1(x) due to change in A, then there is a pair 〈σ, p〉 ∈ aj(x) such

that σ working for P i
d enumerates into A at stage sj. Hence we must have

Λd(A,Wd, p)[sj] = f isj(p).

Let k be such that σ = σk. At stage tk,j, we defined Λd(A,Wd, p)[tk,j + 1] =

tk,j + 1 > f itk,j(p). Hence from f isj(p) = Λd(A,Wd, p)[sj] we may conclude

that f itk,j(p) 6= f isj(p), and hence oitk,j(p) > oisj(p). Given that tk,j+1 = sj, we

then have oitk,j(p) > oitk,j+1
(p).

If gj(x) 6= gj+1(x) due to change in B, then it is caused by a pair 〈ρ, y〉 ∈ bj(x)

enumerating y into Bsj+1. But then y ∈ Bsj+1
, so 〈ρ, y〉 6∈ bj+1(x), and hence

|bj(x)| > |bj+1(x)|.

60 CHAPTER 2. THE NEW THEOREMS

Therefore, if gj(x) 6= gj+1(x), we see a decrease in at least one summand

of mj(x), and consequently mj(x) > mj+1(x). Hence, 〈gs,ms〉s<ω is an ω-

computable approximation of Φe(A,B), and Qe is met.

This concludes the proof of Theorem 2.4.1. The theorem that follows presents

a minor modification on the construction of Theorem 2.4.1; so minor, that

we omit the verification as it would simply be repetition. However, instead

of building a maximal totally ω-c.a. c.e. degree, we build a chain of totally

ω-c.a. c.e. degrees which is cofinal in the cone of totally ω-c.a. c.e. degrees

above the chain’s least member. That is, all totally ω-c.a. c.e. degrees which

bound the minimum degree in the chain are themselves bounded by a mem-

ber of the chain. This theorem holds for any α 6 ε0 in place of ω.

Theorem 2.4.9: There is a totally ω-c.a. c.e. degree a such that, for any

c.e. degree b, if b > a then b is not maximal totally ω-c.a..

We build an infinite chain of c.e. sets (A =)B0 <T B1 <T B2 <T · · · , by

building c.e. sets A,D1, D2, . . . and setting Bk = B0 ⊕ D1 ⊕ · · · ⊕ Dk. We

require that, for all i, degT(Bi) is totally ω-c.a., and if degT(A⊕We) is totally

ω-c.a. then A ⊕We 6T Bk for some k. If we can successfully build such an

A, then degT(A) = a.

Requirements:

Let 〈Ψe〉e<ω, 〈Φe〉e<ω each be an enumeration of all consistent functionals. It

is clear that for all i, we have Bi 6T Bi+1. To ensure that we also have

Bi 6>T Bi+1, we need to meet the set of requirements given by

for all i, e < ω, Ri
e : Φe(Bi) 6= Di+1.

We require that each Bi is totally ω-c.a., and achieve this by meeting

2.5. UNIFORMLY TOTALLY α-C.A. DEGREES 61

for all i, e < ω, Qi
e : If Ψe(Bi) is total, then it is ω-c.a..

Finally, we require the crucial property that every totally ω-c.a. degree above

a is below degT(Bk) for some k. We enumerate functionals Λ, ∆, to meet

the requirements

for all i, e < ω, P i
e : If

⋃
s dom ois = ω, then either Λe(A,We) 6= f i,

or ∆i
e(A,D1, . . . , Dk) = We,

where D1, . . . , Dk are particular to 〈i, e〉, and are those D that appear in

requirements stronger than P i
e .

Discussion:

The construction functions in much the same way as that of Theorem 2.4.1.

As in that construction, nodes working for P or R requirements are capable of

injuring Q requirements by destroying computations with enumeration into

A or some Di. We deal with this in precisely the same manner: for every

follower, we define mτ as an indicator of which computations the follower

may not injure, and proceed to ensure that none of these computations suffer

injury (from the follower) as the strategy progresses. In fact, the only way in

which the strategy tree here truly differs from that of Theorem 2.4.1 is that,

at σ working for P i
e , we build the functional ∆σ. (Even this closely follows the

building of the functional of the same name in the proof of Theorem 2.1.3.)

