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Abstract

This study extends previous work that accounted for mileage accumulation in automo-

tive warranty data analysis. Coverage is typically limited by age as well as mileage. Age

is known for all sold vehicles all the time, but mileage is only observed for a vehicle with

a claim and only at the time of the claim. Here we consider either age or mileage as the

usage measure. We evaluate the mean cumulative number of claims or cost of claims and

its standard error as functions of the usage measure. Within a nonparametric framework,

we account the rate of mileage accumulation and allow for variation in the rate of mileage

accumulation over a vehicle’s lifetime. We illustrate the ideas with real data on four cases

based on whether the usage measure is age or miles and whether the results are adjusted

for withdrawals from warranty coverage.

Key words: automotive warranty data analysis, mean cumulative function, nonparametric
framework

1 Introduction

Warranty data is of considerable interest to corporations for several reasons. Warranty claims
are a liability incurred at the time of sale and represent a cost of doing business, so forecasting
those costs is of interest. For engineers a secondary but important use of warranty data is to
assess the reliability of products in the field. A third characteristic of warranty coverage is that
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it is a product attribute valued by customers and affecting their buying decisions. For example
increasing warranty coverage may attract more buyers but also increase costs. See Robinson
and McDonald [10] and Blischke and Murthy [1] for more discussion on these general points.

Automotive warranties in many other countries generally offer a free repair subject to age and
mileage limits. Age is measured from the time of sale to the customer. At this writing the
most common limits in the U.S.A. for ”bumper-to-bumper” coverage are thirty-six months or
thirty-six thousand miles, whichever comes first. Some manufacturers offer longer warranties
across the board. Others offer longer warranties only on their luxury models or for selected
components such as powertrain. An important, but seldom discussed distinction is that in some
cases the warranty coverage is transferable to a subsequent buyer, but in other cases it is not.

Vehicle ages are known at all times because sales records are retained. It is also becoming
technically feasible to track mileage accumulation on all vehicles in the field, but this is currently
not a common practice for cost and privacy reasons. But for vehicles that generate a warranty
claim, the mileage at the time of a warranty repair are recorded at the dealership and included
in the warranty database. Thus from a modeling standpoint we have two usage measures
(age and mileage), but one of them (mileage) is incompletely observed. As is commonly done
warranty claims are modelled here as recurrent events from a repairable system. Also, we take
a nonparametric approach because sample sizes are large. We note however that warranty
fo recasting, which requires extrapolation beyond the oldest age/mileage in the field, requires
either a parametric model or the incorporation of past-model data on older vehicles. We deal
explicitly with the problem of incomplete mileage information and also with the problem that
repairs made beyond the age or mileage limits will not be part of the warranty database.

This modeling approach and data structure has been discussed extensively before. The model
and estimation procedure are based on the ”robust estimator” discussed by Hu and Lawless [3].
The consideration of the number of units at risk due to say mileage limitations and based on in-
complete mileage information extends Nelson’s [8] standard estimator. Lawless, Hu and Cao [6]
also dealt with the incomplete data problem and specify a simple linear mileage accumulation
model, which is generalized in this study. The general survey paper by Lawless [5] includes
a discussion of the bias caused by reporting delay, which was analyzed earlier in Lawless and
Nadeau [7] and Kalbfleisch, Lawless and Robinson [4]. Robinson [9] discussed finite population
corrections to the variance estimators.

Chukova and Robinson [11] adopted the robust estimator and the simple linear mileage accu-
mulation model to estimate the number of units at risk at any given time from the incomplete
mileage data. This information was used to provide explicit expressions for the estimated mean
cumulative number of claims per vehicle with or without adjustments for reporting delay. Here
we relax the linearity assumption for mileage accumulation, proposing instead a piece-wise lin-
ear model with nodes occuring at the observed mileages corresponding to warranty repairs. In
Chukova and Robinson only the last warranty claim was used to estimate a vehicle’s mileage
accumulation rate. For the piece-wise model, we use all claims in the database to characterise
mileage accumulation. We define vehicle strata based on mileage accumual tion rates as well as
the variability of mileage accumulation rates over time. We compare estimated mean cumula-
tive functions based on this stratification approach with the more basic ones given by Chukova
and Robinson.

