Computer-Based SPOT GameBoGameGGame[image: image12.png]Pl

‘W“

S

[image: image13.png]Pl

‘W“

S

Game[image: image14.png]Pl

‘W“

S

 (Pg X of Y + date printed maybe)

COMP389 -SOFTWARE ENGINEERING PROJECT, 2001

D3 Architectural Design

Computer-Based SPOT

Team 7

Team Meeting: Tuesday 11:00am

Team Leader:

Rilla Khaled

(Rilla.Khaled@mcs.vuw.ac.nz)

Team members:

Daniel Ballinger
(Daniel.Ballinger@mcs.vuw.ac.nz)

Edward Bedwell
(Edward.Bedwell@mcs.vuw.ac.nz)

Derek Foo

(Derek.Foo@mcs.vuw.ac.nz)

Anna Ladd

(Anna.Ladd@mcs.vuw.ac.nz)

Supervisor: Glen Walker

Client: Dr. Paul Warren

Date: 24/07/01

 [image: image1.png]Pl

‘W“

S

Contact details for Client and Supervisor:

Client:
Dr. Paul Warren

Senior Lecturer in Linguistics and Acting Research Director

School of Linguistics and Applied Language Studies

Victoria University of Wellington

PO Box 600

Wellington, New Zealand

tel. +64 4 463 5631

fax. +64 4 463 5604

Paul.Warren@vuw.ac.nz

http://www.vuw.ac.nz/lals/
Supervisor:
Glen Walker

Glen.Walker@mcs.vuw.ac.nz
Table of contents:

1. Brief Introduction…………………………………………………….
4

2. Changes to previous document…………………………………...
4

3. Architectural Overview

3.1

Overall description of the design solution……………
4

3.2

Design Goals………………………………………….…….5

4. Architectural Design

 4.1

Class Diagrams…………………………………………….
6

4.2

Responsibilities of the classes…………………………
6

5. Analysis of the Architecture

5.1

Sequence Diagrams………….…………………………..
13

5.2

Design Rationale…………………………………………
17

6.
Design, implementation and other considerations……………
19

7.
Revised estimates of project risks……………………….
………20

8.
Glossary……………………………………………….………………
21

9.
Individual contributions to the document……………………
…22

1. Brief Introduction:

The purpose of this document is to give an overview of the components that make up the SPOT computer system. In particular it will outline how they will interact to meet the functional and non-functional requirements laid out in the Requirements Elicitation Document.

2. Changes to previous document:

In section 3.3 of our Requirements Document we said that the system would be able to support up to 500 people reviewing data at one time. We have now decided that this is an unnecessarily high number as the system will only be of interest to a select number of people (specifically those studying Linguistics). We have now decided that at most the system would have 1 person reviewing the data at one time.

Also, the previous document discussed a security system that would be implemented with the SPOT program, to ensure only registered users had access to it. We have decided that the security system is no longer applicable since the SPOT program will be a stand- alone application. The security of this application would then be up to the operating system that it is running on. This has resulted in the use cases being reviewed and re-prioritised.

3. Architectural Overview:

3.1 Overall description of the design solution:

The system shall use a three-tier software architecture in which the main areas of functionality are partitioned into different layers.

The System Core layer will provide functionality that directly relates to playing the Spot game. It will be composed of a Game module (component) and a GameBoard module. The Game module contains information central to the controlling the running of the game. It co-ordinates the rounds, stores the moves into temporary memory, and monitors the state of the local and remote boards (if communications permit). At the end of each round it will give the stored moves to the Storage module for permanent storage. The GameBoard module contains all information related to how game boards work, how they shall be drawn on the screen, the types of blocks that can be put onto the board, and how the blocks can be moved.

The Service layers will provide functionality that only provides services to other layers. It will not directly create events; just respond to requests from other layers. The Communications module will provide services related to communication between two computers running the SPOT application. It shall accept messages from the Game module and send them to the Communication module of the corresponding computer. Once received, the message will be decoded and then passed to the Game module via direct method calls. The Storage service will be responsible for the persistent storage of round records and board layouts.

The Behaviour layer will contain modules that relate to the user desired function of the system. By starting the application with one of the behaviour modules the system can assume either the game playing mode, the reviewing mode, or the editing mode. Each mode will display the appropriate GUI and authenticate the user if required. Commands from the GUI for the play game module will be passed directly to the Game module. Editing and Reviewing modules will interact with the game module and the Storage modules to provide the required functions.

