[image: image1.png]oy afrodram

HelloHorldepp . java

Daniel Ballinger (300041839)
Comp304
Assignment 1

Comp 304 Assignment 1

Assessment
 of the

Java Programming Language
[image: image2.png]

Daniel Ballinger
List of Contents

1. Title Page ……………………………………………………………..
Pg. 1

2. List of contents ……………………………………………………….
Pg. 2

3. Introduction ……………..…………………………………………….
Pg. 3

4. Syntax Design ……………..………………………………..……….
Pg. 4

5. Control Structures ……………..…………………………………….
Pg. 6

6. Data Types ……………..…………………………………………….
Pg. 7

7. Simplicity and Orthogonality ……………..…………………..…….
Pg. 8

8. Abstraction ……………..…………………………………………….
Pg. 10

9. Expressivity ……………..…………………………………………….
Pg. 11

10. Type Checking ……………..…………………………………..…….
Pg. 12

11. Exception Handling ……………..…………………………..……….
Pg. 12

12. Restricted Aliasing ……………..…………………………………….
Pg. 13

13. Conclusions ………………………………….……………………….
Pg. 14

14. Appendices

· References ……………………………….…………….……..…
Pg. 15

· Glossary ……………..…………………………….…………….
Pg. 16

Introduction

Java is an object-oriented programming language that was created by Sun Microsystems in 1991 for use in consumer goods like VCRs. In the mid-1990's Java became a popular programming language for the World Wide Web, and it has increased in popularity since. Now in its fourth major release, Java is a versatile programming language suitable for use in a vast range of applications.

In producing this assessment of the Java programming language I have used Sebesta’s language evaluation criteria as set out in his book [RS96]. As such, features of the Java language will be assessed on their effects on readability, writability, and reliability. Much of the discussion includes comparisons to C and C++ as they are regarded as mainstream languages and some of Java is based on concepts from these languages. Also, all three languages can be used to solve a very similar set of problems with varying ease.
Syntax Design

The syntax of Java is based on that of C. The great advantage of doing this is that the many experienced programmers who already work with C and C++ can move to being productive Java programmers with very little training required.

Quote from [JMM]

“Within any particular programming paradigm, the syntax is really only a skill issue. However, it is a tedious issue requiring time to acquire. If languages can share syntax within the same paradigm then this time is saved. Better yet if languages can share syntax across paradigms - this reduces the non-essential learning time. “

Most of the constructs that work in C will work in Java as well. There are, however, minor variations. For example, the following statement is interpreted differently in C, C++ and Java:

for (int n = 0; n < max; n++) ...

In C it is not legal to declare a variable in a for loop. In C++ it declares n till the end of the function. In Java it declares n only for the following block. These syntactic differences are minor and more important is the recognition of the for loop across languages.

The concept that a variable has scope (variables cease to exist when the part defining them completes execution) leads to some of the characteristics of the Java language. It is possible to hide (replace) a variable with a lower scope and hence introduce subtle bugs into code for inexperienced programmers.

Example taken from [LC00]:

class ScopeTest {

int test = 10;

void printTest() {

int test = 20;

System.out.println(“Test: “ + test);

}

public static void main(String[] args) {

ScopeTest st = new ScopeTest();

St.printTest();

}

}
Here the local variable within printTest() hides the instance variable test. When printTest() is called it displays that test equals 20, even though there’s a test instance the equals 10. It is possible to refer to the instance variable using this.test as the this keyword refers to the current object.

Java places several requirements on how variables are named:

· Variable names in Java must start with a letter, an underscore character (_), or a dollar sign ($).

· They cannot start with a number.

· After the first character, variable names can include any combination of letters or numbers.

· Accented characters and other symbols can be used in variable names as long as they have a Unicode character number.

· Variable names are case sensitive.

· It is forbidden to use a reserved word as a variable name.

Apart from the above requirements, Java is not strict on variable names or conventions and it is possible to use connotative
 names for variables. There is no set out capitalisation that must be followed but Sun does suggest a naming convention for identifiers resulting in improved readability as they can be identified easier along with their associated meaning if they are well named.

