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Abstract. Knowing the excluded minors for a minor-closed matroid
property provides a useful alternative characterization of that property.
It has been shown in [R. Hall, J. Oxley, C. Semple, G. Whittle, On
Matroids of Branch-Width Three, submitted 2001] that if M is an ex-
cluded minor for matroids of branch-width 3, then M has at most 14
elements. We show that there are exactly 10 such binary matroids M (7
of which are regular), proving a conjecture formulated by Dharmatilake
in 1994. We also construct numbers of such ternary and quaternary ma-
troids M, and provide a simple practical algorithm for finding a width-3
branch-decomposition of a matroid. The arguments in our paper are
computer-assisted — we use a program MACEK [P. Hlinény, The MACEK
Program, http://www.mcs.vuw.ac.nz/research/macek, 2002] for struc-
tural computations with represented matroids. Unfortunately, it seems
to be infeasible to search through all matroids on at most 14 elements.

1 Introduction

We assume that the reader is familiar with basic terms of graph theory. In
the past decade, the notion of a tree-width (and tree-decompositions) of graphs
attracted plenty of attention, both from graph-theoretical and computational
points of view. This attention followed the pioneer work of Robertson and Sey-
mour on the Graph minor project, and results of various researchers concerning
tree-width in parametrized complexity.

The notion of a branch-width is closely related to that of tree-width. However,
unlike tree-width, branch-width routinely generalizes from graphs to matroids.

* The research was supported by a New Zealand Marsden Fund research grant to Geoff
Whittle.



Similarly to the situation in graph theory, branch-width has recently shown to
be a very interesting structural matroid parameter. Besides others, we want to
mention the following recent works: well-quasi-ordering of matroids of bounded
branch-width over finite fields [4], size-bounds on the excluded minors for ma-
troids of fixed branch-width [6, 3], or an analogue of Courcelle’s M Sy-theorem
for matroids over finite fields [9].

The interest of our paper is in minimal obstacles (excluded minors) for ma-
troids of branch-width three. Knowing these excluded minors would provide a
useful characterization of branch-width. We prove a conjecture formulated by
Dharmatilake that there are exactly 10 such excluded minors among binary ma-
troids in Theorem 4.1. Moreover, we present some results about the ternary and
quaternary excluded minors. The arguments in our paper are assisted by the
computer program MACEK [7], which was developed by the author for efficient
general structural computations with represented matroids.

2 Connectivity and Branch-Width

We refer the reader to [10] for standard concepts in matroid theory. Here we
want to mention few things diectly related to our paper.

The ground set of a matroid M is denoted by E(M), and the rank function
by rpr. If G is a graph, then its cycle matroid (on the ground set E(G) ) is denoted
by M (G). All matroids obtained in this way are called graphic, and their duals are
cographic. They together form special subclasses of reqular matroids, which are
representable by a matrix over any field. Binary (ternary, quaternary) matroids
are those representable by a matrix over GF(2) (GF(3), GF(4)). However, not
all matroids are representable.

A matroid N is called a minor of a matroid M if N is obtained from M by
a sequence of deletions and contractions of elements. It is well-known that the
order of these operations does not matter, and so we may write N = M \ D/C
for some disjoint subsets C, D C E(M). We say that M has an N-minor if M
has a minor isomorphic to N.

In this section we focus on matroid connectivity, and on branch-decom-
positions. We mostly follow the definitions and concepts from [6]. Let M be
a matroid on the ground set E = E(M). The connectivity function Ay of M is
defined for all subsets A C F by

Mr(A) = rar(A) + (B — A) — (M) +1 .

Notice that always Ayr(A) = Ay (E — A). Tt is well-known that the connectivity
function is the same for the dual matroid, that is Ayr(A) = Au«(A) for all
ACE.

A subset A C E is k-separating if Ayr(A) < k. When equality holds here, A
is said to be ezactly k-separating. A partition (A, E — A) is called a k-separation
if A is k-separating and both |A|,|E — A| > k. For n > 1, the matroid M is
called n-connected if it has no k-separation for k = 1,2,...,n — 1. Of particular



interest to us are 3-connected matroids. One of the basic tools in matroid theory
is Seymour’s splitter theorem [14].