The entire thing proceeds rather pleasantly, and without complication. As

such, the verification is the same as that of Theorem 2.4.1 with only differing

notation, except for Lemma 2.4.7. To prove that ∆i
e(A,D1, . . . , Dk) = We

when we cannot ensure Λe(A,We) 6= f i, we insert the argument used in

Lemma 2.1.10 that addresses the ∆ functional built for Theorem 2.1.3.

2.5. Uniformly Totally α-c.a. Degrees

Let α 6 ε0. We call h : ω → α an α-order function if h is nondecreasing,

computable, and its range is unbounded in α.

62 CHAPTER 2. THE NEW THEOREMS

Let 〈fs, os〉s<ω be an α-computable approximation. We then call 〈f,os〉s<ω an

h-computable approximation if, for all x, we have o0(x) 6 h(x). Just as for

the R-c.a. functions, for any α-order function h we can produce a list that

exhausts all h-c.a. functions:

Lemma 2.5.1: Let α 6 ε0 and let h be an α-order function. Then there is

an effective enumeration 〈f es , oes〉 of total (h+ 1)-computable approximations

such that letting f e = lims f
e
s , the sequence 〈f e〉 contains all h-c.a. functions.

For every ordinal α 6 ε0, there exists an α-order function. Therefore, a func-

tion f is α-c.a. if, and only if, it is h-c.a. for some α-order function h: any

h-c.a. function is clearly α-c.a., and if f has an α-computable approximation

〈fs, os〉, define ĥ(x) = max{h(x), o0(x)}. Then ĥ is an α-order function, and

f is ĥ-c.a..

Let d be a Turing degree. As it happens, every function f ∈ d is h-c.a. for

some α-order function h if, and only if, every f ∈ d is h-c.a. for every α-order

function h. We use this to produce a subclass of the α-c.a. degrees, namely

the uniformly totally α-c.a. degrees. For α 6 ε0, we say that a Turing degree

d is uniformly totally α-c.a. if for some (all) α-order function h, every f ∈ d

has an h-computable approximation.

Equivalently, a c.e. Turing degree is uniformly totally α-c.a. if, and only if:

(i) for some (all) α-order function h, every f 6T d is h-c.a.; and,

(ii) for some (all) α-order function f , every set in d is h-c.a..

Let α < ε0, and let h : ω → α + 1 be the constant function with value α.

Then every totally α-c.a. degree is also uniformly totally (α + 1)-c.a., as

witnessed by (α + 1)-order function h.

Let β be an ordinal which is not a power of ω, so for some ordinal γ we have

β ∈ (ωγ, ωγ+1). By Theorem 1.4.1, any uniformly totally β-c.a. degree is

2.5. UNIFORMLY TOTALLY α-C.A. DEGREES 63

also totally ωγ-c.a.. Thus, for such β, there is an ordinal α which is a power

of ω such that the set of uniformly totally β-c.a. degrees is exactly the set

of totally α-c.a. degrees. The uniformly totally β-c.a. degrees might only

then be distinguished from the hierarchy of totally α-c.a. degrees when β is

a power of ω. As the following theorem from [4] shows, they do in fact form

a distinct level of the hierarchy in this case.

Theorem 2.5.2: Let α 6 ε0 be a power of ω.

(1) There is a uniformly totally α-c.a. c.e. degree which is not totally γ-c.a.

for any γ < α.

(2) There is a totally α-c.a. c.e. degree which is not uniformly totally α-c.a..

The last theorem in this thesis examines the cone below a c.e. degree d which

is not totally α-c.a. for α 6 ε0. The construction builds a degree bounded

by d which is totally α-c.a. but not uniformly so. We use non-totally α-

c.a. permitting (from mind-changes in a computable approximation 〈fs〉 of

a function f ∈ d which is not α-c.a.) to allow nodes to enumerate; we do

this to ensure that the set built by us is in fact computable from d.

