
General comment. The use of |G| for a (directed) graph G is the usual
Garey-Johnson style of measuring the overall size of a graph, and is therefore
O(|V (G)|2). (This differs from the usage in some graph theory books like Dies-
tel’s, where |G| is taken as |V (G)|.)

Page xiv ”The three basic problems refereed to are:”, refereed becomes re-
ferred

Page 15, Definition 2.1.1 ”FTP” should be ”FPT” (this one is kind of em-
barrasing).

Page 28, Proposition 3.3.1 ”If S has fewer than 6k+ 1 many vertices” should
be ”If G− S has fewer than 6k + 1 many vertices”

Page 29, Proof of 3.3.2: ”Then at each node we delete all of these vertices”
should be ”Then at each node we delete the associated vertex and its neighbours”

Page 29, 3.4.1: ”As we know, a planar graph G we have a degree 5 vertex v
should be ”As we know, in a planar graph G we have a vertex v of degree 5 or
less.”

In the following sentences this also should be changed:

”either v or one of its five neighbours” should be ”either v or one of its at
most five neighbours” ”we still keep the five elements of N [v]” should be ”we
still keep the at most five elements of N [v]”

Page 30, Annotated Dominating Set ”such that for every vertex u ∈ B, there
is a vertex u′ ∈ N [u] ∩ V ′?” should be ”such that for every vertex u ∈ B, there
is a vertex u′ ∈ N [u] ∩ V ′ or u ∈ V ′?”

Page 31, Proof of Lemma 3.4.2: ”First delete every edge between two black
or two white vertices” should be ”First delete every edge between two red or two
white vertices”

Page 31, Proof of Lemma 3.4.2: ”numbered so that the red neighbor u of w
occurs between bd and v1” should be ”numbered so that the red neighbor u of
w occurs between bd and b1”

Page 33. Proof of Lemma 3.5.1: For a simpler presentation, Oum suggests
that we would use the poly-time algorithm to find a shortest cycle (for each edge
e, find a shortest path joining 2 ends.) Then the running time can be bounded
by O∗((2k)k).

Page 34, proof of Lemma 3.2.1. Line -13 and line -1, replace |V | by |G|.

Page 36 and page 549, Question for Closest String. This should read,
“find s = sj , for some j ∈ {1, . . . , k},”

Page 37, Theorem 3.6.1. |G| should be |Σ|.

Page 64, Line 2, Section 5.1.3 should be 5.1.5.

Page 82, Exercise 4.11.5: Bodleander → Bodlaender

Page 99, Definition 5.1.3 (ii), should read:

...“with oracle L2, such that ΦL2 = L1, and on input 〈σ, k〉, Φ only only
makes queries to the oracle L2 of the form 〈τ, k′〉 for |τ |, k′ ≤ g(k).”

Page 108 Algorithm 6.1.2, Step 3: ”Ĉ = C ∪{v}” should be ”Ĉ = Cs ∪{v}”.

- Algorithm 6.1.2, Step 3: Throughout ”Cs ∪{v}” could be ”Ĉ”. (This is not
really a correction.)

- Algorithm 6.1.2, Step 3: ”D tQ” could be ”D and Q”, depending on how
you define partitions.

- Algorithm 6.1.2, Step 3: ”The idea is that that the [...]”. Typo: Just one
”that”.

Page 109

After Algorithm 6.1.2, time ”O(2k|G|)” should be ”O(2k|G|n)”, since each
compression needs at most ”O(2k|G|)” and we do at most n compression steps.

Page 110, statement of Lemma 6.2.2. 2 should say that Y contains an edge-
cut instead of saying that ”Y is an edge cut in G−X.”

Page 110, in the proof of Lemma 6.2.2. Gy should be CY It might be clearer
to say edges rather than paths in the proof.

also same proof:

(2) implies (1): ”{u0v0, u1v1, ..., uqvq}” should be ”{u0v0, u1v1, ..., uq−1vq−1}”,
if we assume q is also the number of edges in this set.

