
Summary Proceedings of the Fifth New Zealand
Formal Program Development Colloquium

Neil Leslie (Editor)
Institute of Information and Mathematical Sciences

Massey University at Albany
Private Bag 102-904

North Shore Mail Centre
Auckland

22 January 1999

The copyright of the individual papers remains the property of the respective authors.
The introduction is c Neil Leslie and Massey University 1999.

1



Introduction

This document is a summary of the Proceedings of the Fifth New Zealand Formal
Program Development Colloquium (NZFPDC), held at Massey University’s Albany
Campus in January 1999. For technical and copyright reasons the full proceedings will
not be made available on the WWW. The full proceedings are published as Proceedings
of the Fifth New Zealand Formal Program Development Colloquium, Leslie (Ed.),
IIMS Technical Report 99-1 ISSN 1174-8273.

The first two NZFPDC meetings were both informal workshops. The third and
fourth meetings, held under the umbrella title of Formal Methods Pacific, were more
formal, and we felt that we should return the NZFPDC to its roots and, once again,
hold a more informal workshop.

The NZFPDC was established to encourage and promote work in New Zealand
in the areas of “formal methods”, “programming foundations” and “formal software
engineering”. It is therefore a pleasure to see contributions in this volume from half
the New Zealand Universities, and from colleagues in Australia and the UK. How-
ever, much work remains to be done to promote the benefits of the use formal methods
for program development, both within academia and within industry. Those of us who
work in this field surely do so not merely because it is fun but because we believe
that formal methods are useful. Demonstrating the utility of formal methods and en-
couraging their use in industry remains the major challenge. It is a challenge we must
accept.

Doug Goldson, Lindsay Groves, Paddy Krishnan, Ray Nickson, Steve Reeves and
Mark Utting all assisted the Colloquium in various ways. The Colloquium has also
benefited from the support, both moral and financial, of the Institute of Information
and Mathematical Sciences (IIMS). Jeff Hunter, Kay Rowbottom and Diane Allen are
to be thanked for their assistance.

This volume is also the first issue in the IIMS Technical Report Series. IIMS re-
ports will be issued in two series: IIMS Technical Reports and IIMS Technical Notes.
These series aim to provide timely publication of research by members of the Insti-
tute. Both series will be available by following the links from the Institute’s website:

.
While these Proceedings mark the commencement of a new report series and the

continuation of the NZFPDC, they also mark, for me personally, a conclusion, as I will
soon be leaving Massey to take up a post at Victoria University of Wellington. I would
like to thank my colleagues in Computer Science at Albany: Martin Johnson, Peter
Kay and Chris Scogings; for being such a pleasure to work with. I am sure that the
group at Albany will continue to grow and develop, and I hope that Massey University
will recognise the quality and achievements of the staff here.

Neil Leslie

2



Abstracts of papers presented

Experiments with Model Checking for -Calculus in
specification and verification project REAL

E.V. Bodin , V.E. Kozura , N.V. Shilov

Institute of Informatics Systems of SD RAS,
6 Lavrent’ev av., Novosibirsk, 630090

Russia

School of Computing Science, University of Technology, Sydney,
P.O. Box 123, Broadway, NSW 2007

Australia

Abstract

Combined real-time specification language for distributed systems (executable
specifications) and their properties (logical specifications) is a kernel of specifi-
cation and verification project REAL. This language has three levels: Elemen-
tary, Basic and Conceptual. Elementary and Basic levels have formal syntax
and structural operational semantics, the Conceptual level is a general paradigm
for REAL and has informal semantics. Executable specifications are syntactically
similar and ideologically based on CCITT standard Specification and Design Lan-
guage SDL-88, logical specifications are based on a combination of dynamic logic
and branching temporal logic. An original model of real-time (multiple clocks) is
incorporated in the Conceptual and Basic levels, but Elementary level is time-
free. Problem-oriented approach to verification of distributed systems properties,
presented by executable and, respectively, logical specifications, is a current re-
search topic. The paper presents some experience with problem-oriented approach
to verification of time-free Elementary specifications. The approach consists in
(1)classification of properties and systems with respect to their syntactical struc-
ture, (2)formulate and validation of problem-oriented high-level proof principles,
(3)design of proof-outlines in terms of proof principles, and (4)checking correct-
ness of proof-outlines with help of global model-checking for finite state systems
of moderate size. This model-checker is based on Faster Model Checking Algo-
rithm for -Calculus — a program logic with fixed points. Since reliable model-
checking for -Calculus and propositional variants of High Order Logics of pro-
grams is an essential part of REAL project then we also discuss our approach to
validation of model-checkers. This approach consists in Hoare-style verification
of prototypes and then an extensive testing of working releases. A verification ex-
ample of a progress property for a parameterised distributed system is presented
also.

3



An Example of Multiprogram Development

Doug Goldson

Institute of Information and Mathematical Sciences
Massey University at Albany

Private Bag 102-904
North Shore Mail Centre

Auckland

Abstract

Using an example due to W. Feijen, this presentation illustrates the use of the
Gries-Owicki theory in proving the partial correctness of multiprograms. The ex-
ample illustrates the use of heuristics in developing a multiprogram from a speci-
fication.