Section 2 defines the basic notation and summarizes the Hu and Lawless model as adopted
by Chukova and Robinson. Then Section 3 presents the more general model based on the
stratification approach. The compuations for the stratification model are described in Section 4.
Section 5 includes an example based on the same dataset analyzed by Chukova and Robinson
comparing the two methods. A summary discussion is found in Section 6.
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2 The Model

Using notations and terminology from Hu and Lawless [4] and Chukova and Robinson [2], let
ni(t) be the number of claims at time t for vehicle i. (In the formulas that follow ni(t) could also
denote the cost of the claims at time t for vehicle i). It is convenient and not restrictive to think
of time as discrete, i.e. t = 1, 2, .... Let Ni(t) be the accumulated number of claims (or cost) up
through and including time t for vehicle i. “Time” is either age or mileage of the vehicle, not
the calendar time. Let M be the number of vehicles under observation, whose records make
up the warranty database. Let τi be the“time” that unit i has been under observation. Precise
definition of the τ ’s will depend on whether time is age or mileage.

Hu and Lawless [4] and Chukova and Robinson [2] obtained estimators Λ̂(t) of the population
mean cumulative function Λ(t) = ENi(t). The incremental rate function can be written as
λ(t) = Λ(t)−Λ(t−1) with the initial condition Λ(0) = 0. Let δi(t) = I(τi ≥ t) be the indicator
of whether car i is under observation at time t. Then

n.(t) =
M
∑

i=1

δi(t)ni(t)

is the total number of claims observed at time t for all M vehicles. Note that δi(t) may be
unknown for some of the cases, but the product δi(t)ni(t) is always known. That is for the
numerator in the rate calculations we do not distinguish between a vehicle not under observation
at time t versus one that is under observation but produces no claims.

Let M(t) = M denote the number of vehicles eligible to generate a claim at time t and denote
its generic estimator by M̂(t). Then the rate function estimate is given by

λ̂(t) =
n.(t)

M̂(t)
(1)

with associated mean cumulative function estimator

Λ̂(t) =
t
∑

s=1

λ̂(s), t = 1, 2, . . . , max
1≤i≤M

(τi). (2)

Assuming known M(t) and some other mild conditions, Hu and Lawless [3] show asymptotic
normality of Λ̂(t) with a standard error given by the square root of

V̂ ar[Λ̂(t)] =
M
∑

i=1

(

t
∑

s=1

[

δi(s)ni(s)

M(s)
−

λ̂(s)

M

])2

. (3)

Chukova and Robinson estimated M(t) from the warranty data itself and substituted this
estimate into (3) to obtain approximated standard errors. We follow the same course here but
propose an alternative estimator of M(t), which as mentioned earlier, makes use of essentially
all available mileage accumulation information. The stratification approach used to derive this
alternative estimation is discussed in the next section.
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Figure 2: Trajectory of a 510-stable car

3 Modeling mileage accumulation: A Stratification Ap-

proach

Next, we extend the ideas of Chukova and Robinson [2] and Hu and Lawless [4], by relaxing the
linearity assumption regarding the automobile mileage accumulation. We propose an empirical
piece-wise linear model to deal with this issue. We model the vehicle driving pattern (behaviour)
by focusing on two factors:

• the mileage accumulation rate,

• the variability of the mileage accumulation rate.

We split the group of M cars into two subgroups, so that the first one consists of M1 cars with a
claim record and the second one consists of M2 cars with no claim record, where M = M1 +M2.
Next, we propose a model for the mileage accumulation based on the observed driving patterns
of the cars with claims and impose this model on the cars with no claims.