(1) implies (2): ”GY a two-colouring of G−Y ” should be ”CY a two colouring
of the bipartite graph G−Y ”. We know (and need) the property of G−Y being
bipartite.

(Page 110, line -15) Now define Φ̂, not Φ.

”Thus CX(u) = CY (v)” should be ”Thus CX(u) = CX(v)”.

”[...], and hence CY (u) 6= CX(v)” should be ”[...], and hence CY (u) 6=
CY (v)”.

”Therefore Φ̂(v) 6= Φ̂(v).” should be ”Therefore Φ̂(u) 6= Φ̂(v).”. (It could also
be ”Φ(u) 6= Φ(v)”, the restriction to V (X) isn’t needed here, since we’re only
looking at vertices from V (X).

Proof of Theorem 6.2.1: ”[...] Lemma 6.2.2 with ”X = Xi−1” [...]”, should be
”[...] Lemma 6.2.2 with ”X = Xi−1∪{ei}” [...]”. ”Xi−1” should be ”Xi−1∪{ei}”
throughout.

”[...] in its stead for Gi.” should be ”[...] in its stead for Xi.”.

”If we find a Y, set Gi = Y ” should be ”If we find a Y, set Xi = Y ”

Page 119, line 1. Lemma 6.6.1 should be Lemma 6.5.1.

Page 165, Exercises 8.8.1 and 8.8.2. The sentence here means that F is a
family of subsets of a set X such that |F| = r, not that the subsets have size r.
(Oum suggests that probably a better name for this problem is ”ANTICHAIN”:
to find an antichain of size k in a collection of r subsets.)

Page 185, line -4. after Pascal, put “are are ≤ 6.”

Page 202, line -7, ”1966” should be ”1996”.

Page 215, “quickly decide if σ ∈ L(M).” (not σ ∈M)

Page 215, “a little warm up for the next sections, where we will show that”
(“show” missing)

Page 220, proof of Theorem 12.3.2, describing converted ∆′ set. Instead of
“to E(r), provided some qi ∈ E(q) and some qj ∈ E(r), with ∆ taking qi to
qj on input a,” replace with “taking E(q) to E(r) provided that there is some
qi ∈ E(q) with ∆ taking qi to r in input a.” (This has a consequential slight
change of the diagrams.)

Page 226, Figure 12.7 is cut-off on the right in Step 3, but the missing bit is
obvious.

Page 227, line -3, item 2 of the statement of Theorem 12.5.1.

Furthermore any right congruence satisfying (b) and (c) of 1 is a ...

Page 228, line -3. Now we must show M ...

Page 235, Exercise 12.5.4. in the hint replace ∼L by ≈L. Page 275, statement
of Theorem 13.4.2. Actually Theorem 13.4.2 (Courcelle and Oum) is still open
as stated here. Courcelle and Oum proved only for C2MS1 logic and could only
prove a weaker statement with the set predicate for the ”even cardinality”.

Pages 254-257.

Myhill-Nerode Theorem for Graphs

This is a big error in the proof of this. Here is a correct (and easier) proof.
Some property like parsing replacement can likely be extracted.

We prove Theorem 6.77 of [DF98]= Theorem 12.7.2 of the book.

The proof in both places, being the same, has a small error. This is fixed in
this note.

The error is in the proof of (iii)→(i).

For neatness we will use the t-boundary operators given, and not worry about
a general property making this work.

Now we know that a graph has pathwidth t iff it can be parsed by the above
operators without using ⊕, and the analogous Parsing Theorem (6.72 of [DF98],
12.7.1 of [DF13]) holds. Now consider the parsing theorem in the context of the
small universe.

It is easy to prove by induction of the length of the path, that if G is a path-
width t graph in the small universe of treewidth t graphs, then G is isomorphic
(in the universe forgetting the boundary) to a graph G1 with a parsing and the
boundary vertices in the first bag and also one where the boundary is in the last
bag of the parsing of G1.