Theorem 2.1. (Seymour) Let M, N be 3-connected matroids such that N is a
minor of M. Suppose that if N is a wheel (a whirl), then M has no larger wheel

(no larger whirl) as a minor. Then there is a 3-connected matroid Ny such that
|E(Ny)| = |E(N)|+ 1, and that M has an Ni-minor.

Now we are ready to define a branch-decomposition of a matroid. A cubic
tree is a tree in which all non-leaf vertices have degree three.
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Fig. 1. An example of a width-3 branch-decomposition of the Pappus matroid.

Let M be a matroid on the ground set E = E(M). A branch-decomposition
of M is a pair (T, 7) where T is a cubic tree, and 7 is a bijection of E to £(T)
(called labeling). The width w(e) of an edge e in T is defined by w(e) = Apr(A),
where A = 771(¢(T")) and T" is one of the two components of T'—e. (This is well
defined since, for 7" being the other component of T' — e, the sets £(T"), £(T")
form a partition of £(7).) The width of the branch-decomposition (7', 7) is the
maximum of the widths of the edges of T', and the branch-width of M is the
minimal width over all branch-decompositions of M. If T' has no edge, then we
take its width as 0. See an example in Fig. 1.

Let By, &k > 1 denote the class of matroids of branch-width at most k. The
next elementary properties of branch-width are well-known [6].

Lemma 2.2. For any fized k > 1, the class By is closed under minors, duality,
direct sums, and 2-sums.

We remark that the brach-width of a graph is defined analogously, using
connectivity function Ag where A\g(F) for F C E(G) is the number of vertices
incident both with F and E(G) — F. Clearly, Ay(q)(F) < Ag(F) in a connected
graph, but these numbers may not be equal if the subgraph induced by F' is not
connected. Hence the cycle matroids of branch-width-k graphs belong to By, for
k > 1. On the other hand, it is still an open conjecture that the branch-width
of a graph G is equal to the branch-width of its cycle matroid M (G).

3 Excluded Minors

Let M be a class of matroids. We say that M is minor-closed if, for every M € M,
also all minors of M are in M. Many natural combinatorial problems lead to



minor-closed classes; like the classes of graphic matroids, or of matroids repre-
sentable over some field, or the classes By above.

A matroid F is called an ezcluded minor (also known as forbidden) for a
nonempty minor-closed class M if F' ¢ M, but all proper minors of F' are in M.
Obviously, if N € M, then there is a minor Ny of N such that Ny is an excluded
minor for M. A nonempty minor-closed family M is said to be characterized by
a set F of excluded minors for M if the following is true: A matroid M is not in
M if and only if M has an F-minor for some F' € F.

In graph theory, a breakthrough result of the Graph minor project by Robert-
son and Seymour can be formulated as follows [12]:

Theorem 3.1. (Robertson, Seymour) If G is a nonempty minor-closed family
of graphs, then G can be characterized by a finite set of excluded minors.

The situation is not so nice in matroids. There are known sets of matroids that
form infinite antichains with respect to the minor ordering, for example, so called
“free spikes” [4] that even have all branch-width three. Neverthless, it is always
interesting to look for natural matroid classes which have finite sets of excluded
minors that we can find.

Recall that B; denotes the class of matroids of branch-width at most k.
Clearly, B, consists of matroids with no dependencies, and so the only excluded
minor for B; is a loop. It was shown in [11] that the class By coincides with
the class of direct sums of series-parallel networks. Hence there are two excluded
minors for By, namely the uniform matroid U; 4 and the graphic matroid M (Ky).
The smallest matroids not in B3 are the uniform matroids Us 7, Uy 7.

N

Fig. 2. The four excluded minors for graphs of branch-width at most 3.

By Theorem 3.1, there is a finite set of excluded minors for graphs of branch-
width at most k for all k, but those sets are not known for k£ > 3. (After all,
there are only few natural minor-closed properties of graphs for which the set
of excluded minors is known.) The excluded minors for graphs of branch-width
at most 3 were found by Dharmatilake and others in [2]. The same list was
independently found later in [1]. See the graphs in Fig. 2.

Theorem 3.2. (Dharmatilake, Chopra, Johnson, Robertson) A graph has
branch-width at most 3 if and only if it has no minor isomorphic to one of
the graphs {Ks, @3, Og, Vs}-



-1 1 0 0 1
1 -1 1 0 0
Rqo I 0 1 -1 1 0
0 0 1 -1 1
1 0 0 1 -1

Fig. 3. The matroid R;g by Seymour, in a regular representation.
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Fig. 4. The matroids Ni1, No3 by Dharmatilake, in binary representations.