When passing arguments, Java unlike C++ does not support default arguments. It would be possible to get a similar effect by adding an extra method that calls the original with the default argument passed as well. This, however, degrades both readability, as the code is more spread out, and writability, as more lines of code are needed to do what is relatively simple in C++.

The semicolon (;) character is used to separate (terminate) statements in Java. There is nothing to stop a programmer putting several statements on one line. However, putting unrelated or excessive statements on a single line can extend the time it takes for the code to be understood.

A pair of braces ({ }) form a block or block statement. They can perform similar function to a begin-end pair from other languages and support nesting of statements.

The skills of the programmer to correctly use these two syntax features will effect the readability of the program. Good tabbing practices can greatly aid the programmer when they (or someone else) have to back track to find matching pair of braces. It has been noted that the excessive use of nested blocks can degrade readability as the code becomes to complicated to follow.

Two main types of comments are supported: // is used to form a comment of the proceeding text to the next end of line character, /* and */ are used as comment delimiters for comments that take up more than one line. A computer readable comment can be formed using /** instead of /* and is used for official documentation as discussed in the expressivity section.

The form and meaning of the statements in Java is such that their appearance helps indicate their purpose in order to aid readability. As discussed in the control structure and simplicity sections, the semantics of some syntax is similar which can lead to errors in use (e.g. i++ and ++i).

Control Structures

Examples of supported control structures:

if Conditionals:

if (boolean_condition) { statement; }

if (boolean_condition) { statement; } else { statement; }

if (boolean_condition) { statement; } else if (boolean_condition) { statement; }

else { statement; }
Unlike C or C++, Java requires the test (boolean_condition) to return a Boolean value. Otherwise the use of if conditionals is the same as that from C++.

boolean_condition ? true_result : false_result;

// Conditional or Ternary operator
switch (boolean_condition) {case a: { statement; } default: { statement; } }
Switch Conditionals are useful for reducing the unwieldy use of if statements and have the same behaviour as in C. A limitation is that the tests and values can only be primitive types that are castable to int.

Loops

while(test) { statement; }

do { statement; } while(test);
Both while loops have the same function as that from C++.

for (initialisation; test; increment){ statement; }

The for loops are the same as in C++ and support multiple initialisation and increments.

Breaking out of Loops

break

break toLabel

continue

continue toLabel

toLabel:
In the basic form the break and continue keywords can only be used to move back to the bottom or the top of a loop. Labels can be added to tell Java where to resume execution of the program.

try { statement; } catch (Exception e) { statement; } finally { statement; }

Like C++, try and catch blocks are used for exception handling. The finally clause has been added

When passing parameters, C only directly supports pass-by-value. However, since it is possible to take the address of any item and pass that by value, it allows a kind of pass-by-reference. C++ adds an explicit pass-by-reference, so there are three styles of parameter handling.

Java only has pass-by-value, which greatly simplifies the language. Objects are already represented by addresses so these are passed without having to do address manipulation. Other primitive data types such as int are also passed by value. This gives only one style of parameter; hence improving readability, writability, and reliability as it is easier to understand the implications of passing a parameter.

Following with modern ideas on the use of goto [GOTO], Java does not support indiscriminate jumping around code and hence does not have a goto command. The one style of unconditional jump mechanism that Java does have is the break label or continue label, which are used to jump out of the middle of multiply-nested loops. It should be noted that break label and continue label are functionally equivalent. In most cases Java achieves the rules set out [RS96] to make the use of “gotos” more readable. They are:

· Gotos must precede their targets, except when used to form loops.

· Their targets must never be too distant.

· Their numbers must be limited.

Java is multithreaded. Threads are implemented by monitors but this is not visible to the programmer. Synchronisation of threads is accomplished by locking on objects for programmer declared methods using the synchronized keyword. The priority of threads can be set programmatically. Having this built-in support makes it writing multi-threaded programs easier. More discussion is made in the expressivity section.

Data Types

Low-level data types (primitives) and literals

Java, like C++, has primitive types for efficient access. In Java, these are boolean, char, byte , short, int, long, float, and double. All the primitive types have specified sizes that are machine-independent for portability (this must have some impact on performance, varying with the machine). All primitive types can only be created directly, without new. There are wrapper classes for all primitive classes except byte and short so it is possible to equivalent heap-based objects with new.