Theorem 2.5.3: Let α 6 ε0 be a power of ω, and let d be a c.e. Turing

degree which is not totally α-c.a.. There is a degree a < d such that a is

totally α-c.a., but not uniformly totally α-c.a..

Let 〈Ds〉s<ω be a given computable enumeration of D ∈ d, and let Ψ be a

given, fixed functional such that Ψ(D) has no α-computable approximation.

By accelerating the enumeration of D, we may assume that for all s, for all

x < s, we have Ψ(D, x) ↓ [s]. We proceed to build a c.e. set A with the

intent that degT(A) = a.

Requirements:

64 CHAPTER 2. THE NEW THEOREMS

Let 〈Φe〉e<ω be an enumeration of all consistent functionals. Firstly, we must

build A to be totally α-c.a., by meeting the set of requirements given by:

for all e < ω, Qe : If Φe(A) is total, then it is α-c.a..

To ensure that A is built to be not uniformly totally α-c.a., we fix an order

function h : ω → α. Let h+1 denote the function given by n 7→ h(n)+1. By

Lemma 2.5.1, there is an effective enumeration 〈〈f is, ois〉s<ω〉i<ω of total (h+

1)-computable approximations such that letting f i = lims f
i
s, the sequence

〈f i〉i<ω contains all h-c.a. functions. We enumerate a functional Λ, and with

it meet the following requirements:

for all i < ω, P i : Λ(A) 6= f i.

Globally, we also ensure that A 6T D.

Discussion:

To meet P i in isolation, we choose a follower p and wait until such time as

we see Λ(A, p)[s] = f is(p). If we see this, we enumerate λs(p) into As+1 and

force a disagreement. As f i(p) may change up to o0(p)-many times (where

o0(p) 6 h(p) + 1 < α), we will need to enumerate λ(p) into A at most o0(p)-

many times.

Of course, this enumeration can destroy a computation Φe(A, x), and be

thereby problematic to a bound appointed to x for Qe. To avoid this, we

prevent p from injuring any computation already in place at the stage at

which p is appointed. When we first see Φe(A, x) ↓, there must then be

only a finite number of followers capable of injuring the computation. Let

p1, . . . , pn be these followers, and let s be the stage; each pj will act at most

os(pj)-many times. Since α is a power of ω, the sum os(p1) + · · ·+ os(pn) is

less than α, and is a bound on the number of times the computation Φe(A, x)

will be destroyed.

To ensure A 6T D, we require that every enumeration into A be associated

2.5. UNIFORMLY TOTALLY α-C.A. DEGREES 65

with an enumeration into D. To each follower p of a node σ working for a

P i requirement, we assign a number j < ω and set δ(p) = ψ(j); we say that

p monitors input j. If we then see change in D below δ(p), we afford p the

opportunity to act at that stage. If p does act (i.e. if Λ(p) = f i(p) at that

stage), we initialise weaker nodes and cancel any larger followers in place

at the same node. These larger followers will each have been monitoring at

least one input; any such input must then become monitored by p. We then

return to observing for change in D, but now set δ(p) to be the largest ψ-use

of all inputs monitored by p. We note that p will always monitor an interval

of ω, and all followers of σ will collectively monitor an initial segment of ω.

Suppose p is a follower of σ working for P i. We cannot be sure that there will

be sufficient change in D below δ(p) to allow p to act enough times to force

Λ(A, p) 6= f i(p). At each σ-stage s, we check whether we appear to be in dan-

ger of not meeting P i: if every follower p of σ is such that Λ(A, p)[s] = f is(p),

we appoint an additional follower to monitor the least j currently unmoni-

tored at σ. We must initialise weaker nodes than σ when we appoint a new

follower, to prevent intolerable injury to Q requirements. In verifying our

construction, we argue that there must be a follower of σ which receives suf-

ficiently many permissions, otherwise Ψ(D) is α-computably approximable.

Strategy Tree Construction:

A node τ working for Qe has two outcomes, ∞ < f, which measure whether

Φe(A) is expansionary at any stage where τ is accessible. A node σ working

for P i has a unique outcome.

We order the requirements in order type ω. Let s be a stage.