3.1 Grouping the cars with claims according to their driving pat-

terns

First we identify several groups of cars depending on the pattern of their mileage accumulation
rate, which is observed through their claim records. We measure the variability of the mileage
accumulation rate by introducing a partition of the warranty region into strata, as shown in
Figure 1. The variability of the mileage accumulation rate for a car is measured by assigning the
car to a particular group. These groups are associated with the number of strata the trajectory
of the car goes through during its warranty “life”, where the trajectory of the car is assumed to
be piece-wise linear between its consecutive claims and remains within the stratum of its last
claim, as shown in Figure 2.

Definition 1. We say that a car is stable with respect to a certain range if the trajectory of
this car remains within this range throughout its warranty “life”.

Let Pk be a regular strata partition of the warranty region with a stratum angle equal to α = π
2k

.
For example, in Figure 1 the partition of the warranty region is P10. This partition is regular
because the corresponding strata are of equal size, i.e., the size of the stratum angle α = π

20
is

the same for all strata. We say that a car is 1k-stable with respect to partition Pk, where k is
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a positive integer number, if all claims of this car belong to a single stratum of this partition.
We denote the size of this group by M1

1 . In addition, we denote by O1
1,s, s = 1, 2, . . . , k the

number of 1k-stable cars, for which claims fall into the sth stratum of Pk, where

O1
1,1 + O1

1,2 + . . . + O1
1,k = M1

1 .

These counts O1
1,s will be used to estimate a strata distribution, which reflects the proportion

of vehicles within each of the strata.

Next, we consider the group of cars, say of size Mki

1 , ki are positive integer numbers, 1 <

k1 < k2 < . . . < k, such that their claims are spread within exactly ki strata of the partition
Pk. These are the kik-stable cars, i.e., they are stable with respect to an aggregated stratum
consisting of ki of Pk’s strata. In order to estimate the strata distribution we need to take into
account the contribution of the ki-stable vehicles to the number of vehicles in the strata. This
contribution is assumed to be uniform over the ki strata included in the aggregated stratum
with respect to which this vehicle is ki-stable. In other words, each ki-stable vehicle contributes
a fraction of 1

ki
to each of these ki strata. The piece-wise linear trajectory of such a car goes

through ki strata, starting with the stratum that contains the earliest claim. Figure 2 depicts
the trajectory of an 510-stable car, which goes through strata 3 to 7. The contribution of this
car to the count of cars in each of these strata is equal to 1

5
, i.e., the contribution of this

car is uniformly distributed over the strata, which consist of its trajectory. Therefore, the
corresponding counts Oki

1,s, s = 1, 2, . . . , ni are also well defined.

We continue in the same way and identify groups of cars that are stable with respect to a
prespecified size of an aggregated stratum. As a result of this procedure we partition the set
of all M1 cars with claims into non-overlapping groups, called driving patterns groups (DPG).
Within each of these DPG, the variability of the automobile mileage accumulation follows a
similar pattern. Assume that kd is the size of the largest aggregated stratum needed to describe
the stable driving patterns of the cars with claims. The value of kd reflects on how accurate
the model accounts for the variability of the driving patterns of the vehicles.

Then, following the above notations, we will have several groups of cars, such that, the first
one consists of M1

1 1k-stable cars with O1
1,s, s = 1, 2, . . . , k number of cars in the sth stratum,

the second one consists of Mk1
1 k1k

-stable cars with Ok1
1,s, s = 1, 2, . . . , k number of cars in the

sth stratum and so on and the last one consists of M
kd

1 kdk
-stable cars with O

kd

1,s, s = 1, 2, . . . , k
number of cars in the sth stratum.