Primitives (Table taken from [RG01])
PRIVATE
Type
Signed?
Bits
Bytes
Lowest
Highest

boolean
n/a
1
1
false
true

char
unsigned Unicode
16
2
'\u0000'
'\uffff'

byte
Signed
8
1
-128
+127

short
Signed
16
2
-32,768
+32,767

int
Signed
32
4
-2,147,483,648
+2,147,483,647

long
Signed
64
8
-9,223,372,036,854,775,808
+9,223,372,036,854,775,807

float
signed exponent and mantissa
32
4
±1.40129846432481707e-45
±3.40282346638528860e+38

double
signed exponent and mantissa
64
8
±4.94065645841246544e-324
±1.79769313486231570e+308

The char type uses the international 16-bit Unicode character set, so it can automatically represent most national characters. To display the Unicode character the machine being used must have support for Unicode.

There is no such thing as a byte or short literal. They can only be created via a cast e.g. (byte)0xff or (short)-99.
Initialisation of primitive class data members is guaranteed in Java; if they are not explicitly initialised they get a default value. Numeric variables get 0, chars
‘\0’ and booleans false. They can also be initialised directly when defined in the class, or in the constructor. The syntax makes more sense than C++, and is consistent for static and non-static members alike. It is not necessary to externally define storage for static members like in C++.

Casting from one primitive to another.

Implicit casting occurs when using a byte or char (according to the ASCII character set) as an int, an int as a long or float, or anything as a double. An explicit cast must be used when converting from a larger type to a smaller type due to the possibility of lost precision. Boolean values must be either true of false and hence cannot be used in a casting operation. Automatic casting allows for more natural statements to be written and the programmer to deal with loss in precision by having to explicitly cast.

The int literal can store integers between 2,147,483,647 and -2,147,483,648. It supports decimal, hex (0x prefix), octal (0 prefix), and Unicode (\u escape sequence as prefix). A common mistake that occurs in Java is to put a leading 0 on integers and getting octal (notation inherited from C) instead of decimal. This can be quite common when specifying months or days, where people naturally tend to provide a lead 0, and will cause confusion during debugging.

High level data types / Objects

All objects in Java are handled by means of a pointer to an object structure in the heap. Pointers certainly exist in Java. However, pointer arithmetic does not, and pointers as data types do not exist. This removes many of the pointer dangers that plague C and often C++ programs.

All non-primitive types can only be created using new, which returns a reference to the object (exceptions are made here with Strings). There's no equivalent to creating class objects "on the stack" as in C++. Java references don't have to be bound when they're created (they get a default value of null), and they can be rebound at will, which eliminates part of the need for pointers.

Strings and arrays are objects in Java. Both have special in-built abilities that would not normally be available to other objects. There are no static strings as in Java, static quoted strings are automatically converted to String objects. Sting handling in println() methods, assignment statements, and method arguments is simplified with the use of the concatenation operator (+). If any variable in a group of concatenated variables is a String, Java treats the whole thing as a String.

With arrays in Java, run-time checking throws an exception if an attempt is made to access a cell that is out of bounds, and there's a read-only length member that stores how big the array is. All arrays are created on the heap, and one array can be assigned to another (the array handle is simply copied). Also, only one-dimensional arrays are directly supported. To achieve multi-dimensional arrays, arrays of arrays are created. The relation between arrays and pointers from C++ is also missing. Since array bounds are checked this removes the possibility of walking off the end of an array or String and causing subtle bugs in a program. The declaration of array variables has some effect on the simplicity of Java as String[] arrayName; and String arrayName[]; are equivalent.

Java constructors are similar to those from C++. You get a default constructor if you don't define one, and if you define a non-default constructor, there's no automatic default constructor defined for you, just like C++. There are no copy-constructors, since all arguments are passed by reference, but, as all objects inherit from Object, they have a clone() method.

There are no destructors in Java. There is no "scope" of a variable to indicate when the object's lifetime is ended - the lifetime of an object is determined instead by the garbage collector using the number of references held to that object. There is a finalize() function that's a member of each class, like a destructor, but finalize() is called by the garbage collector and is only supposed to be responsible for releasing resources.