3.2 Design Goals:

The three main goals of our project is to design a system that is useable, portable and extendable. All the architectural decisions discussed in this document have been made with these aims in mind. Below is a justification of why each goal is important and a brief discussion of how our design will support them. (Note that there is some overlap between this section and section 5.2. This is because the design goals are motivated from the non-functional requirements.)

1) Useable:

This goal relates to issues created by users interacting with the application. It incorporates issues involving GUI's, application reaction speed, and how closely it matches the users mental model.

The system needs to be memorable for the benefit of the game referee and the reviewer. It also needs to be easy to use to simplify the client’s job of collecting and reviewing data. In particular, it needs to improve the current situation where it is hard to keep track of the moves and the noises created by moving the pieces around the board cause problems with recording voice data.

Each game only lasts for approximately two hours, so it is important that the game system is learnable for the participants so that they may effectively begin using the system within this time frame. It would be desirable for them to pickup on the controls of the game as fast as possible.

The system must be rewarding to encourage participants to want to play the game.

It is necessary that the system is uncomplicated and designed for users with limited to moderate computer knowledge and experience.

How we plan to achieve this:

We have divided the system into three separate applications as follows:

1. PlayGame

2. Review

3. Edit

Each application will have its own GUI and each user will only have access to the modules that are specific for their roles. This will aid usability, as each user will only need to know about the functionality of relevant portions of the system. We plan to evaluate the usability of the interface by testing the system with potential users during development.

It is desirable that the game board, and the system in general, match the users mental model of the game as close as possible. This will aid in the user's understanding of the program and encourage better productivity.

We will not provide on-line help as the referee will verbally instruct and guide the players both before and during the game. To aid the initial learning of the game a demo mode will allow the user to become familiar with the system before playing a game. The demo mode will display information on a single screen not usually available to a single player. In this mode, a single player will see and be able to control both the slider and the driver boards simultaneously. The main purpose of this board is to familiarise the player with the block control techniques.

2) Portable:

The portability goal relates to how the applications will react when moved to different computer systems. It is desirable that the system will work on as many different computer platforms (e.g. Windows, UNIX, Macintosh) as possible.

It is necessary that the system is capable of running in a number of different environments and on various platforms. We are primarily designing the system for Paul Warren who uses a Windows platform. However, the SPOT research project is a collaborated effort by academics from America also, who may use different platforms.

How we plan to achieve this:

We are planning to implement the Game Play system (which we have identified as our vertical slice) as a Java application. The advantage of this is that Java was designed to be portable across different computing platforms.

3) Extendable:

This goal relates to how easy it will be to expand the application in the future. This includes adding new functionality and updating existing capabilities.

It is important that the system can scale appropriately to the available resources. In particular, in an environment with no network support the round records would be stored to disk. If a network is available the data could be stored at a single location.

The client has specified that he would like to add additional functionality to the system in the future. In particular he would like to:

Be able to incorporate audio sound recording into the system. This means the storage facilities of the system need to be able to be modified to accommodate this.

Be able to track mouse movements to monitor what players of the game are looking at.

Be able to incorporate a camera to record the movement of a player's eyes as he or she moves a piece across the board.

Be able to add editing abilities to the SPOT program for the client to edit and add new boards. It is important that our design allows us to extend our vertical slice to include the Edit application, if time permits.

We are not planning to scale the system in terms of number of simultaneous users. The total number of users for the system will never be greater than two.

How we plan to achieve this:

Although the applications will share a common interface, we have decomposed our system such that each application can operate independently of the others. The aim is that the addition of functionality will not affect the existing applications.

Our decision to program our system in Java was also motivated by our goal to have a scaleable system. Java has packages that provide a convenient way to separate classes into modules. The idea is that each module represents a unit of functionality in the system (for instance the Storage module), which can be upgraded without affecting the other modules in the system. The client’s future requirements could be realised as Java provides support for audio and database facilities.

4. Architectural Design:

4.1 Class Diagrams

The following diagrams show the major parts of our system and how it has been divided up into classes, modules and subsystems.

(see Appendix 1 for Overall Module Diagram)

4.2 Responsibilities of the classes:

Game Module

(see Appendix 2 for Game Module Diagram)

The Game module includes things like the tracking the state of the local and remote boards, logging the moves as they are made, and accepting commands from the various GUI's. It is responsible for passing the logged moves of each of the rounds to the Storage module when prompted to do so.