After these groups are identified, there will be a set of cars, say of size M
kd+1

1 , with unstable
driving pattern. We say that these cars are unstable because their driving trajectory during
their warranty ’life” goes through more than kd strata of the initial partition Pk. For this group
of cars we apply the model for the mileage accumulation in Chukova and Robinson [2], i.e., we
assume that their trajectories are linear, determined by their last claim and identify the counts
O

kd+1

1,s , s = 1, 2, . . . , ni of unstable cars in the sth stratum. Thus, the whole set of cars with
claims is partitioned into non-overlapping groups, such that

M1
1 + Mk1

1 + . . .M
kd

1 + M
kd+1

1 = M1.

Moreover, the contribution of these groups to each of the strata is also known. Therefore the
number of cars with claims O1,s within the sth stratum is

O1,s = O1
1,s + Ok1

1,s + . . . O
kd

1,s + O
kd+1

1,s for s = 1, ..., k. (4)

Note: The notion of unstable cars is not important. We can build up the model by looking
at all possible DPG for a given regular partition Pk. For a regular partition with k strata, we
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need to look at 1k-stable cars, 2k-stable cars, . . ., kk stable cars, i.e., the total number of DPG
needed to place each car in one of the DPG is equal to k. Thus, using this approach the number
of unstable vehicles will be equal to zero.

3.2 Estimating the strata distribution

Now we are ready to estimate the strata distribution. Using the strata counts O1
1,s, Ok1

1,s, . . . ,

O
kd

1,s, O
kd+1

1,s we can estimate the strata distribution p = (p1, p2, . . . , pk), where

ps = Pr(a vehicle with claim belongs to sth stratum). Thus, we obtain

ps =
O1,s

M1
, for s = 1, 2, . . . , k, (5)

where O1,s for s = 1, 2, . . . , k are given by (4). The strata distribution reflects the mileage
accumulation rate for the cars with claims. While estimating this distribution, the variability
of the driving patterns is taken into account. In addition, we assume that the strata distribution
is time independent, i.e., it remains the same over different age intervals.

3.3 The mileage accumulation model for cars with no claims

Often in the warranty database, there is a large group of cars of size M2, with no claim records.
We assume that the driving behaviour of these cars is probabilistically identical to the driving
behaviour of the cars with claims. In other words, we assume that the strata distribution is
a reasonable representation of the driving patterns for the cars with no claims, and therefore,
the strata distribution describes the driving patterns of all cars in the database.

4 Computing the mean cumulative number of claims or

cost of claims

Next, we propose a procedure for computing the mean cumulative number of claims, and related
to it, mean cumulative cost of claims under two different meanings of the parameter “time”,
namely, the “time” is age of the vehicles or the “time” is the mileage of the vehicles.

4.1 “Time” is Age Case

Define a regular partition 0 = a0 < a1 < . . . < an−1 < an = la of size n, i.e.,

ai − ai−1 = h(a), i = 1, 2, . . . , n, where ha =
la

n
, a0 = 0,

and la is the warranty age-wise limit, as given in Figure 3. If necessary, we can extend this
partition beyond the warranty age limit la. The “time” discretization is defined by the step
h(a), i.e., the “time” t assumes discrete values ti = i h(a), such as 0 = t0 = a0, t1 = a1, . . . , tn−1 =
an−1, tn = an = la, tn+1 = la + h(a), . . .. Moreover, since the age of the vehicles is known, no
matter whether it is a vehicle with a claim record or with no claim record, the number of
vehicles Nai

with age within an age-bin △
(a)
i = [ti−1, ti), i = 1, 2, . . . , n, is known.
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If we ignore withdrawals from coverage due to mileage, then the number of vehicles eligible to
generate a claim at age t is simply the number of vehicles age t or older, i.e.,

M̂(tl) =

M
∑

i=1

δi(tl). (6)

This estimator correctly characterizes how warranty claim rates and costs actually accrue as a
function of age, and it may be useful for prediction. However, in addition to the inherent claim
rate as a function of age, it is influenced by the accumulation of mileage because this affects
how long vehicles remain in warranty coverage. To illustrate the point, suppose hypothetically
that warranty claims occur due to age and not miles, and suppose that drivers begin to drive
more. The inherent reliability of the population of vehicles would not change, but the warranty
claim rate would go down because more vehicles would drop out of coverage sooner due to the
mileage limit.