Simplicity / orthogonality

In the following example taken from Sebesta [RS96], it is shown that it is possible to increment a simple integer in four different ways:

count = count + 1

count += 1

count++

++count
When used alone, all four statements have the equivalent meaning. When they are used as parts of more complex expressions subtle bugs can be induced if they are not used correctly. These statements reduce the overall simplicity of the language but give the programmer more power when writing code. Hence, increasing writability.

Similar arguments can be made of the ternary operator, switch-case blocks and if-else statements. With the exception of the switch-case blocks only being able to use primitive data types, all can be functionally equivalent. Having a large number of features in a language that produce the same result can lead to misuse of some and disuse of other features that may be more elegant or more efficient, or both [RS96]. The advantages of the ternary operator are for experienced programmers in creating complex expressions [LC00] at the cost of simplicity.

The presents of the | and & logical operators in addition to || and && can cause some confusion. In almost all situations the more efficient versions are used (|| and &&) as they prevent the evaluation of trivial expressions. For example in (true && x > 10), x > 10 will never be evaluated. If however, & had been used, both sides would have been evaluated regardless. The result of not using the ‘&’ operator much is that many programmers are never exposed to it and may misinterpret (or ignore) the difference when observed in code. Problems can occur when a more experienced programmer has used a more efficient operator to create a form of guard structure. For instance, if it is not certain that an object has been initialised yet code like the following may be used to prevent dereferencing null.

String x = null;

…

if (x != null && x.equals(“hello world”)){..}

else {//could deal with case where x may equal null}

As discussed in the abstraction section below, Java has a single rooted hierarchy where all objects ultimately inherit from the Object class in the language package. This differs from the C++ approach where a new inheritance tree can be started anywhere. This single root hierarchy sometimes seems a bit restrictive but it does give a great deal of power since every object is guaranteed to have at least the Object interface.

Java does not need forward references like C++ does. A class or a member function can be used before it is defined and the compiler will ensure that it gets defined at some point. Thus avoiding the forward referencing issues that occur in C++. The benefits of this are many, removing the need to create separate header files for classes or declare external functions makes programming easier and more productive.

It has been noted [JZ97] that the access model with respect to the mutability (or read-only-ness) of objects has some conflicts in Java. For example:

System.in, out and err (the stdio streams) are all final variables. In earlier versions of Java they weren’t, however, a clever applet-writer realised that it was possible to change them and start intercepting all output and create potentially damaging programs. To counter this the Java developers at Sun changed them to final. It was realised that in some situations it was desirable to change them. So, Sun also added System.setIn, setOut, and setErr methods to change them.

Hence, it is possible to change a final variable. To do this Sun had to “sneak in” through native code and change them. Thus they created public read-only yet privately writable variables, which is a protection method not available to average Java programmers.

It has also been noted [JZ97] that as far as the Java Virtual Machine is concerned, all final variables are always writable to the class they're defined in. There's no special case for constructors: they're just always writable. The javac compiler pretends that they're only assignable once, either in static initialiser code for static finals or once per constructor for instance variables. It will also optimise access to finals, despite the fact that it's actually unsafe to do so.

Memory management is handled automatically by Java rather than requiring the programmer to allocate and deallocate memory (as in C and C++). Some advanced applications benefit from allowing the user to do memory management but for the majority of programmers the greater simplicity of having a garbage collector will allow them to learn Java quicker and produce more reliable code. Failures in memory allocation raise exceptions that are relatively easy to handle.

Some other things that catch people new to programming (and sometimes experienced programmers) include:

· Trying to use == to compare two Strings. The statement ends up comparing two Object references that are almost always different. The correct approach is to use the equals() method provided by String.

For example:

…

catch (Exception e) {

String errorMessage = e.getMessage() + “ hello “;

 //Could have used; String errorMessage = new String(e.getMessage() + “ hello “);

System.err.println(“Oh no, an exception occurred” + errorMessage);

}
I believe one of the reasons for this to be such a common error for programmers starting out in Java is that Strings are often used as literals. For instance: when defining errorMessage the string “ hello “ is created as though it was a literal and hence a new String object is created without the explicit use of the new keyword. Also, it seems odd that the concatenation of strings should allow the use of the ‘+’ operator but not overload the ‘==’ operator for comparison.