Uses GUI to display board and receive moves from the players.

· tracks score

· makes moves

· undoes moves

· temporary storage for game/round moves

GameController Class

The game controller is, as the name implies, responsible for controlling a game. It takes input from the playGameGUI, the communications module, the editGUI and the reviewerGUI depending on how the system is being used. It then calls methods from its round object depending on the input. It is responsible for starting and ending rounds and starting and ending demo rounds where results aren't stored.

Round Class

A round represents one game played between a Slider and a Driver on a particular board. The round class knows whether it's a demo round in which case results are not logged or if it's an experiment round where results are logged. The round class passes all actions to the Log Moves class for storage. The round also has an instance of a Driver and Slider board to make sure the boards are consistent.

GameBoard Module

(see Appendix 3 for GameBoard Module Diagram)

Contains all classes concerned with the current active game, boards, blocks, and legal

moves. Stores the state of all blocks on the board. Using a particular type of board, either driver or slider,
determines the view that each player may have. GameBoard will need to work closely with the GUI for displaying the board. Defines how
blocks can be moved and tracks the state of the game as it proceeds.

Board Class

The board class is made up of a grid of Cells with each Cell as either a Wall, a Space, a Piece, a Cookie or a Goat. It is the board’s responsibility to know what each of its cell contains and to update the state of the grid and to redraw the board when it receives an instruction from the Round class. It also has information about the score, how many cookies have been collected, whether or not the board is a ghost board (a board that won't be drawn on the screen) and a stack of moves used by the undo function.

Cell Class

The Cell Class is a Abstract Base Class that provides a common
interface for all the types of Cells that inherit from it. It knows it's own position on the board’s grid, the type and dimensions.

Cookie Class

The Cookie Class represents a cookie on the board. It knows how to draw itself and whether or not it has been collected, which affects the way it's drawn.

Goat Class

The Goat Class represents a goat on the board. It knows how to
draw itself and whether or not in has been fed, which affects the way it is drawn.

Wall Class

The wall Class represents a Cell that cannot be moved into. It knows how to draw itself.

Space Class

The Space Class represents a Cell that doesn't contain anything.

Block Class

The Block Class is an Abstract Base Class that provides a common interface for all the types of blocks that inherit from it. It knows the blocks colour, it’s starting and ending positions and whether it needs to be pushed by another block in order to move.

Square / Circle / Triangle / Square+Triangle Classes

These classes represent game blocks that can move on the board. They know how to draw themselves.

SliderBoard Class

The board that will be displayed to the Slider. This board will contain the goats, cookies and starting positions of all the blocks.

DriverBoard Class

The board that will be displayed to the Driver. This board will contain the starting positions of the blocks involved in a round and the end positions.

Communication Module

(see Appendix 4 for Communications Module Diagram)

Provides network services when available. May also be used to
communicate with the storage package. Synchronises between two running games if one player is the slider and the other is the driver.

Needs to be able to:

· Detect the abilities of the network (if any)

· Detect that the available network connection is sufficient to maintain performance requirements

· Create a connection to another communication package running on a separate computer

· Synchronise (agree on state) between two games (One must be slider while the other must be driver)

· Send a message to the other game.

· Detect and process messages as they arrive form the other game.

· Co-ordinate the switching of roles between the two games (players).

Why it is needed:

To support the undoing of moves, one player will push the undo button. The button on the other system will be disabled. This is to ensure that one press of the undo will undo any move made on the slider's board as well as the driver's board, not just one board. Co-ordinating the recording of round information to the Storage System.

Communications Class

Can be started to assume one of two roles, either Server or Driver. This model works for an application to application model. Changes in the communication protocol will be required if the game is served from a Web Server.

Server Class

Opens a TCP port on the passed port number. Listens for a connection. Establishes a connection with the Client then
creates a receiver thread and a sender object.

Client Class

Creates a TCP connection to the Server on the passed port number.

Receiver Class

Checks the socket for incoming messages. When it receives a message it passes it to the Feedback class, which decodes it, then listens for another message.

Sender Class

Sends messages to the other game board via its receiver.

Feedback Class

Decodes messages as they are passed by the receiver and calls
the appropriate methods in Game.