Since we can move a boundary over an ⊕, it follows that in the small universe
of treewidth t graphs, if we consider a parse tree T , then G(T) is isomorphic to
a parse tree T̂ where the boundary in the underlying tree of bags is at the root,
and also one T̂ ′ where the boundary corresponds to a bag corresponding to a
given leaf of T .

Now, following the proof of (iii) implies (i), we assume we are given Tk and
Ti.j such that for all i, j Ti ·x Ti,j ∈ L iff Tj ·x Ti,j 6∈ L, where L is the language of
trees which are equivalent if the underlying graphs are isomorphic as unlabelled
graphs.

The argument above says that we can regard the root of each Tk to correspond
in the underlying bags given by the underlying parsing theorem to have the
boundary, and the bag corresponding to the leaf of Tk,j and x to have the
boundary.

In that case, we see that G(Ti ·x Ti,j) ∼= G(Ti) ⊕ G(Ti,j) since with the
boundaries at that placement, there is a G(Ti ·x Ti,j) corresponds simply to
gluing the underlying graphs along that boundary. (Notice that, to do this it

might be that we might need to make parts of the boundaty corresponding to (for
example) Ti,j disjoint. It might be, for instance, that Ti ·x Ti,j might correspond
to disjoint graphs, but this can be construed as a gluing in any case.)

Then we get a contradiction, since now G(Tk) would witness that ∼Ft
does

not have finite index.

Page 381 line 4: delete closing parenthesis.

Page 397. Proof of 21.2.4. “By Theorem 21.2.2 and 21.2.3”

Page 488. Exercise 25.2.3 The exercise asks to prove that Weighted Mono-
tone and Antimonotone Satisfiability are W [P] complete, but this should
be W [SAT] complete.

Page 541 section 29.2 line -1: seem → seems

Page 546: Theorem 29.5.1 The d’s and k’s are mixed up. The occurrence of
2-SAT should be k-Sat. Also 2. should read p ≤ 2fracn2. And the running time
is 2

n
d |φ|O(1).

Page 547 line -1: add “holds” as the last word for the sentence.

Page 553 section 29.6 first sentence, delete the fullstop half way through the
sentence.

Page 597, 30.10.1, line -5, (i.e. “1”) delete “and”

Page 597, 30.10.1, line -3 (i.e. “2”) “instance” should be “instances”

Page 636, §31.4.2. There are some genuine mathematical problems in this
section.

Theorem 31.4.1 is correct as stated, but does not follow from the proof in
the §31.4.2. The width of the interval graph is the size of the largest clique in
the interval representation, and hence the width used in this section for interval
graphs is one higher than the pathwidth. Thus, the algorithm will only colour
k-paths with 3k+ 1 many colours. The proof only works for interval graphs and
hence for k-paths, whereas graphs of pathwidth k are partial k-paths.

In recent work, Askes and Downey showed that the theorem is nevertheless
true with a different proof.

Theorem 1 (Askes and Downey (Online, Computable, and Punctual
Structure Theory, to appear)). Every online graph G of pathwidth k can be
online coloured with at most 3k + 1 many colours.

Proof. This is proven by induction on the width k. If k = 1 then G is a path and
we can use greedy minimization which will use at most 3 colours. So suppose
k > 1, and let Gn have vertices {v1, . . . , vn}. The online algorithm Ak will have
computed a partition of G, which we denote by {Dy | y < k}. Consider vn+1.
We refer to the Dy as layers. If the pathwidth of Gn+1 = Gn ∪ {vn+1} is < k,
colour vn+1 by Ak−1, and put into one of the cells Dy, for y < k− 1 recursively.
We will be colouring using using the set of colours {1, . . . , 3k − 2}.