To get at this “true” warranty claim rate, we will adjust for the fact that some vehicles leave
coverage by exceeding the mileage limit. The numerators in (1) are available because they are
the number of claims or cost for the vehicles at age t and are available in the database. Here
and later the adjustment will always be to M̂(t) in (1). To capture this rate the “time” under
observation is now defined as τi = min(agei, yi), where yi is the age in days at which the ith

vehicle exceeds (or would exceed) the mileage limit of lm = 36, 000 miles and agei is its current
age.

Since odometers are not monitored continuously, yi is not known even for vehicles that have
had a claim. For a target age t, a vehicle contributes to M̂(t) if it is old enough and if its
mileage at age t is estimated to have been within the mileage limit lm. Therefore, based on our
stratification model for the mileage accumulation, the estimator for the denominator of (1) is
given by

M̂(tl) =

(

M −

l
∑

i=1

Nai

)(

k−l
∑

j=1

pj

)

. (7)

For example, looking at Figure 3, assume that we want to estimate M̂(t2). We need to estimate
the number of vehicles age t2 or older, which at time t2 are still within the warranty region,
i.e., at time t2 they have not exceeded the mileage limit lm. The number of vehicles age t2
or older is equal to M −

∑2
i=1 Nai

. At time t2, vehicles with driving patterns associated with
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the 10th and 9th strata would have left the warranty coverage, whereas vehicles with driving
patterns associated with strata 1−8 will be still within the warranty. Therefore, the proportion
of vehicles within the warranty region at time t2 is

∑8
i=1 pi. Therefore the required estimate is

M̂(t2) =

(

M −

2
∑

i=1

Nai

)(

8
∑

j=1

pj

)

. (8)

4.2 “Time” is Miles Case

If warranty claim rates are more closely related to mileage than age, then we may wish to
analyze by miles. This could occur, for example, in some engineering applications where we
would expect warranty incidents to occur more as a result of usage than of age. Throughout
the remainder of the paper we will use the argument “m” for mileage. The fact that the exact
mileage is unknown except at the time of a claim complicates the calculation of M̂(m), but the
mileage accumulation model used in the previous subsection can produce reasonable results.
Again, the numerators in (1) are available because they are the number of claims or cost of
claims for the vehicles at mileage m and are available in the database.

For the unadjusted for age case the “time” under observation for vehicle i is τi = mi, the
current mileage. As before it will be convenient to think of mileage as a discrete variable. We
discretize the mileage by creating a regular partition 0 = m0 < m1 < . . . < mn−1 < mn = lm of
size n, i.e.,

mi − mi−1 = h(m), i = 1, 2, . . . , n, where h(m) =
lm

n
, m0 = 0,

and lm is the warranty mileage-wise limit, as given in Figure 4. If necessary, we can extend
this partition beyond the warranty mileage limit lm. The “time” discretization is defined
by step h(m), i.e., the “time” t assumes discrete values mi = i h(m) for i = 1, 2, . . . , n, . . .,
such as 0 = m0, m1, . . . , mn−1, mn = lm, mn+1 = lm + h(m), . . .. In addition, consider an age-

strata grid, say (s, ai), determined by the stratum s, s = 1, 2, . . . , k and the age-bin △
(a)
i for

i = 1, 2, . . . , n, . . ., as shown in Figure 3. We use this age-strata grid to estimate the number
of cars within appropriately specified mileage-bins △

(m)
i = [mi−1, mi). As in the case of time

is “age”, in order to provide an estimator for M̂(m), we need to know the number of vehicles

Nmi
with mileage within a mileage-bin △

(m)
i = [mi−1, mi), i = 1, 2, . . . , n. The current mileage

is not known exactly, even for vehicles with claims, but it can be estimated by using the strata
distribution and the age-strata grid (s, a).