Storage Module

[image: image2.wmf]Board_Record

BoardID : String

CreateBoard()

Round_Record

RoundID : String

Contents : String

GameID : String

add()

listMoves()

getNextMove()

Storage_System

Board record : list

Round Record : list

getRoundRecord()

listGameRecords()

listRoundRecord()

listBoards()

getBoard()

addRound()

addBoard()

deleteRound()

deleteGame()

mergeRoundRecords()

saveRound()

0..n

0..n

Provides access to persistent storage of game records and boards. May be simple files on a disk or a database. As such it will need to be transparent to the other modules as to how records are stored. I.e. it will make no difference to other modules what is used to store data. This will enhance the scalability of the storage system in the future. Some consideration may be made as to incorporating audio storage at a later date.

Required Functionality:

· Unique round and game ID's

· Return a list of all the games

· Return a list of all the rounds for a game and their length

· Return a textual record for the passed round.

· Delete a game/round

· Insert and new game/game round record

· Replace an existing round record with a new one (maybe used to manually change records at a later date)

· Return a list of available boards

· Fetch a game board as identified by its unique ID.

· Merge a set of game records that were previously stored on disk into a single game record. (This will be required if no communication was available when the game was played.

BoardRecord Class

Stores the physical layout of a board.

Includes a (start/finish) position of the playing blocks, and positions of all static pieces, which include goats, walls, empty spaces and cookies.

Round Record

Records kept by the game as the round proceeds. May or may not be logged into the Storage module.

Storage_System Class

Initially stores everything onto the disk with the possibility of storing to a database it the functionality is implemented. From the Storage_System class we are able access anything that has been stored. It may return a game and round record, as well as a board. The Storage_System also has the ability to list the records of boards and rounds that have been stored. If a network connection between the two computers playing the game of SPOT does not exist the Storage_System may merge the results from the two computers once their information has
been brought together on the same computer. Not only does the Storage_System store information, it can remove any obsolete rounds or games can be deleted.

PlayGame Module

[image: image3.wmf]GameController

id

startTime

getID()

switchRoles()

undoMove()

drawBoard()

startDemoRound()

startRound()

move()

startRoundReplay()

startGame()

(from Game)

PlayGameGUI

CurrentBoard : Board

boardType : String

open()

startRound()

startGame()

startClock()

stopClock()

pauseClock()

endGame()

undoMove()

move()

selectCell()

promptForSaveRecord()

saveRecord()

endRound()

displayGameOptions()

switchRoles()

displayMainOptions()

promptForRoundID()

promptForBoard()

selectBoard()

endRound()

displayRoundOptions()

Contains classes specific to playing the game. This will include things such as configuration and displaying the correct boards.

Responsible for:

· starting the game

· deciding role

· Creates a Game as either a Slider or Driver along with the appropriate GUI

· makes moves

· undoes moves

· starts session clock

· stops session clock

· pauses session clock

· switching slider and driver roles

· ending the game

· starting the demo function

· ending the demo function

PlayGameGUI Class

The PlayGameGUI is the interface that the players will interact with when playing a game of SPOT. From here they are able to make moves on the boards that they select to play upon. The PlayGameGUI has a direct association with the GameController from which the moves within the board are passed grid positions of the block that has been selected and the direction for which that block is moving in. Once validated and recorded the board is redrawn on the PlayGameGUI to compensate for the move that has been made. The PlayGameGUI essentially offers the player's of SPOT a board that they can play upon, which incorporates any of the possibilities that can be made during a game of SPOT with a physical board.

Edit Module

[image: image4.wmf]Storage_System

Board record : list

Round Record : list

getRoundRecord()

listGameRecords()

listRoundRecord()

listBoards()

getBoard()

addRound()

addBoard()

deleteRound()

deleteGame()

mergeRoundRecords()

saveRound()

(from Storage)

Board

grid[][] : Cell

score : int = 0

label : string

isGhost : Boolean

cookieCount : int = 0

moves : Stack

move()

undoMove()

drawBoard()

updateScore()

checkEnd()

changeRole()

Board()

changeCellContents()

(from GameBoard)

EditGUI

editBoard()

editGrid()

deleteBoard()

copyBoard()

listAllBoards()

displayEditOptions()

selectBoard()

Contains classes specific to the editing game boards of the system.

Needs to be able to:

· Allowing the editor to perform game board and users management tasks.