Since the matroids of all these four graphs have branch-width greater than
3, the theorem gives the graphic (and cographic as duals) excluded minors for
the class Bs. It is easy to find out that the regular matroid R;o (Fig. 3) is
also an excluded minor for Bsz. In addition to Theorem 3.2, Dharmatilake used
a specialized computer program to search for small binary matroids (up to 12
elements) that are excluded minors for B3. He found three more non-regular
matroids denoted by Ny, Nog, N7y (Fig. 4). Let

352 - {M(KE))’M(KE\)*a M(Q3)7 M(06)7 M(%)aM(VB)*aRIOaNllaNf17N23}-

Notice that M(Q3), M(Og) are dual to each other, and that Rjy and Na3 are
both self-dual. Dharmatilake then conjectured [2]:

Conjecture 3.3. (Dharmatilake, 1984) A binary matroid has branch-width at
most 3 if and only if it has no minor isomorphic to one of the members of F.

We prove this conjecture next in Sections 4,6. In addition, we present some
results about ternary and quaternary excluded minors for the class Bs. We use
the following theorem [6, 5] in our proof.

Theorem 3.4. (Hall, Oxley, Semple, Whittle) If N is an excluded minor for
the class Bs, then N has at most 14 elements.

In fact, another recent paper [3] gives a surprisingly short proof that there are
finitely many excluded minors for the class By for every k.

Theorem 3.5. (Geelen, Gerards, Robertson, Whittle) If N is an excluded mi-
nor for the class By, then N has at most (651 —1)/5 elements.

4 Our Results

Here we state the major result of our paper — a proof of Conjecture 3.3.



Theorem 4.1. A binary matroid has branch-width at most 3 if and only if it
has no minor isomorphic to one of the members of Fa (see on page 5).

Before proving the theorem itself, we present three short lemmas. The first
lemma is proved in [6, Lemma 7.4].

Lemma 4.2. FEvery excluded minor N for the class Bs is 3-connected, and the
only 3-separations in N have one side of size at most 4.

Let R15 be the regular matroid from Fig. 5.
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Fig. 5. The matroid R;5 by Seymour, in a regular representation.

Lemma 4.3. No reqular excluded minor for the class B3 has an Ris-minor.

Proof. Let M be a regular matroid with an Rjs-minor. A supplementary
result of Seymour’s decomposition theorem for regular matroids [14] states that
a regular matroid with an Rj2-minor has an exact 3-separartion in which both
sides have at least 6 elements. However, then M cannot be an excluded minor
for B3 by Lemma, 4.2. [}

Lemma 4.4. Let M be a 3-connected binary matroid on at most 14 elements
with an Fr-minor. If M has branch-width 4, then M has an N-minor for N € Fs.

Proof. Verifying this lemma is clearly a matter of a finite case check. We
have done the case analysis with help of the computer program MACEK [7].
Details of this computation are presented in Section 6. |

Proof of Theorem 4.1. Recall the set Fo = {M(K5), M(Ks5)*, M(Q3),
M(Og), M(Vs), M(Vs)*, Rig, N11, N7, N23} that is closed under duality. Let N
be a binary excluded minor for the class Bz of matroids of branch-width at
most 3. Then N is 3-connected by Lemma 4.2.

We first consider the case that N is a regular matroid. Then, by Seymour’s
decomposition theorem for regular matroids [14] (also [10, Section 13.2]), one
of the following is true: IV is graphic, or N is cographic, or N has an Rjg- or
Ris-minor. The last case is not possible here due to Lemma 4.3. If N has an
Rig-minor, then N ~ R,y € Fs. It remains to consider, up to duality, the case
that N is a graphic matroid. Then, using Theorem 3.2, N is isomorphic to one
of the graphic members of Fs.



Otherwise, N is not a regular matroid. So by Tutte’s characterization of
regular matroids [15] (also [10, Section 13.1]), binary N must have an F7- or F-
minor. Then, up to duality, the proof is finished in Lemma 4.4 and Theorem 3.4.
|

Remark. It would be possible to do a computer search similar to Lemma, 4.4
also for regular matroids, thus avoiding use of the previous theoretical results
about regular matroids.