· By programmers not following conventions set out for writing programmes in Java, a great deal of confusion can be created and code reuse becomes less reliable. Classes that don’t start with capital letters often won’t be highlighted as classes in editing programmes.

· Finding the length of an array can also be a source of confusion. Using the array.length variable to get the number of elements in the array can be misleading as it is not possible to change the length of the array object after it is declared. Reasons of efficiency most likely lead to using a variable over a method like length().

· Current implementations of threads use different scheduling models on different platforms. This can lead to different behaviour on different systems.

· It is not possible to override static methods in a subclass as though they were class methods. This indicates they're actually global functions [JZ97], which contradicts the concept that Java doesn’t have global functions.

Abstraction

Part of Java’s support for abstraction comes from it being an Object-oriented language.

An Object-oriented language should possess four characteristics [Rumbaugh 91]:

· Identity - data is quantified into entities called objects.

· Classification - objects with the same data structure and behaviour are classified into classes.

· Polymorphism - the same operation may behave differently on different classes.

· Inheritance - the sharing of attributes and operations among classes based on a hierarchical relationship.

Java possesses these characteristics. C++ is also an O/O language according to this definition. However, because most C programs are also legal C++ programs, C++ is also a procedural language. Thus C++ lacks the “purity” of Java in O/O terms. It is possible to have stray functions and global variables that don’t belong to objects in C++ but not in Java. Instance and class variables are used instead of global variables to communicate information from one object to another, and these replace the need for global variables, which can often effect the reliability of a program.

Java being an O/O language increases the naturalness of expressions and therefore increases writability. There is support for both process (object methods) and data (classes) abstraction as in C++. Process abstraction helps reduce the repetition of common pieces of code, define the behaviour of objects, and remove obscuring code from the main flow of the program. Data abstraction is done mainly through classes, inheritance, and access specifiers.

As it is not possible to avoid objects in Java most programs have a kind of “clunky” start [JMM], in which they have to define an object with a main() method.

Inheritance

Java has only single inheritance and a weak version of multiple inheritance. A class can only inherit methods and instance variables from one parent class (which of course can inherit from others). Many O/O languages (such as Smalltalk) are also single inheritance. For any class that does not specify a superclass, Java assumes that the new class is inheriting directly from Object. As a result the inheritance “graph” in Java as actually a tree with Object at the root.

With multiple inheritance, a class can inherit from more than one class simultaneously, as in C++. A multiple inheritance graph is a directed graph without cycles. Multiple inheritance can allow a finer encapsulation of behaviour. For example, a class can inherit persistence behaviour from an storage class and windows from a windowing class simultaneously.

A major problem that occurs with multiple inheritance is that if a method with the same signature is defined in two classes and both are inherited, then a choice has to be made as to which implementation to inherit. C++ uses complex rules to choose the appropriate method.

Java has simplified the multiple inheritance model to get around this by only allowing multiple specification inheritance without implementation via the interface keyword. An interface is a collection of methods that indicate a class has some behaviour in addition to what it inherits from its superclasses. The methods included in an interface do not define this behaviour, that task is left for the classes that implement the interface. The interface keyword creates the equivalent of an abstract base class from C++ with no data members filled with pure virtual functions. As a result there is no choice problem because there are not multiple implementations to choose between, i.e. the correct method can always be found in the class or its superclasses.

The weakness in this is that in about half of the cases where multiple inheritance is required, implementations should be inherited. These are missed in the Java model.

Operator and method overloading/overriding

New objects have access to all method names of its class and superclass. This is determined dynamically when a method is used in a running program. When a method of a particular object is called, the Java interpreter first checks the object’s class for that method. If the method isn’t found, the interpreter looks for it in the superclass of that class, and so on, until the method definition is found.

When a subclass defines a method that has the same name, return type, and arguments that a method defined in a superclass has, the method definition that is found first (starting at the bottom of the hierarchy and working upward) is the one that is used. Because of this, it is possible to create a method in a subclass that prevents a method in a superclass from being used.

Some object oriented languages, notably C++, allow not only the overloading of methods but also operators like + or -. This is very useful when dealing with user defined mathematical classes like complex numbers where + and - have well-defined meanings. However, most non-mathematical classes do not have obvious meanings for operators like + and -and overloading them can reduce the readability. Experience has shown [EH97] that operator overloading is a large contributor to making multi-person programming projects infeasible. Therefore Java does not support operator overloading.