· Initiation of board creation, coping, deletion and modification

EditGUI Class

The EditGUI class contains all the options from which the editor is able to select. Boards are stored and retrieved using the storage system. The EditGUI allows the editor to modify or create boards by selecting the piece they want to be inserted and then selecting the cell they wish to place it in. This will update the state of the Board object being modified and cause the board to be redrawn.

Review Module

[image: image5.wmf]Storage_System

Board record : list

Round Record : list

getRoundRecord()

listGameRecords()

listRoundRecord()

listBoards()

getBoard()

addRound()

addBoard()

deleteRound()

deleteGame()

mergeRoundRecords()

saveRound()

(from Storage)

ReviewGUI

ReviewerID : String

startReplay()

selectGame()

selectRound()

stopReplay()

deleteResults()

pauseReplay()

unpauseReplay()

restartReplay()

promptForGameRound()

displayReviewOptions()

findRound()

Board

grid[][] : Cell

score : int = 0

label : string

isGhost : Boolean

cookieCount : int = 0

moves : Stack

move()

undoMove()

drawBoard()

updateScore()

checkEnd()

changeRole()

Board()

changeCellContents()

(from GameBoard)

Contains classes specific to reviewing round records.

Specific tasks include:

· start replay of round in real time

· end replay

· restart replay

· pause replay

· list all games/rounds (GUI responsibility)

· view textual description of round

ReviewGUI

The ReviewerGUI accomplishes the tasks of the Review module by giving the reviewer the options to review a record via replay or text file. The ReviewGUI is associated with the Storage module, from which it can receive the records of rounds, and the Board module, so it may redisplay a board within its GUI during a replay.

5. Analysis of the Architecture

This section provides justification for our design solution. In particular it explains how the design solution satisfies the requirements laid out in the last document.

5.1 Sequence Diagrams:

The purpose of the sequence diagrams is to show how the parts of our system collaborate to provide the required functionality for the top ten use cases.

displayResults

[image: image6.wmf]Vivienne :

Reviewer

 : ReviewGUI

 : Storage_System

 : Round_Record

1: selectGame(String)

2: listRoundRecord()

3: selectRound(String)

4: getRoundRecord()

5: listMoves()

this carries on from "list logged

games"

6: displayReviewOptions()

Display results only deals with textual representation of moves. The reviewer is an actor who is concerned with reviewing the results that are stored in the system. He or she must choose a game from which they would like to review a record from. A game consists of many rounds, the reviewer then selects the round that he or she would like to review the results of, the storage system then accesses the round records that have been recorded. From the recorded information the correct round is selected and displayed on the interface. Review options are then made accessible to the reviewer.

endgame

[image: image7.wmf]Leslie :

Slider

 : PlayGameGUI

1: displayGameOptions()

2: endGame(Boolean)

3: displayMainOptions()

This sequence diagram represents the case where the game reaches a state where all pieces are in end positions: thus the round has finished. The player then has the option to end the whole game. Ending the game returns the player to the main options. You can only end a game when the game options have been displayed. The game options are displayed between rounds.

endRound

[image: image8.wmf] : Player

 : PlayGameGUI

 : Storage_System

2: endRound(Boolean end, Boolean add)

4: displayGameOptions()

1: displayRoundOptions()

3: saveRound(Boolean)

During the course of a round the player may choose to end it. As well as ending a round the player has a choice of adding the round to the Storage_System at which it will be committed to the Round Record(s). The game options are then displayed to the player.

listLogGames

[image: image9.wmf] : ReviewGUI

 : Storage_System

Bobalob :

Reviewer

3: promptForGameRound()

4: listGameRecords()

1: displayReviewOptions()

2: findRound()

The reviewer must select a game from which round records they can select from. The reviewer is ultimately looking for a round, therefore they will select the option of looking for that particular round within a game. The games are then listed from the storage system. The reviewer then has the ability to select a game. The sequence diagram 'displayResults' follows from this sequence diagram.

movePiece

(see Appendix 5 for movePiece Sequence Diagram)

The actor has the option of selecting a cell containing a piece to move on the player's GUI. Once selected they have the ability to move that piece. The move is passed from the GUI to the GameController and onto the Round. The Round then describes the move to the Board and the Cell(s) that are involved with the move, this is to ensure that the move is a legal move and it will be made. Once it has been decided where the move will take the piece the result will be stored within the storage system. Each move is communicated with the other board and stored on only one of the two computers. The board is then redrawn to display the result of the move to the player(s).