It is natural to ask about other, non-binary excluded minors for B3. The
paper [6] remarks that it is “certainly feasible to write a computer program that
would quickly find all excluded minors that are representable over a given field”.
We think that, while making this remark, the authors did not fully understand
the effects of so called “exponential combinatorial explosion”. Similarly as in
Lemma 4.4, we have done the computer search for ternary excluded minors on
up to 12 elements, and for quaternary ones on up to 10 elements. More details
can be found in Section 6.

Proposition 4.5. Let F3 be the set of (pairwise non-isomorphic) excluded mi-
nors for Bz that are ternary but not binary. Then F3 contains no matroids on
less than 9 elements, 18 matroids on 9 elements, 31 matroids on 10 elements,
and no matroid on 11 or 12 elements.

Proposition 4.6. Let F, be the set of (pairwise non-isomorphic) excluded mi-
nors for Bs that are quaternary but neither ternary nor binary. Then F4 contains
no matroids on less than 8 elements, 5 matroids on 8 elements, 90 matroids on
9 elements, and 32 matroids on 10 elements.

Remark. The computer searches in the previous two propositions are not com-
plete since they reached only up to 12 and 10, respectively, elements instead
of 14. Unfortunately, the numbers of matroids in the ternary and quaternary
searches grew enormously. (For example, there were more than 16000 quater-
nary matroids searched on 10 elements, compared to about 2400 binary ones
searched on 14 elements. The total number of quaternary matroids on 10 ele-
ments is even larger.) We estimated that finishing the (easier) search in ternary
matroids would take at least several months on a single home computer, which
is not worth the effort, we think.

5 Testing Branch-width Three

In this section we present a small detour dedicated to testing branch-width three
in 3-connected matroids. We do so because we need a simple and fast practical
algorithm for this problem in our computer analysis.

A nice elementary linear time algorithm for finding graphs of branch-width
three is given by Bodlaender and Thilikos in [1]. Unlike other linear time al-
gorithms known for testing, for example, bounded tree-width of graphs, this



algorithm has reasonably small constant and it is suitable for practical imple-
mentation. It is probably possible to generalize the method of this algorithm
to matroids of branch-width three, but a major problem would be that the ex-
cluded minors for B3 were needed in the algorithm. Hence, moreover, a possible
generalization of the above mentioned algorithm to matroids would also be much
more complicated and not so practical to implement.

In contrast to the above approach, we use a polynomial algorithm with higher
exponent, but which is very simple to implement and fast in practical compu-
tations. The algorithm is based on the next interesting result of [6, Theorem
4.1]. We also acknowledge an informal suggestion from Geoff Whittle about a
possibility to develop such an algorithm.

A partitioned matroid is a pair (M, P) where M is a matroid on the ground
set E, and P = (E4,...,E,) is a partition (into nonempty parts) of the set E.
If the context is clear, we briefly refer to the partitioned matroid as to M. We
generalize the connectivity function to subsets of P by Ay (Q) = Amr(Uxeq X)-
We define a partitioned branch-decomposition (T,7) of (M, P) analogously to a
normal branch-decomposition, but using a bijection 7 : P — £(T') (i.e. the leaves
are labeled by the sets of P). A subset Q C P is displayed by an edge e in T if
Q = 771(4(T")) where T' is a component of T — e.

Theorem 5.1. (Hall, Oxley, Semple, Whittle) Let (M, P) be a 3-connected
partitioned matroid of branch-width 3, and let QQ C P be a set that is not displayed
in any width-3 branch-decomposition of M. Then, for R=Q or R= P —Q, the
following holds: |R| € {2,3}, and |X| =1 for all X € R.

To turn this theorem into a simple greedy algorithm for finding a width-3
branch-decomposition, we need one more technical lemma. A subset ' C P is
3-branched in a partitioned matroid (M, P) if the partitioned matroid (M, Pr)
has branch-with 3, where Pr = {E(M) — Uxcp X} UF.

Lemma 5.2. Let (M, P) be a 3-connected partitioned matroid of branch-width 3
with |P| > 3 and |E(M)| > 6. Then there is a 3-separating subset Q@ C P in M
such that Q 1is 3-branched, and that

1. 4<|Q| <6 and|X|=1 forall X € Q, or
2. 2<|Q| <4 and |X| > 1 for precisely one X € Q, or
3. |Q| =2 and |X| > 1 for both X € Q.