We estimate the Nmi
’s by using ideas similar to the ideas of analysing group data. For each

cell (s, ai) from the age-strata grid we identify a typical mile-representative, say m(s,ai). For
example, m(8,a2) represents the mileage for the (8, a2)’s cell, as shown in Figure 3. Therefore,
we estimate that

Nm(s,ai)
= psNai

(9)

is the number of cars with current mileage equal to m(s,ai). Hence, for each cell of the age-
strata grid we identify three numbers: the strata number s, the average mileage m(s,ai) and
corresponding number Nm(s,ai)

. Next, we estimate the number of vehicles Nmi
with mileage

within a mileage-bin △
(m)
i for i = 1, 2, . . . , n, . . ., by simply adding the numbers of cars with
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Year 1998 1999 2000 2001

Number of sold vehicles 40 048 44 755 34 807 44 890

Number of cars with claims 25 011 25 504 21 473 21 103

Number of claims 62 123 60 127 43 814 45 430

Total cost of the claims 6 978 476 6 670 940 2 217 578 2 091 608

Table 1: Summary of 1998 - 2001 warranty data

typical mile-representatives that fall within the ith mileage-bin △
(m)
i , i.e.,

Nmi
=

∑

m(s,ai)
∈△

(m)
i

Nm(s,ai)
(10)

For the unadjusted case, we estimate Nmi
for i = 1, 2, . . . , n, . . ., by extending the age-strata

grid beyond the warranty age limit la to cover all claims including those that are outside of the
warranty coverage, i.e. the estimator for M̂(m) is given by

M̂(m) = M −

k∗

∑

i=1

N∗
mi

, (11)

where the counts N∗
mi

within △
(m)
i are estimated using the extended age-strata grid. The value

of k∗ is equal to the number of age-bins in the extended age-strata grid.

To adjust M̂(m) for vehicles leaving coverage due to age, we want to assure that the target
mileage m is reached before the vehicle leaves the warranty due to age, i.e., we consider only
claims that are within the warranty coverage. Thus, the age adjustment of the estimator is
achieved by

M̂(m) = M −

k
∑

i=1

Nmi
, (12)

where k is the number of age-bins within the warranty coverage and Nmi
are estimated using

only these k age-bins.

5 Example

We illustrate the ideas on a set of actual warranty data for a particular vehicle make over four
year models. Table 1 provides a summary of these data.

9



\ DPG S M1 M3 M6 M>6 Total
MAR \

< 450 41.14 131.16 99.08 111.69 229.20 122.45

450 - 1080 41.65 115.32 136.57 160.93 152.19 121.33

1080 - 2600 51.49 149.11 138.00 166.57 165.36 134.10

> 2600 29.75 72.37 89.06 69.56 199.85 92.07

Total 45.65 131.44 132.36 155.88 165.91 126.25

Table 2: Average cost per vehicle - 2001 DPG

\ DPG S M1 M3 M6 M>6 Total
MAR \

< 450 25.86 90.22 127.91 124.77 249.24 123.60

450 - 1080 29.96 112.51 143.74 173.07 170.39 125.93

1080 - 2600 34.34 128.91 163.80 173.95 215.18 143.23

> 2600 30.70 114.23 152.30 114.92 367.07 155.85

Total 30.21 111.47 146.94 146.68 250.47 137.15

Table 3: Average cost per vehicle - 2000 DPG
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5.1 The strata distribution

The warranty region is divided into age-bins of size of one month and mileage-bins of size of
1000 miles. The strata partition is chosen to be of size k = 72, i.e, each stratum is reasonable
narrow with an angle equal to

π

2k
=

π

144
= 0.0218166 radians.