First at s, we check for followers ready to permit and enumerate. We do this

by checking for a follower p at a node σ working for P i such that:

(i) a number less than δs(p) enters Ds; and,

66 CHAPTER 2. THE NEW THEOREMS

(ii) Λ(A, p)[s] = f is(p).

If there is such a follower, we select the strongest i.e. that which is appointed

to the strongest node, and is the least follower of that node for which (i) and

(ii) hold. For this p, we enumerate λs(p) into As+1. For every follower p′ of

σ such that p′ > p, we cancel p′ and let p take over those inputs of Ψ(D)

monitored by p′. We then redefine Λ(A, p)[s + 1] = s + 1 with large use,

initialise nodes weaker than σ, and end the stage.

If no follower is permitted, we proceed to build the path γs of accessible nodes.

Suppose τ ∈ γs works for Qe. Let t < s be the last stage before s at which

τˆ∞ was accessible, or t = 0 if there is no such stage. If dom Φe(A)[s] > t,

let τˆ∞ ∈ γs; otherwise, let τ f̂ ∈ γs.

Suppose σ ∈ γs works for P i. If σ has at least one follower, and there is

a follower p of σ such that Λ(A, p)[s] 6= f is(p), perform no action at σ this

stage. Let the successor node of σ be accessible.

Otherwise, let j be the least input of Ψ(D) not monitored by a follower of

σ. We appoint a new, large follower p, and set it to initially monitor j. We

then define Λ(A, p)[s+ 1] = s+ 1 with use p, initialise all weaker nodes, and

end the stage.

At the conclusion of stage s, we maintain the functional Λ and update δ

for every follower. For any p 6 s for which λ(p) was not already rede-

fined at s, if p 6∈ dom Λs(As+1) we let Λ(A, p)[s + 1] = s + 1 with use

λs+1(p) = 0. For any follower p(σ, s) which is still in place at stage s + 1,

we define δs+1(p) = max{ψs+1(j) | j monitored by p at stage s+ 1}. By our

assumption that Ψ(D, x) ↓ [s+ 1] for all x < s+ 1, this value will exist.

Verification:

2.5. UNIFORMLY TOTALLY α-C.A. DEGREES 67

We proceed to take up the usual gauntlet of claims that require verification:

that Λ is total, that the true path is infinite, that the nodes on the true path

ensure the requirements are met.

Lemma 2.5.4: Λ is total.

Proof. Let p < ω, and suppose that p 6∈ dom Λ(A).

If p is never appointed as a follower to some σ, or is appointed and later

cancelled, then at the least stage s > p at which p is not a follower we define

Λ(A, p)[s+ 1] = s+ 1 with use 0.

Otherwise, p is a follower for some σ which is appointed and never cancelled.

Suppose Λ(A, p) is destroyed and redefined infinitely often. This destruction

can be caused by p itself only finitely many times; hence, it must be enumer-

ation by other followers that destroys Λ(A, p) infinitely often. If Λ(A, p) is

instead destroyed and never redefined, this must have also been due to the

action of another follower.

Suppose follower p′ of σ′ enumerates λs(p) into As+1. If p′ was appointed

after p, then λs(p) is too large to injure Λ(A, p)[s]. Hence, p′ must have been

appointed prior to p, and since p′ is not cancelled when p is appointed, σ′

must be stronger than σ. Then the enumeration by p′ at stage s cancels p; in

maintaining Λ, we then define Λ(A, p)[s+1] = s+1 with use 0 at the earliest

stage s′ > p. Hence, any action of another follower that destroys Λ(A, p) is

certainly followed by a redefinition that is permanent, so p ∈ dom Λ(A).

To prove that the P requirements are met, we must use the fact that d is not

totally α-c.a.; specifically, that Ψ(D) is not an α-c.a. function. To meet its

requirement, a node σ on the true path working for P i must (eventually) have

a follower p for which we are able to force the disagreement Λ(A, p) 6= f i(p).