Conjoining Derivations of Loops and Recursions in the
Refinement Calculus

Lindsay Groves

School of Mathematical and Computing Sciences
Victoria University of Wellington

Wellington

Abstract

We review the approach to adapting program derivations, based on proper-
ties of a program conjunction operator, presented in a previous paper (Lindsay
Groves. “Adapting Program Derivations using Program Conjunction”. Proceed-
ings of IRW/FMP ’98, Grundy, Swenke and Vickers (Eds), Springer, 1998). The
law for distributing conjunction over loops is extended to provide a more general
law for combining recursion blocks with common structure.

4



Improving Software using Requirements Formalisation

Lindsay Groves , Ray Nickson , Greg Reeve , Steve Reeves and
Mark Utting

School of Mathematical and Computing Sciences
Victoria University of Wellington

Wellington

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton

Abstract

We give a brief overview of a recently started, Public Good Science Fund
(PGSF) funded research project, which is running under the auspices of the gov-
ernment’s Foundation for Research, Science and Technology (FoRST or FRST).
This project comes within the broad subject area of ‘Formal Methods’ and specif-
ically concerns the use of formalization during the requirements and specification
stages of typical software development projects.

Using Invariants in Program Refinement

Ian Hayes and Ray Nickson

Department of Computer Science and Electrical Engineering
The University of Queensland

Brisbane 4072
Australia

School of Mathematical and Computing Sciences
Victoria University of Wellington

Wellington

Abstract

When developing an imperative program via refinement, one often uses a se-
quential composition in which an earlier command, C, sets up data structures to be
used, but not modified, by later commands. Normally the postcondition, R, of C
needs to be explicitly passed around during the refinement of the later commands,
so that the data structures set up by C can be used in the refinement. The explicit
passing of R is tedious, when in this case R is invariant over all the later com-
mands. Local invariants, as devised by Morgan and Vickers, can be used to factor
out such conditions. In this paper we present new refinement laws that make use of
local invariants to solve the above problem, and their incorporation into a program
refinement tool that supports local invariants as a form a context.

5



Using Z: a note on methodology

Martin C. Henson and Steve Reeves

Department of Computer Science
University of Essex

England

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton

Abstract

We show how a constructive version of the schema calculus for Z can be de-
fined, paying attention to the differences that emerge between state and operation
schemas. We also show some notational efficiencies and, further, show how these
can be used to support the derivation of programs which are specified using pro-
motion, one of the very useful, high-level specification structures that have been
proposed in recent years. The reader is assumed to be familiar with, or have access
to, our recent “New Foundations for Z”, Proceedings of IRW/FMP ’98, Grundy,
Swenke and Vickers (Eds), Springer, 1998.

Trajectories in Timed Systems

Padmanabhan Krishnan

Department of Computer Science
University of Canterbury

PBag 4800
Christchurch

Abstract

In this article we present a synthesis technique for generating schedulers for
real-time systems. The aim of the scheduler is to ensure (via restricting behaviour)
that the real-time system satisfies a given specification. The real-time systems and
the specification are described as Alur-Dill timed automata while the synthesised
scheduler is a timed trajectory automaton. We also note a simple constraint that the
specification has to satisfy for this technique to be useful.

6



Specification-based testing of interactive systems using
Object-Z and CSP

Ian MacColl and David Carrington

Software Verification Research Centre
University of Queensland, Australia

Abstract

In this paper we apply our framework for specification-based testing of interac-
tive systems to a semantic integration of Object-Z and CSP. Interactive systems can
be analysed and developed in terms of functionality, presentation and behaviour
with different notations appropriate to each aspect. Testing information can be de-
rived from formal specifications of each of these aspects. In this paper we specify
functionality and representation using Object-Z, and behaviour using CSP, and we
derive testing information from formally specified views of a scrollbar.

From Ideal to Realisable Real-Time Specifications

Graeme Smith

Software Verification Research Centre
University of Queensland, Australia

Abstract

Formally refining a real-time specification to an implementation is only possi-
ble when the specification allows for all physical limitations, and timing and signal
errors inherent in the implementation. Allowing for such implementation-specific
details in a top-level specification can, however, obscure the desired functional-
ity and complicate analysis. Furthermore, such an approach assumes the specifier
has an understanding of the physical limitations and errors of the implementation
which may not yet have been developed. As an alternative, we propose introducing
a notion of realisation into the formal development process. Realisation is and ap-
proach to specification development which allows errors and physical limitations
to be introduced. It also allows properties of the new specification to be derived
from those proved for the original.

7



Implementing the Zc Logic in Ergo

Mark Utting and Steve Reeves

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton

Abstract

Henson and Reeves have recently proposed a new logic, for the Z specification
language and proved that it is sound. In this paper, we describe work we have
been doing on implementing the logic in Ergo 5. Ergo 5 is the latest version of
a series of interactive proof tools that have been designed and implemented at the
Software Verification Research Centre (Brisbane, Australia) over the last ten years.
We describe two alternative ways of handling the complex side-conditions of some
inference rules and show how the multiple context sequents of Ergo 5 allow the
logic to be modelled more naturally.

8