The set of all cars with clams is partitioned into several non-overlapping driving patterns groups
(DPG) as follows:

• cars with a single claim - denoted as group S

• cars with multiple claims

– cars with all claims within one stratum - group M1

– cars with all claims within three strata - group M3

– cars with all claims within six strata - group M6

– cars with claims spread over more than six strata - group M>6

Next, we aim to estimate the strata distribution for the above set of DPG. We determine the
contribution of a car to a stratum in the following way:

• For cars with a single claim - group S

– each car belongs to a single stratum determined by its claim

• For cars with multiple claims

– cars with all claims within one stratum - DPG M1

∗ each car belongs to a single stratum determined by its claim

– cars with all claims within three strata - DPG M3

∗ each car is uniformly distributed over three strata, starting from the stratum
consisting of its earliest claim

– cars with all claims within six strata - DPG M6

11



∗ each car is uniformly distributed over six strata, starting from the stratum con-
sisting of its earliest claim

– cars with claims spread over more than six strata - group M>6

∗ unstable cars - each car belongs to a single stratum determined by its last claim

Figure 5 illustrates the contribution of a car from DPG M3 to the strata distribution, whereas
Figure 6 shows this contribution for a car from DPG M6.

Figure 7 depicts the strata distributions for the three consecutive 1999 - 2001 year models, and
it is easy to see that these distributions are very similar.

Next, we explore the relationship between the variability of the driving pattern and the war-
ranty cost. We extracted the information needed to study this relationship from the database
and its summary for 2000 and 2001 is given in Table 2 and Table 3. In these tables the mileage
accumulation rate (MAR) is in miles per month. Similar summaries for 1998 and 1999, not
shown here, were also available. The pictorial representation of these results is given in Figure
9 and Figure 11. These figures differ by the number of DPG considered in the model, which
reflects on how variability of the driving patterns is accounted for. Figure 9 shows the war-
ranty cost per car for different driving patterns, where the driving patterns are represented
by S, M1, M3, M6 and M>6 groups as defined above. On the other hand, Figure 11 shows
the warranty cost per car for different DPG, where the driving patterns are represented by
M1, M2, M3, . . . , M11 and M>11 groups. These figures suggest that the variability of the driv-
ing pattern affects the warranty cost. The upward trend of the plots suggests that a higher
variability leads the higher warranty cost. This is a very interesting observation that needs
to be studied further. At the same time, it suggests that in modelling the mileage accumula-
tion its variability should be taken into account and that modelling only the “average” driving
behaviour does not provide enough information to study the relationship between the driving
behaviour and related warranty costs.

Figure 10 depicts the warranty cost as a function of mileage accumulation rate (MAR) for years
2000 and 2001 with partition of MAR (< 450, 450−1080, 1080−2600, > 2600). We have looked
at similar plots for 1998 - 2001 with much finer partition of MAR, shown in Figure 12, but, in
this study, no consistent relationship between warranty cost and MAR has been detected.

5.2 The “P-claims” Dataset

We illustrate the methods for calculating the mean cumulative number of claims or cost of
claims and its standard error as functions of the usage measure on a set of warranty data with
44,890 records taken from model year 2001 vehicles sold mainly in calendar years 2000 and 2001.
We examine the warranty claims on one major system of the vehicle, which is not identified.
It will be referred to as “System P”. Table 4 summarizes the dataset. In order to illustrate
our points we created versions of the dataset as it would have existed at four different “cuts”
in time: Jan. 1, 2001; Jan. 1, 2002; Jan. 1, 2003; and the actual “cut” date for our original
dataset, Oct. 24, 2003. These are displayed in Table 4 along with the descriptive statistics
of the datasets up through the respective dates. For proprietary reasons a few vehicles were
randomly selected, and their records were deleted from the original dataset. Also, the costs
have been re-scaled. These precautions do not affect the authentic nature of the data.