We only allow σ to enumerate into A when there is change below δ(p), i.e.

below the maximum use ψ(j) of the inputs it monitors. It is entirely possible

that any particular follower p of σ will not see enough changes below δ(p) to

allow σ to permit p the required number of times. What we need, and now

68 CHAPTER 2. THE NEW THEOREMS

proceed to show, is that at least one follower must receive enough permissions

to meet the requirement; if none does, then we can use that to build an α-

computable approximation for Ψ(D).

Lemma 2.5.5: The construction is fair to nodes on the true path.

Lemma 2.5.6: For all i < ω, P i is met. In particular, let σ be a node on

the true path working for P i: if there is no permanent follower p of σ that

receives sufficiently many permissions to ensure Λ(A, p) 6= f i(p), then Ψ(D)

is α-computably approximable.

We prove Lemmata 2.5.5 and 2.5.6 simultaneously.

Proof. Suppose Lemma 2.5.5 to be true up to µ ≺ δω. The node µ will

only initialise weaker nodes if it works for a requirement P i, in which case it

will initialise and end the stage whenever, for every follower p of µ, we see

Λ(A, p)[s] = f is(p), or when a follower of µ is permitted and enumerates into

A. Any one follower of µ may be permitted only finitely many times; hence,

if this happens infinitely often, then the construction has not been able to

force a difference at a permanent follower of µ.

We now assume that there is no permanent follower p of µ that receives suf-

ficiently many permissions to ensure Λ(A, p) 6= f i(p), and show that Ψ(D) is

consequently α-computably approximable. From this assumption, it follows

that infinitely-many followers are appointed so that each j < ω is eventually

monitored by a follower of µ, and that for each follower p of µ at stage s,

if p is not ever cancelled then there is a stage t > s at which Λ(A, p)[t] = f it (p).

Let s∗ be the last stage at which µ is initialised. We proceed to build

〈gs,ms〉s<ω, an α-computable approximation of Ψ(D).

Let j < ω be fixed, let s > s∗ be a stage. Let p = pj,s be the follower

monitoring j at s; if there is no such follower, then we leave gs(j) and ms(j)

2.5. UNIFORMLY TOTALLY α-C.A. DEGREES 69

undefined. Suppose then that there is such a follower p. If Λ(A, p)[s] = f is(p),

we let gs(j) = Ψ(D, j)[s]. Otherwise, let t < s be the last stage at which j

had a defined monitor pj,t and Λ(A, pj,t)[t] = f it (pj,t). If such a stage exists,

define gs(j) = gt(j); otherwise, leave gs(j) and ms(j) undefined.

Let q0, q1, . . . , qk be the followers of µ less than p at stage s, ordered by in-

creasing size. We note that if p is cancelled at some future stage it is by

permission of one of these q, and that q will take over the monitoring of j.

If Λ(A, p)[s] = f is(p), define ms(j) = ois(q0) + · · ·+ ois(qk) + ois(p). Otherwise,

define ms(j) = mt(j) for t as previously described.

Suppose that gs(j) 6= gs+1(j) for some s. Let t 6 s be the last stage at which

Λ(A, pj,t)[t] = f it (pj,t), so gs(j) = gt(j) and ms(j) = mt(j). If pj,t 6= pj,s+1,

then a permission has caused a smaller follower q to take over the monitoring

of j. We set Λ(A, q)[t + 1] = t + 1 6= f it (q), but Λ(A, q)[s + 1] = f is+1(q);

therefore, f it (q) 6= f is+1(q), so oit(q) 6= ois+1(q). All larger followers than

q are cancelled at t, so ois+1(q) is the final summand of ms+1(j). Hence,

ms(j) > ms+1(j).

Assume then that pj,t = pj,s+1 = p. If Λ(A, p)[t + 1] 6= f it+1(p) because

the value of f(p) changed, then certainly oit(p) > oit+1(p) > ois+1(p), so

mt(j) = ms(j) > ms+1(j). Otherwise, we cause the change by redefining

Λ(A, p)[t + 1] = t + 1 6= f it (p). Then f it (p) 6= f is+1(p) to the same effect as

when f(p) alone changes: specifically, mt(j) = ms(j) > ms+1(j).