If the pathwidth of Gn+1 is k, consider Hn+1, the induced subgraph of Gn+1\
Dk. If the pathwidth of Hn+1 is < k, then again colour vn+1 by Ak−1, and put
into one of the cells Dy, for y < k − 1, recursively, and colour using the set of
colours {1, . . . , 3k − 2}. If the pathwidth of Hn+1 is k, then we put vn+1 into
Dk−1.

in this case we will use first fit using colours 3k − 2 < j ≤ 3k + 1.

The validity of this method follows from the fact that the maximum degree
of vertices restricted to Dk−1 is 2, and induction on k. Assume that Ak−1 is
correct and colours using colours {1, . . . , 3k − 2}. We are assuming that vn+1’s
addition to Gn has pathwidth k. Now consider a path decomposition B1, . . . , Bq

of Gn+1. Suppose that the degree of v = vn+1 in Dk is ≥ 3. Thus there are
x, y, and z in Dk which are each connected to v. Without loss of generality, let’s
suppose that that they were added at stages sx < sy < sz ≤ n. Since each is
in Dk, when we added them to Dk, we could not have added them to Dy for
y < k − 1. Since they were not added to such Dy it follows that as the stages
they were added, they made the pathwidth of the relevant Hs (s ∈ {sx, sy, sz}
to be k. Consider sx. As the pathwidth of Hsx was k, there must be some bag
in any path decomposition of Gsx , comsisting of only members of Gsx which
has size k + 1, and containing x. For t > sx, this must still hold. For suppose
this was not true at stage t. The pathwidth of Gt is k, and has bags P1, . . . , Pv,
say. Now delete all of the elements of Gt \ Gsx from the bags. This is a path
decomposition of Gsx , and hence must have pathwidth k, so there must be one
of size k + 1 containing x, and it only consists of elements of Gsx .

Consider sy. Since the pathwidth of Hsy is k, it follows that sy must be in
a bag of size k in the path decomposition of Hsy containing none of Dk−1. In
particular, in any path decomposition of Gsy , there x and y must appear in bags
Qx and Qy, respectively, of size k with x 6∈ Qy and y 6∈ Qx,

and the same holds thereafter. So we can conclude, using the same reasoning,
that at stage n+ 1, x, y, z, and v are all in bags of size k, Bx, By, Bz, Bv, where
x 6∈ By ∪Bz ∪Bv, and similarly for y, z and v.

Now consider Bv. Since xv is an edge, x and v lie together in some bag
Bxv. If Bxv is left of Bv but Bxv is right of Bv we get a contradiction, since
this would put x into Bv, by the interpolation property of pathwidth. So Bxv

and Bx both lie, without loss of generality left of Bv. Similarly Byv and By

must lie on the same side, and this must be right. For if there were both left of
Bv, then the interpolation property would make either Bx or By contain y of x
respectively (considering the relevant orientations of Bx and By). But now we
get a contradiction, since Bz cannot be wither right or left of Bv without one of
the Bx, By, or Bz containing a forbidden element. Thus, within Dk1

the degree
of v is at most 2.

We remark that the proof of the theorem above gives an algorithm which
is linear time (as k-Pathwidth is linear time FPT), but is inefficient as the

constants for the pathwidth algorithm are of the order of 235k
2

which is pretty
horrible. We don’t know the best complexity for the following (online) promise
problem

Input: An online graph G, and a vertex v and a graph H with vertices V (G)∪{v}
G a subgraph of H.

Promise: G has pathwidth k.

Parameter: An integer k.

Question: Does H have pathwidth k?

Page 637 after Lemma 31.4.2 add “We leave the proof of this Lemma to the
reader.

Page 637, Line -8 “Proof” should be “Proof of 31.4.3”

Page 637, Line -6 ”k = 1” should be ”k + 1”.

Page 637, Line -6. We define B at step p (which is the next vertex to be
added) by induction on k at step p.

Page 637, Line -5. BP should be Bp.

Page 637, Line -4. (Of course in the actual online algorithm we will only have
Bp at step p.