The median mileage accumulation rate is around 40 miles per day, and declines slightly over
calendar time. This is more than the rate of 33 miles per day, which corresponds roughly to
exhausting the 36,000-mile limit in exactly three years. So most cars leave coverage due to
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Figure 7: 1999 - 2001 strata distributions
Figure 8: 2001 time cuts strata distribu-
tions

Figure 9: Cost per DPG - 4 DPG Figure 10: Cost per MAR

Figure 11: Cost per DPG - 12 DPG Figure 12: Cost per MAR

Figure 13: Unadjusted/adjusted Λ(t) 95%
CL

Figure 14: Unadjusted/adjusted Λ(m)
95% CL
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Descriptive\ Time Jan. 1, Jan. 1, Jan. 1, Oct. 24,
Statistics \Cuts 2001 2002 2003 2003

Number of P - claims 53 597 1206 1639

Cost 14 552 129 527 236 459 291 279

Number of sold vehicles 16 73 44 761 44 879 44 890

Median vehicle 91 333 697 992
age (days)

Table 4: Summary of 2001 Warranty File: Time cuts and p-claims

mileage. Also, we should emphasize that in the estimation of the strata distribution we use
mileage information from any claim, not just those from System P.

5.2.1 Examples for the “Time” is Age Case

In this section and the next, we illustrate the calculations for cost per car. The results are
similar for the number of claims per car. Figure 13 illustrates the effect of the adjustment for
withdrawals from coverage due to mileage, shown for the most recent time cut. The adjusted
curve is significantly higher than the unadjusted one. We have provided 95% confidence limits
on the adjusted and unadjusted Λ(t)’s, roughly indicating that the differences due to the mileage
adjustment is statistically significant at 95% significance level. This result is consistent with
the findings in Chukova and Robinson [2] based on the same data.

Figure 15 shows the adjusted curves for all four time cuts to illustrate how the results would
unfold over calendar time and Figure 16 provides similar results for the unadjusted curves.

5.2.2 Examples for the “Time” is Miles Case

Figure 14 shows the cumulative cost per car by mileage for the unadjusted case (with 95%
confidence limits) along with the adjustment for withdrawal from coverage due to age. In
“time” is mileage case, the adjustment is not statistically significant at 95% significance level.
Although, the two curves differ much more than under Chukova and Robinson [2] model.

We have observed that the effect of the adjustment for mileage in “time” is age case and the
adjustment for age in “time” is mileage case on the curves is different. The reason is that in our
dataset relatively few vehicles, only about 33%, leave coverage due to age. Also, the age limit
adjustment does not begin until the oldest car reaches the age limit of warranty coverage, which
is three years from the first sale for our dataset. This is in contrast to the mileage adjustment
for the “time” is age case, where the adjustment begins to have an effect when the first car
might possibly reach the mileage limit. In the Chukova and Robinson [2] model the estimation
of the percentage of vehicles leaving the coverage due to age is 38%.
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Figure 15: Adjusted Λ(t) by timecuts Figure 16: Unadjusted Λ(t) by timecuts

6 Discussion

We have proposed an extension to the Chukova and Robinson [2] and the Hu and Lawless [3]
“robust” estimator for the mean cumulative function and its associated standard error. Without
requiring any supplemental source of data for mileage accumulation, we deal with the problem
of incomplete information for mileages as it typically occurs in automotive warranty data. We
also utilize all available information and deal with the issue of changing mileage accumulation
rates throughout a vehicle’s life. As in previous studies, the adjustments that we propose are
with respect to the number of cars at risk.

Also, in Chukova and Robinson’s [2] model the linearity assumption imposed on the mileage
accumulation rate did not allow the variability of vehicle driving patterns to be taken into
account. The stratification approach in modelling the mileage accumulation allows us to account
for this variability and led to an interesting observation, namely that a higher variability in the
driving pattern may lead to a higher warranty cost. Of course, this observation is based on a
single dataset and requires more study.

Other future work could include a model to allow for dynamic cost estimation and prediction
of the mean cumulative number of claims or cost of claims and its standard error as functions
of the usage measure. Also, with the availability of appropriate data, a full bivarite treatment
of this problem would be possible.
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