Since each term ois(p) is bounded by α and α is a power of ω, the sum ms(j)

is bounded by α. The function m also inherits the non-increasing nature of

its constituent parts.

Suppose then that lims gs(j) 6= Ψ(D, j). Let t be least such that for all stages

t′ > t, we have gt′(j) = lims gs(j). Let p = pj,t; then Λ(A, p)[t] = f it (p).

Since Ψ(D, j)[t] 6= Ψ(D, j), there must be some least stage r > t such that

we see some value x < ψt(j) enter Dr + 1. Then some follower q 6 p

of µ must be permitted at stage r (p itself is certainly eligible), ensuring

70 CHAPTER 2. THE NEW THEOREMS

Λ(A, q)[r + 1] 6= f ir(q) for q = pj,r+i. Assuming q itself is not cancelled by

another permission, there is a stage r′ > r at which Λ(A, q)[r′] = f ir′(q);

at this stage, we redefine gr′(j) = Ψ(D, j)[r′] 6= gt(j) - a contradiction.

Hence lims gs(j) = Ψ(D, j), and 〈gs,ms〉s<ω is therefore an α-computable

approximation of Ψ(D). Since we know Ψ(D) to have no such approximation,

our hypothesis that no follower receives enough permissions to force Λ(A) 6=
f i must be false. Hence, µ is eventually appointed a follower p for which, for

some stage s > s∗ and for all stages t > s, we have Λ(A, p)[t] 6= f it (p); after

stage s, µ will not ever initialise weaker nodes.

Corollary 2.5.7: The true path is infinite.

Proof. Given Lemma 2.5.5, the true path is infinite if we have infinitely

many stages at which nodes are accessible. Suppose instead that cofinitely

many stages are permission stages; let s be the last stage at which δs is

defined (non-empty). The finitely-many followers in place at stage s + 1

must then receive infinitely many permissions. In particular, one follower

p for a node σ working for P i must receive infinitely many permissions at

stages s0 < s1 < · · · after stage s. Then ois0(p) > ois1(p) > · · · is an infinite

descending sequence of ordinals - a contradiction.

Hence, the true path contains a node for each P and Q requirement; further,

those that work for P requirements are successful in satisfying their associ-

ated requirement. We now verify that the Q requirements are met, in the

manner which by now must be very familiar to the reader.

Lemma 2.5.8: Let σ be a node working for P i, let p be a follower of σ ap-

pointed at stage s, and suppose Φe(A, x) ↓ [s]. If the computation Φe(A, x)[s]

is destroyed at some later stage t > s, then p is cancelled at t.

Proof. If Φe(A, d)[s] is destroyed at t, it is due to enumeration into A by

some node σ′ working for P i′ . If σ′ is stronger than σ, then σ is initialised

2.5. UNIFORMLY TOTALLY α-C.A. DEGREES 71

at t and p is thereby cancelled.

Otherwise, σ′ is weaker than, or is, σ. Let p′ be the particular follower that

σ′ acts for at t; since followers are appointed large and p′ is smaller than

ϕe,s(x), p′ must have been appointed prior to stage s. If σ′ is weaker than σ,

then the appointment of p at s initialised σ′, cancelling p′ and preventing it

from injuring Φe(A, x)[s]. If σ′ is σ then, since p′ < p, the permission of p′

at stage t cancels p.

Let τˆ∞ be on the true path, where τ is a node working for requirement Qe.

Let s∗ be the last stage at which τˆ∞ is initialised, and let s0 < s1 < · · · be

the stages after s∗ at which τˆ∞ is accessible. We fix x < ω; define i(x) to

be the least j such that x < dom Φe(A)[sj].

We then define a(x) to be the set of all pairs 〈σ, p〉 such that σ works for a

requirement P i, and p is a follower of σ appointed before, but not cancelled

by, stage si(x). By Lemma 2.5.8, any follower appointed at or later than stage

si(x) is incapable of injuring Φe(A, x); a(x) thus contains all node/follower

pairs capable of causing injury to the computation Φe(A, x).

Similarly, for each j > i(x), we define aj(x) to be the set of all pairs 〈σ, p〉
such that 〈σ, p〉 ∈ a(x), and p is not cancelled by stage sj.