StartGame

[image: image10.wmf]BillyBob :

Slider

 : PlayGameGUI

 : GameController

 : Communications

2: startGame (String)

Starts game with

String ID

1: displayMainOptions()

3: startGame(String)

4: Communications(String, Integer, Integer, String, GameController)

startGame encompasses starting a game. Once initiated the PlayGameGUI displays the options, which includes starting a new game. A game is given a game ID, which the game controller is given. Communications are then initiated between the two participating computers.

startRound

(see Appendix 6 for startRound Sequence Diagram)

The startRound sequence diagram begins by giving an ID to the round. The GameController must access the Storage_System in order to enable the player to select a board from the game. Once a board has been selected and a round ID has been given then the round is started. Communications are made to the other computer to inform it that a round has begun. The GameController then draws the board for that round.

StartSessionClock

[image: image11.wmf]Bobbafet :

Player

 : PlayGameGUI

 : GameController

2: startClock ()

1: displayGameOptions()

3: startClock()

As part of the game options of the PlayGameGUI we are able to start the clock. If this option is selected the PlayGameGUI tells the GameController to record the time when this option has been selected. The GameController then stores this start time.

switchRoles

(see Appendix 7 for switchRoles Sequence Diagram)

switchRoles is invoked when slider and driver want to interchange their roles i.e. slider now wants to be the driver and driver wants to be the slider. This is so that the players don't have to physically stand up and change computers. Roles can only be changed between rounds of a running game. The classes involved in this sequence diagram simply re-label the player's description into the opposite of what description it already is. Communication is needed to ensure that two drivers or two sliders don't exist on the computers at the same time.

undoMove

(see Appendix 8 for undoMove Sequence Diagram)

An undo function is needed to reverse an incorrect move made by the slider following the driver's commands. Each move is stored on a list of moves within the board. Once the move is collected from the board we are able to determine the initial positions of each piece before the move was made. The undo must also be logged into the storage system so the reviewer is also able to review the undo moves made by the players. It must also be communicated to the other board that there has been undo made by a player. Once made, both boards are redrawn to display the result of the undo.

5.2 Design rationale:

This section provides justification of how our design satisfies the non-functional requirements.

1) Portability:

The system must be able to run on the major operating platforms, specifically Windows and UNIX based.

· We have chosen to program in Java specifically for this. Java is a language that has been designed to be portable across all major operating platforms.

Needs to be transportable, that is, able to be carried on a portable storage medium

- We don't envisage our system requiring more storage space than that of a 1.44Mb floppy disk. If more space is needed our system is designed is such a way that each of the three applications can be separated from the other two and still operate. This may cause the common code to be repeated by all three applications, but each
application will require less space for transportation than the system as a whole will require, making transport on multiple floppy disks possible.

2) Reliability:

The maximum length of a game is two hours. Therefore this the minimum time that the game play application needs to be able to operate for.

-We have designed our system as a stand-alone application primarily to reduce the complexity of the system and to avoid some of the problems that can arise when combining multiple technologies (in particular web-based technologies). By reducing the complexity of the system we hope to improve its overall reliability.

 -The systems reliability will be affected by our choice of programming language. We have chosen Java as it provides a whole host of functionality built in that we can utilize to make the system more reliable, for example a garbage collector to prevent memory leaks, it doesn't require explicit use of pointers and it provides built in exception handling. All team members have experience programming in Java so we believe we will be able to create a more reliable system by using this language rather than if we attempt to implement it using a technology that we are unfamiliar with.

-By dividing the software into several modules we plan to gain advantages by sharing several common modules between the three applications. Advantages of this approach include: reduced complexity for each module, reduced verification and debugging time, and parallelism of development between modules.

3) Performance:

The system needs to have a response time of less than one second. Studies have shown that users become frustrated with systems that introduce delays that don't match their mental models. We anticipate users will expect the system to have little to no delay in processing their actions based on other computerised games i.e. Tetris, Mine Sweeper, Solitaire. The replay functionality is also delay intolerant, as it will be run in parallel with an audio recording.

-Our applications will only support one game or replay to be run at any one time on a machine. This will allow our system to devote all
resources available to one task.

- The replay application will be developed to use the same modules as the game play application to ensure the replay function will match the audio recording of the game play as close as possible.