Proof. Let (T, 7) be a width-3 branch-decomposition of the partitioned ma-
troid (M, P). Let [ be a leaf of the cubic tree T such that, if possible, |77 (I')| = 1,
and let 7 be the neighbour of [. We denote by T, = T — [ the rooted tree with
the root r, and we initially set v = r. Then v has at least 4 descendant leaves
in T;. (not necessarily sons), or at least 2 descendant leaves among which some
is labeled by a set of P with more than one element. We now repeat the next
simple argument:

If v has more than 6 descendant leaves in 7., then one of the sons of v, say vy,
has at least 4 descendant leaves. In such case we replace v with v; and repeat the



argument. If all at most 6 descendant leaves of v are single-element labeled by 7,
then (1) is true for the set @ displayed by the edge of T} heading to v. (Obviously,
@ is 3-separating and 3-branched by the branch-decomposition 7'.) Otherwise, at
least one of the sons of v, say vy, has a descendant leave I’ such that |771(I')| > 1.
If vo has more than one descendant leaf, then we repeat the argument with vo
instead of v. Finally, if neither of the above situations happen, then either the
both sons vy, vy of v are themselves leaves such that |71 (vy)], |77 (v2)| > 1, or
vg is a leaf and v; has at most three descendant leaves which are single-element
labeled by 7. Hence we conclude (3) or (2), respectively. |

Notice that any set @@ from the lemma can be displayed in some width-
3 branch-decomposition of (M, P) by Theorem 5.1. The greedy algorithm for
finding a width-3 branch-decomposition of a given 3-connected matroid M is
now pretty obvious: We initially set the partition P = ({z} : z € E(M)). Then
we find a set @) according to Lemma 5.2, replace the sets of () in P by a single
part, and repeat the whole process again. When we get to a partition P with
only two parts, we have found a width-3 branch-decomposition of M. If we fail
to find @ at any step, then the branch-width of M must be bigger than 3 by
Theorem 5.1.

We present a formal description of the algorithm implementation in Fig. 6.
Let n = |E(M)|. To make the implementation faster, at each program pass we
precompute the triangles and triads formed by the remaining singleton elements
in S, and store them in the set 7. Actually, we better use an (internal) linear
order on S to prevent repetitions of the same triples in 7. Then, unless a 4-
element line or coline is found, there are only O(n?) triples in 7. Hence the next
search over all pairs in U UV takes only at most O(n?) iterations. Notice that
the set @), which we possibly find there, is already branched into two branches
given by the sets X,Y. In total the algorithm needs O(n®) rank evaluations in
M to finish. (We cannot tell the absolute computation time since the length of
one rank evaluation depends on the given representation of M.)

6 Computing Details

This section provides a detailed description of the computation we use in the
proof of Lemma, 4.4. The related computer files and intermediate results of the
computation can be found in [8].

As already noted above, we have used the computer program MACEK [7],
which was written by the author for general structural computations with rep-
resented matroids. This program can input and output matrices over different
fields (and so called partial fields), perform usual elementary matrix operations,
look for matroid minors and equivalence (subject to a particular matrix rep-
resentation), test some matroid-structural properties like branch-width 3, and
generate non-equivalent 3-connected matrix extensions.

Remark. We want to emphasize that the MACEK program we use is a general
toolkit for matroid computations, and not a specialized closed program prepared



# Finding o width-3 branch-decomposition of a 3-connected matroid M.
begin
input 3-connected matroid M on the ground set E, |E| > 6
# Variable S keeps the remaining singletons of E, and P the constructed partition.
set P=0, S=F
while [P|+|S|>2 do
# Variable T collects triangles and triads, and Q) gets the new part for P.
set Q=T=0
for all pairs {z,y} C S do
set K —cly({z,y}), L=di({z,})
for X=K,L do if |X| =3 then set T'=TU{X}
for X=K,L do if |X| > 3 then set (@ = X; break
done
if ) # () then
# A 4-element line or coline Q) is good for Lemma 5.2(1).
set () = any 4-element subset of ()
else
# Searching through all remaining possibilities for Q) (cf. Lemma 5.2).
set U = all pairs from (PUT U {{z,y}:z,y € S})
set V={{{z},Y}:z€S,YeP}
for {X,Y} e UUV do
# If X UY is 3-separating, then it is clearly also branched into X,Y .
if Ay(XUY) <3 then set Q=XUY; break
done
fi
if Q = () then break
# When @Q was found above, update the partition P and the singletons S.
set S=5-Q, P={Q}U{X:XePAXNQ=0}
exec remember the (sub)branching of @ in P for output
done
if |P|+ |S| > 2 then output “No width-3 branch-decomposition exists.”
else output “A width-3 branch-decomposition found here: ...”
end.