There's no explicit constructor initialiser list like in C++ but the compiler forces the programmer to perform all base-class initialisation at the beginning of the constructor body and it won't allow these later in the body. Member initialisation is guaranteed through a combination of automatic initialisation and exceptions for uninitialised object handles.
Expressivity

Java is a programming language that’s well suited to both designing software that works in conjunction with the Internet (applets) and as a general-purpose programming language.

Some of the places where it is used include:

· Desktop applications

· Internet/Web servers

· Middleware

· Personal digital assistants

· Embedded devices

· Relational databases

· Mainframe computers

· Telephones

· Orbiting telescopes

· Credit card-sized “smartcards”

Additionally it is a cross-platform language, which means its programs are designed to run without modification on Microsoft Windows, Apple Macintosh, Linux, Solaris, and other systems. The original goal for Java programs to run without modification on all systems has not yet been realised [LC00]. Java developers routinely have to test their programs on each environment they expect it to run on, and are sometimes forced to do cumbersome workarounds as a result. The advantages of having a cross-platform are of great benefit to writability even though this feature of the language is still not perfected.

When writing applications that are time dependant it is important to take into consideration that Java uses a virtual machine to convert byte-code into machine-code, which raises issues with performance. The virtual machine is interpreted on each architecture that ``runs'' Java giving machine independence, with only the interpreter requiring porting (this is why threads run differently on different systems as the local thread mechanisms differ).

Any layer of interpretation adds an order of magnitude to execution time. With the extra checks that Java has, a Java program runs about 20 times slower than a corresponding C++ program [JMM].

In some circumstances this does not matter much. For example, in a windowing application so much time is spent in the window code being written in C (for speed) that the small amount of Java code executed doesn't slow things down much more.

When writing a program in Java where speed matters, there are two solutions available: code the critical code in C as a native method, or use just-in-time compilation. Both of these are system-specific solutions. Native methods require a pre-compiled dynamic link library to exist on the machine to be loaded and called by the Java program. Just-in-time compilation compiles methods to native code just before execution, and requires the Java virtual machine interpreter to be a compiler as well.

The built-in garbage collector has the potential to slow down the application as well. The collector runs as a low priority thread to help minimise such problems.

Java lacks support for parameterised classes (also know as generics or templates) that are often useful. One example 0application is having a Stack of Integer or a Stack of Float. This is solved in Java by having all classes inherit from a common Object and then having a Stack of Object. It is then necessary to apply lots of runtime tests for specific types, which could be considered clumsier. Generics also allow methods to be defined to act on a parameterised data type (Ada and C++ both allow this).

Java has built-in support for comment documentation (the /** and /*- delimiters), so the source code file can also contain it's own documentation, which is stripped out and reformatted into HTML using a separate program (Javadoc for example). Tags like @returns can also be added to better structure the documentation and behaviour of the code. Big gains are to be had here for documentation maintenance and reuse.

By having built in support for threads it is easy to implement many multithreading applications. Mutual exclusion occurs at the level of objects using the synchronized keyword as a type qualifier for member functions, and there's a Thread class that can be inherited from to create a new thread. Only one thread may use a synchronised method of a particular object at any one time and locking/unlocking are handled automatically as discussed in the control structure section. Due to the rather course grained approach Java takes towards thread synchronisation, the synchronized keyword (either when used with whole methods or in smaller blocks) may not always be appropriate to control access to shared variables. If more sophisticated synchronisation between threads is required the programmer must implement their own "monitor" class (with wait and notify methods). Recursive synchronized methods work correctly but time slicing is not guaranteed between equal priority threads.

Having been developed more recently than C++, Java’s support for networks and the Internet are much easier to use. Comparing, for example, the steps required in creating a TCP socket connection in C++ to Java would show a difference in writability in Java’s favour.

Type checking

Java uses both compile and run-time (program execution) type checking that are both important to the reliability of the language.

Compile time checking ensures, where possible, that the type of all variables and expressions specified in the program are correct before producing the class files (byte-code).