- Due to the possibility of delays occurring in the network connection the game play application will support a non-networked mode to optimise performance. This will still allow logging of results by using the review application to merge the two results files.

4) Adaptation:

The client has asked for the system to be written with a possibility of further developing it in the future.

-We have designed a separate storage module, which initially will store data to files. This will allow the client at a later date to replace
this with a module that stores data to a database. It is perceived when this module is updated to support databases it will retain support of raw files also. By doing this the system will be able to adapt
better to different system configurations.

-Another extension to the storage module includes being able to co-ordinate the storage of both the round records and audio recordings in
one centralised location. Again this would be achieved by adding functionality to the storage module.

- As the network services available at the time the experiment will be run are uncertain, the communication module will be developed as to allow maximum flexibility. In the event that no network connection is available between the driver and slider boards the application will function in a stand-alone mode. This may be due to no physical network connection between the two computers or a technical error preventing a TCP connection being created. In the stand-alone mode both applications will create a single round record containing just the moves made on that computer. In the event that a connection can be made between the two systems, the combined results of the experiment can be stored on a single system.

5) Skill Level Consideration:

As the length of a round is restricted to two hours the system needs to be quickly learnable.

-We have designed the system with a demo game board, which is a simplified version of a game board used in the experiments that will incorporate all aspects of game play. It will be loaded at the beginning of a game to allow the driver and the slider to familiarise themselves with both the game interface and the functionality of the game boards.

6. Design, implementation and other considerations:
(e.g., hardware requirements, software version requirements, choice of programming language, tools, and development environment) as appropriate.

Hardware Requirements

The SPOT program will require minimum requirements of:

1. Pentium Processor

2. 16Mb of memory

3. 6Mb of disk space

Software Requirements

1. Windows 95/98/Me/Nt/2000 or UNIX

2. Java Runtime Environment 1.3

3. Text Editor

Programming Languages

1. Java Development Kit 1.3

2. Swing/JFC 1.1

3. MySQL (assuming a database is implemented)

4. HTML (if implemented into an applet)

Tools

1. Rational Rose 98e/2000e/2001e

2. StarOffice 5.2

3. PaintShop Pro

4. Emacs

Development Environments

1. COMP300 Labs

2. School for Linguistics and Applied Language Studies (for testing)

3. Personal Computer Environments

7. Revised estimates of project risks:

	Risk and type

	Likelihood and potential impact
	Mitigation strategy

	Analytical: Failure to understand client specifications

	Very likely and high impact

	We propose to have regular meetings with the client to present developments. In addition we will keep in close contact with the client via email to clear up any ambiguities.

	Analytical: The user interface does not match the client's mental model of the system.
	Likely and Moderate Impact.
	We propose to do paper-mock-ups and horizontal slices of the system to investigate the client's expectations.

	Technical: Team chooses an inappropriate implementation technology.
	Unlikely and high impact

	Development of small-scale prototypes to test the appropriateness of the technology.

	Technical: Design of a system that cannot be implemented with the available technologies

	Possible and high impact
	Scale down the system. Additionally, take note of comments from the supervisor and marker.

	Technical: Our decision to use a database to store results could have implications we are yet to consider
	Likely and High Impact
	We aim to design a system that is not dependant on any storage device so that it can easily be modified if the database is found to be too complex.

	Technical: We decide to implement some or all features of our system using CGI and are unable to master the technology.
	Unlikely and High Impact.
	We plan to design in parallel to some extent to investigate other available technologies.

	Technical: We decide to use different technologies to implement the various aspects of the system and are unable to merge them.
	Likely and High Impact.
	We plan to perform integration testing throughout development to avoid this.

	Technical: Designing an overly complex system due to having too many interacting modules.
	Likely and high impact
	There is a trade off between complexity of the modules versus complexity of the system as a whole. We aim to find a balance between the two.

	Technical: Choosing a vertical slice that is too broad
	Fairly unlikely and high impact
	We will find a balance between what the client wants implemented and what we are able to do within the given timeframe.

	Technical: choosing an irrelevant vertical slice (i.e. Implementing features that the client does not want)
	Fairly unlikely and high impact
	We will negotiate what will be implemented with client and make adjustments to the vertical slice as necessary.

	Technical: Too many layered APIs add some processing overhead.
	Likely and low impact.
	We will attempt to follow layering heuristics (have 7± 2 layers).