Lemma 2.5.9: For all e < ω, the requirement Qe is met.

Proof. Fix e < ω; if Φe(A) is total, let τ be the node on the true path that

works for Qe. Then τˆ∞ is also on the true path. We proceed to define

functions g,m, such that 〈gs,ms〉s<ω is an α-computable approximation for

Φe(A). Fix x < ω, and let a(x), aj(x) be as previously described.

For all j > i(x), define gj(x) = Φ(A, x)[sj].

Fix j > i(x). Let 〈σ0, p0〉, 〈σ1, p1〉, . . . , 〈σn, pn〉 be the members of aj(x), in

order of decreasing strength. Suppose that for all 0 6 k 6 n, the node σk

works for requirement P ik . For each k, we let tk,j be the last stage before sj

72 CHAPTER 2. THE NEW THEOREMS

at which σk acted for pk. If there is no such stage, let tk,j be the stage at

which pk was appointed.

We can now define mj(x) = oi0t0,j(p0) + oi1t1,j(p1) + · · ·+ ointn,j
(pn).

It is clear that lims gs(x) = Φe(A, x). For all k and j, we have oiktk,j(pk) 6

h(pk) + 1 < α; as α is a power of ω, the sum mj(x) is also bounded by α.

Suppose that gj(x) 6= gj+1(x); then Φ(A, x)[sj] 6= Φ(A, x)[sj+1], and this

change has been caused by a pair 〈σ, p〉 in aj(x) acting at stage sj. If σ = σk,

we must have Λ(A, p)[sj] = f iksj (p).

At stage tk,j, we defined Λ(A, p)[tk,j + 1] = tk,j + 1 > f iktk,j(p). Then, since

f iksj (p) = Λ(A, p)[sj], we may conclude that f iktk,j(p) 6= f iksj (p). Since σ acts

for p at sj, we have tk,j+1 = sj, and therefore oiktk,j(p) > oiktk,j+1
(p). Since σ

initialises all weaker nodes at stage sj, 〈σ, p〉 is then the weakest member

of asj+1
, and so oiktk,j+1

(p) is the last summand of mj+1(x). Consequently,

mj(x) > mj+1(x).

Finally, it is crucial that we have successfully built A and D such that

degT(A) < degT(D).

Lemma 2.5.10: The global requirement, A 6T D, is met.

Proof. Given D, for any given j < ω, we can certainly find a stage s at

which Ds � ψs(j) = D � ψs(j). Let p be a follower in place at stage t > s.

If, for all followers p′ at t such that p′ 6 p, p′ monitors at most j, we have

At � p = A � p.

This concludes the proof of Theorem 2.5.3.

Chapter 3

Concluding Remarks

In [4], Downey and Greenberg establish that the hierarchy of totally α-c.a.

degrees and uniformly totally α-c.a. degrees only collapses above 0 between

α 6 ε0 for which α is a power of ω. Further, for α a power of ω, the uniformly

totally α-c.a. degrees form a proper subset of the totally α-c.a. degrees, thus

forming a distinct level in the hierarchy.

In this thesis, we proved several new facts about the hierarchy pertaining to

collapse. Firstly, we showed that above any totally α-c.a. c.e. degree a there

is no collapse in levels β > αω, due to the existence of a maximal totally

β-c.a. c.e. degree above a. Due to the manner in which that construction

responds to enumeration into sets given by the opponent, it allows infinite

positive action by nodes on the true path - a technique which may find uses

elsewhere.