The second form of type checking Java does at run-time. The run-time type identification in Java is functionally quite similar to C++. The compiler automatically invokes the dynamic casting mechanism without requiring extra syntax and Java will check usage and throw exceptions in the event of a bad cast. Information is available to the programmer at run-time, which can be used to get information about the type of an object. It is possible to get the class name of a handle X by using the methods that are inherited from Object and Class, for example: X.getClass().getName();

The instanceof operator can be used to determine if an object is an instance of a class or any of its subclasses.
Type-checking and type requirements are much tighter in Java than C++. Examples include:

· Conditional expressions can only be boolean, not integral, making meaning is much clearer.

· The result of an expression like X + Y must be used; it is not possible to use, say, "X + Y" for the side effect.

· The null object is not equivalent to zero or the ‘\0’ character as the NULL constant is in C.

Exception Handling

Java’s Exception handling is based on that provided by C++ and is the equivalent of the checking system calls in C where the system call gets wrapped up in a Boolean success/fail test. Some differences exist, as there are no destructors in Java. An improvement over C++ is that the compiler enforces exception specifications (compile-time error checking) where as C++ has only a run-time mechanism. Java also provides the finally clause for exception processing that will always be executed regardless of an exception being thrown/raised. In a similar way to how all objects are subclasses of Object, all exceptions are inherited from a base class Throwable. This ensures a common interface for exception processing and provides useful methods such as printing a stack trace. In contrast, C++ allows any object to be thrown for an exception. By raising then subsequently catching run-time exceptions it is possible for Java programs to take corrective measures and then continue with the program. This is a great aid to the reliability of the language. It is possible to catch an exception and pass it back up to the calling method if it is not convenient to deal with it at the current point.

An example taken from [BE96]:
public void f(Bonk b) throws IOException {

myresource mr = b.createResource();
try {

mr.UseResource();
} catch (MyException e) {

// handle my exception
} catch (Throwable e) {

// handle all other exceptions
} finally {

mr.dispose(); // special cleanup
}

}
As all exceptions inherit from an Exception superclass, problems can arise in catch blocks if one or more of its subclasses follow. The result being that the subclass will never catch any exceptions. The compiler will often check to see if the exception has already been caught by the superclass and notify the programmer.

Poor use of exception handling code can reduce readability as it gets mixed in with “ordinary” code and obscures what is actually trying to be achieved. It is possible to use exceptions where a simple expression or series of expressions could be used. It is more efficient in Java to avoid throwing exceptions if possible as they take up more processing time than simple tests. An example would be catching the ArrayIndexOutofBounds exception when a simple test against the array’s length variable would have been sufficient. Using the exception in this case would split the code to deal with this case off from the normal code, although it is a very common case situation. Ideally exceptions in Java should only be used when dealing with truly exceptional cases that are out of the programmers control.

Restricted Aliasing

Due to the structure of primitives in Java it is not possible to have multiple references to the same primitive.

The Java language and the standard libraries do not allow programmers to directly use the underlying hardware of the system running the program. Hence it is not possible to directly access memory locations or read from ports, etc. Part of the reason for this is security. Consequently, it is not possible to do things like write a device driver in Java. To get low-level access, native code methods must be written and the programmer must ensure that the correct DLL is available where the program runs. Using native code greatly reduces the writability and readability of a program as multiple languages become involved.

Instead of controlling blocks of declarations like C++ does, access specifiers (public, private and protected) are placed on each definition for each member of a class. Without an explicit access specifier, the element defaults to "friendly", which means it is accessible to other elements in the same package (equivalent to them all being friends) but inaccessible outside the package. The class, and each method within the class, has an access specifier to determine whether it's visible outside the file. The private keyword is not so useful in Java because "friendly" access is typically more valuable than excluding access from other classes in the same package. The Java protected means "accessible to inheritors and to others in this package". To get the C++ equivalent "accessible to inheritors", private protected are used. When used correctly these access specifiers offer many advantages to the reliability of a program. Particularly in regard to enforcing abstraction rules for classes.

When using threads in Java, it is possible for more than one thread to alias a variable. It is possible when multiple threads are trying to use a variable at the same time for concurrent issues to arise. Poor use of synchronised, or an unsafe user monitor may cause the threads to deadlock.