	Managerial: Client changes requirements during project.

	Unlikely and high impact

	We will keep the design reasonably flexible and keep in close contact with the client.

	Managerial: Communication problems within the group.

	Not so likely and high impact

	We plan to do the following: have at least one weekly meeting, file share via group accounts, use email to update team members of progress and make use of the discussion board.

	Managerial: Deadlines for deliverables not met.

	Likely and high impact
	Regular status reports to ensure the project is on track.

	Managerial: Team member is unable to continue work on the project

	Unlikely and high impact
	Ensure that all team members keep up to date with work of all other team members so roles can be delegated if necessary.

	Managerial: Team members are cast in roles that do not extend them.
	Likely and low impact (with regards to completion of the project, but high impact in terms of team members' personal development).
	Discuss role allocation at team meetings to force team members out of their comfort zones.

	Managerial:

Breakdown of team relations due to unfair allocation of work
	Likely and low impact
	We will attempt to break up work evenly. However this is not always possible, so we will rotate "chunky" work blocks amongst members for different milestones.

8. Glossary

Abstract Base Class: a class that defines an interface between a set of common classes.

Actor: a generalization of people that initiate events within the system.

API: Application Program Interface.

Architecture: a general system design model, which can be used as a starting point for system design.

Block: a piece of the game that can be moved.

Board: a grid containing pieces that can be moved upon the grid.

Boolean: a computer representation of a true or false statement.

CGI: Common Gateway Interface, a programming tool.

Class: a class is a program module for grouping data (fields) and behaviour/operations (methods).

Client: a network application, the end system that initiates the communication is the client host.

Database: an application that provides persistent, safe and organised storage of information.

Debugging: the process undertaken to remove "errors" in the system.

Driver: a player whose role is to move pieces on a board and pass instructions onto the slider.

Editor: a person whose primary role is to edit a board of the game SPOT.

Exception: a deviation from the expected behaviour.

GUI: Graphical User Interface

int: a computer representation of an integer.

Interface: the point of interaction or communication between a computer and any other entity (i.e. human, package).

Java: an object oriented programming language that is portable across platforms.

LALS: School for Linguistics and Applied Language Studies.

Mental Model: internal representation of the system that the user has.

Milestone: a significant point in time and productivity.
Module: a group of classes.

Object: a computer structure that attempts to represent a part of the real world.

Online Help: a computer aid to guide a user in using a specific application

Package: a collection of related classes, grouped by common functionality or goal.

Parallelism in development: an approach whereby modules can be developed independently and simultaneously.

Partition: a subsystem in a peer to peer architecture

Platform: operating system.

Player: participant of a game of SPOT

Port: the address for sending and receiving packets between computers.

Reviewer: a person whose primary role is to review the moves played within SPOT.

Server: a network application, the end system that waits for clients to initiate communication is the server host.

Slider: a player whose role is to follow the instructions of a driver by moving pieces on a board.

Socket: a host-local, application created interface into which the application process can both send messages to and receive message from another application process.

SPOT: a game, which attempts to understand the ambiguities of the English language

Stack: a container of information from which we can add and remove information from.

Start Time: the time recorded when a game is begun.

Storage System: the system that stores all information about the boards and the rounds to disk or to a database.

String: computer representation of a sequence of characters.

TCP: transmission control protocol, used for reliable sending of packets between a client and a server.

Thread: a single path of control within the SPOT application.

Vertical Slice: the core components of the system, which will be implemented first.

9. Individual contributions to the document

Architectural Overview

Design goals - Anna Ladd, Daniel Ballinger

Class diagrams - Daniel Ballinger, Derek Foo, Rilla Khaled

Responsibilities of the classes - Daniel Ballinger, Edward Bedwell, Derek Foo

Sequence diagrams - Derek Foo, Rilla Khaled,Daniel Ballinger

Design rational - Edward Bedwell

Design, implementation and other considerations -Derek Foo, Edward Bedwell

Revised estimates of project risks - Rilla Khaled, Anna Ladd, Daniel Ballinger

Editors - Derek Foo, Edward Bedwell, Daniel Ballinger

Glossary -Derek Foo, Daniel Ballinger, Rilla Khaled, Edward Bedwell

Appendix 1

2/23

[image: image12.png][image: image13.png][image: image14.png]