We then proved that above any totally ω-c.a. c.e. degree a, there is a c.e.

degree d which is totally ω3-c.a. but not totally ω-c.a.. With slight modi-

fication, this same proof shows that above any totally ωn-c.a. c.e. degree,

there is a c.e. degree which is totally ωn+2-c.a. but not totally ωn-c.a.. The

construction lacks a permitting mechanism, and uses an initial guess of ω

when a bound on action by a follower is not yet known; this prevents us from

making d totally ω2-c.a. instead. Were we to find a proof that produced

73

74 CHAPTER 3. CONCLUDING REMARKS

a totally ω2-c.a., but not totally ω-c.a., c.e. degree (or a maximal totally

ω2-c.a. c.e. degree, to the same effect) above a, it would likely be able to

be generalised. We might then be able to prove that above every totally

ωn-c.a. c.e. degree there is a c.e. degree which is totally ωn+1-c.a. but not

totally ωn-c.a.. Combined with Theorem 2.1.3, this would rule out any fur-

ther collapse (anywhere) except between the powers of ω in the hierarchy of

totally α-c.a. c.e. degrees. This remains open, and difficulties encountered

thus far suggest the proof would be non-uniform. We have, however, proved

this specifically for the cones above superlow c.e. degrees. The proof relies

heavily on the fact that the jump function of a superlow c.e. set has an

ω-computable approximation.

We then proved some theorems which make no statement on collapse, but

which show the existence of interesting features. We proved that there is

a pair a,d of degrees such that d is totally ω-c.a. and acts as a ‘minimal

cover’ for a. That is, every totally ω-c.a. degree â > a is bounded by d. We

then extend this to produce an infinite chain of minimal cover-like degrees,

so that every totally ω-c.a. degree which bounds the least member of the

chain is itself bounded by a member of the chain. The degree d in the first of

these theorems is necessarily maximal totally ω-c.a., yet in the extension, no

member of the chain is, or is bounded by, a maximal totally ω-c.a. degree.

Both of these results bear generalisation to any α 6 ε0 in place of ω. Finally,

we proved that any c.e. degree which is not totally α-c.a. bounds a degree

a which is totally, but not uniformly totally, α-c.a.. Then a is not totally

γ-c.a. for any γ < α, and as such itself bounds a totally, not uniformly

totally, γ-c.a. degree.

These new results contribute to our understanding of this natural hierarchy

as it pertains to the c.e. degrees, and are part of ongoing work.

Bibliography

[1] Cantor, G. Beitrage zur Begrundung der transfiniten Mengenlehre.

Math. Ann., 49 (1897), 207–246.

[2] Cholak, P., Coles, R., Downey, R., and Herrmann, E. Au-

tomorphisms of the lattice of
∏0

1 classes: perfect thin classes and anc

degrees. Trans. Amer. Math. Soc, 4899–4924.

[3] Cholak, P., Downey, R., and Walk, S. Maximal contiguous de-

grees. J. Symbolic Logic 67, 1 (2002), 409–437.

[4] Downey, R., and Greenberg, N. A transfinite hierarchy of lowness

notions in the computably enumerable degrees, unifying classes, and nat-

ural definability. submitted.

[5] Downey, R., Greenberg, N., and Weber, R. Totally ω-

computably enumerable degrees and bounding critical triples. J. Math.

Log. 7, 2 (2007), 145–171.

[6] Downey, R., Jockusch, C., and Stob, M. Recursion Theory Week:

Proceedings of a Conference held in Oberwolfach, FRG, March 19–25,

1989. Springer Berlin Heidelberg, Berlin, Heidelberg, 1990, ch. Array

nonrecursive sets and multiple permitting arguments, pp. 141–173.

[7] Downey, R., Jockusch, C. G., and Stob, M. Array nonrecursive

degrees and genericity. In London Mathematical Society Lecture Notes

Series 224 (1996), University Press, pp. 93–105.

75

76 BIBLIOGRAPHY

[8] Ishmukhametov, S. Weak recursive degrees and a problem of spector.

In Recursion Theory and Complexity, M. Arslanov and S. Lempp, Eds.,

vol. 2. de Gruyter, Berlin, 1999, pp. 81–87.

[9] Kummer, M. Kolmogorov complexity and instance complexity of re-

cursively enumerable sets. SIAM J. Comput. 25, 6 (1996), 1123–1143.

[10] Schaeffer, B. Dynamic notions of genericity and array noncom-

putability. Annals of Pure and Applied Logic 95, 1-3 (1998), 37–69.

[11] Shoenfield, J. R. On degrees of unsolvability. Ann. of Math. 69, 2

(1959), 644–653.