Fig. 6.

only for one task. Also, the reader may get feeling that our main advantage over
Dharmatilake’s work [2] is in faster today’s computers. This is, however, not so
since Dharmatilake used the resources of the Ohio Supercomputer Center for his
search, while our computation was carried out on a usual cheap home computer
(with AMD 800MHz processor).

Let us look at a 3-connected matroid M with an F7-minor. By Theorem 2.1,
there is a sequence of 3-connected matroids Ny = F7, Ny,..., N; = M such that
N;41 is a single-element extension or coextension of N;. Since binary matroids
have unique representations up to matrix equivalence, we actually consider a

10



one-row or one-column extension of the matrix of N; in the search. At the ¢-
th step of our computation, t = 1,...,7, we generate all one-row or one-column
extensions on 7+t elements from the branch-width-3 extensions on 6+1% elements.
Then we put aside the new extensions having branch-width bigger than 3, and
verify that all of them contain a minor in the set F2. We continue the next step
with the remaining (branch-width-3) extensions.

For reader’s information, we have generated the following numbers of branch-
width-3 extensions (the total number of all extensions is higher) at each step: 2
extensions on 8 elements, 4 on 9 elements, 14 on 10 elements, 38 on 11 elements,
125 on 12 elements, 432 on 13 elements, and 1551 on 14 elements. We carried out
the master computation on a PC computer with AMD Duron 800MHz processor
and 256MB memory, running Linux kernel 2.4.8, glibc 2.2.2, and using compiler
gee 2.96. The whole computation took about 1 day with no self-checks. We also
verified the results on various university computers with Sparc—Solaris, Alpha-
OSF, or Intel-NetBSD, using other versions of gcc 2.7, 2.8 or 2.95.

Notice that, if we had not known the set F», our approach would automati-
cally provide the new excluded minors at each step.

Let us now move to Proposition 4.5. All non-binary matroids contain a Us 4-
minor. Unfortunately, Uz 4 (the 2-whirl) is one of the exceptions in Theorem 2.1,
but an enhancement of this theorem presented in [10, Section 11.3] implies that
all ternary extensions of U; 4 that are not whirls contain a single-element exten-
sion or coextension of W3 (the 3-whirl) as a minor. All whirls have branch-width
at most 3. Therefore we perform a similar computation as above starting from
the self-dual matroid W?3. We must not forget to exclude those matroids having
some ternary (i.e. regular) member of F» as a minor. For details of the compu-
tation we refer to [8].

To present a similar computational proof for Proposition 4.6, we use the
following result of [13]: A non-binary non-ternary matroid representable over
some field has a Us5- or Us s-minor. Clearly, such a matroid must contain a
Us,5-minor, unless it is isomorphic to U,_2, which has branch-width 3. The
computation is then analogous to the previous two. Again, we should exclude
those matroids having some member of F5 or some quaternary member of F3 as
a minor. (In particular, we must do this computation after the previous one.)
One new theoretical problem arises for quaternary matroids — one matroid may
have non-equivalent quaternary representations. Fortunately, in this case there
may be only at most two non-equivalent representations of the same matroid
obtained by the automorphism w — w? of the field GF(4), and such pairs can
be easily detected in the resulting list. Again, we refer the reader to [8] for details.

Remark. The numbers of matroids and excluded minors for B3 generated in
Propositions 4.5,4.6 suggest that it is likely infeasible to search all (including
non-representable) matroids on up to 14 elements for the excluded minors for
Bs. However, it looks like there are only few excluded minors on more than 10
elements, and hence it may be possible to strenghten Theorem 3.4 so that it
would suffice to exhaustively search only matroids up to 10 elements.

11
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