Conclusions

As a lot of Java was based on aspects of C++, some of the issues with readability, writability, and reliability have come across to Java.

These are particularly in the areas of syntax design and control structures. Advantages from having C++ based syntax and control structures came from allowing programmers to switch between the two programming paradigms easily. As most of the concepts and potential problems effecting the three main language evaluation criteria were already well understood in these areas, the potential impact was reduced. New programmers could be alerted to problems and those who knew C++ would already be aware of them.

Improvements have been made in the areas of data types, abstraction, type checking, exception handling and restricted aliasing to make Java a more reliable and a more pure object-oriented language than C++.

Some of this comes from removing aspects of the C language like global variables, multiple inheritance, and introducing strong type checking and garbage collection. Having only one way to reference primitives and a separate way to reference objects greatly simplifies Java.

Platform independence means a programmer should be able to create code once and use it on any platform. This is a big plus for Java in terms of writability, although some bugs still exist in the portability.

References and Resources
[LC00]
Laura Lemay and Rogers Cadenhead.

Sams Teach Yourself Java 2 in 21 Days, Second Edition.

Sams Publishing 2000.

[RS96]
Robert W. Sebesta.

Concepts of Programming Languages, Third Edition.

Addison-Wesely Publishing Company, Inc. 1996.

[KL93]
Kenneth C. Louden.

Programming Languages, Principles and Practice.

PWS Publishing Company 1993

[Rumbaugh 91] J Rumbaugh, M Blaha, W Premerlani, F. Eddy and W. Lorenson.

Object-Oriented Modelling and Design.

Prentice-Hall, 1991

[JMM]

Java - Myth or Magic

http://pandonia.canberra.edu.au/java/auugjava/paper.html
Jan Newmarch

[RG01]
Roedy Green's Java & Internet Glossary – Cheat Sheet

http://mindprod.com/gloss.html

Roedy Green

[CJCA]
A minimal comparison of Java with C++ and Ada 95

http://www.adahome.com/Resources/Languages/chart3.html
[EH97]
Operator Overloading

http://www.ibiblio.org/javafaq/course/week4/01.5.html
1997 Elliotte Rusty Harold

[BE96]
Thinking In Java, Appendix B: Comparing C++ and Java

http://www.sce.carleton.ca/netmanage/java/thinking/CPPvsJav.htm
1996 Bruce Eckel

[TTSAJ]
Things That Suck About JAVA

http://alumni.cse.ucsc.edu/~rhaxton/javasucks.html
[JZ97]

Java Sucks.

http://www.jwz.org/doc/java.html
1997-2000 Jamie Zawinski <jwz@jwz.org>
[GOTO]
Dijkstra’s Letter

“Goto Statement Considered Harmful”

1968

Knuth’s Article

“Structured Programming with Goto Statements”

1974

Java and the images taken from java.sun.com are trademarks of Sun Microsystems. Copyright © 1995-2001 Sun Microsystems, Inc.
Glossary

Readability – How well programs can be read and understood in the language.

Writability – How easy it is to produce programs. This depends on the type of problem one is trying to solve.

Reliability – How well programs behave that are written in the language.

From [RS96]:

A program is said to be reliable if it performs to its specifications under all conditions.

Orthogonality – (in programming languages) Concepts of the language do not interfere with each other.

From [RS96]:

A relatively small set of primitive constructs can be combined in a relatively small number of ways to build the control and data structures of the language. Furthermore, every possible combination of primatives is legal and meanignful.

�PAGE \# "'Page: '#'�'" ��assess e­ses,

verb transitive to fix the amount of (eg a tax); to tax or fine; to fix the value or profits of, for taxation (with at); to estimate, judge, evaluate (eg a person's work, performance, character).

�PAGE \# "'Page: '#'�'" ��connote kon­ot, verb transitive to signify or suggest (ideas, associations, etc) in addition to the direct meaning; to imply as inherent attribute(s); to include as or involve a condition.

conn'otative adjective (or ­note­tiv) or conno'tive. [Latin con- with, and notare to mark]

�PAGE \# "'Page: '#'�'" ��(in programming languages) Concepts of the language do not interfere with each other.

C:\My Documents\Education\University\comp304\assign1\assign1.doc
06:34 P.M. 12/09/01

Pg. 16/16

