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Abstract

This paper is the first of a two-part introductory discussion of Gentzen’s
Hauptsatz, Prawitz’s Normalization Theorem, and related results, which are con-
cerned with the elimination of cuts in the calculi of sequents and the calculi of
natural deduction. Cuts correspond to detours in proofs and hence there is un-
doubtedly some philosophical interest in being able to eliminate them. These
results also have mathematical interest and applications that are of use in com-
putation and this is the underlying motivation for this paper.
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This report has been produced from a set of notes that I wrote some years ago when I
took a course in Computational Logic from Prof. Gopalan Nadathur at Duke University. As
several other students in a similar situation appear to have found the notes useful, I have
decided to reproduce them in this, more accessible, form. I am indebted to Prof. Nadathur
for his comments on the first version.

"Talking of Herbert Spencer", he began, "do you really find
no logical difficulty in regarding Nature as a process of
involution, passing from definite coherent homogeneity to
indefinite incoherent heterogeneity?"

"No physical difficulty," she confidently replied: "but I
haven’t studied Logic much. Would you state the difficulty?"

"Well," said Arthur, "do you accept it as self-evident? Is
it as obvious, for instance, as that ‘things that are greater
than the same are greater than one another’?"

"To my mind," she modestly replied, "it seems quite
obvious. I grasp both truths by intuition. But other minds
may need some logical --- I forget the technical terms."

"For a complete logical argument," Arthur began with
admirable solemnity, "we need two prim Misses ----"

"0Of course!", she interrupted. I remember that word now.
And they produce ----7"

"A Delusion," said Arthur.

"Ye--es?" she said dubiously. "I don’t seem to remember
that so well. But what is the whole argument called?"

"A Sillygism."

Queer Street, Number Forty. Lewis Carroll.
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1 Introduction

This paper is the first of a two-part introductory discussion of Gentzen’s Hauptsatz, Prawitz’s
Normalization Theorem, and related results, which are concerned with the elimination of cuts
in the calculi of sequents and the calculi of natural deduction. Cuts correspond to detours ! in
proofs and hence there is undoubtedly some philosophical interest in being able to eliminate
them. These results also have mathematical interest and applications that are of use in
computation and this is the underlying motivation for this paper. It is useful, at this point, to
make a distinction between normal form theorems and normalization theorems?[17,43]. The

3 can be reduced to one in normal

former are results which state a proof not in normal form
form; the latter, in addition to stating this also give an effective procedure for the reduction.
Thus, for example, the Hauptsatz as stated in [11] is a normal form theorem, whereas the
“official” version (given below) is a normalization theorem; from a computational point of
view, the interest in the latter is obvious. A distinction may also be made here between weak
normalization — some reduction sequence leads to normal form — and strong normalization —
all reduction sequences lead to normal form.

Some reasons for the interest in these results are:

o Connection between computation and deduction. Proof normalization, specifically, cer-

tain corollaries?

, 18, in a certain sense, the very essence of proof theory (see Girard’s [17]
discussion on “purity of methods”). Reduction, as in the A-calculus or term-rewriting
is fundamental in computation. Hence a correspondence between the two, which one
obtains, for example, via the Curry-Howard isomorphism [21], yields a deep connec-
tion between deduction and computation. From this, methods used the one area are

frequently useful in the other; [7] is a recent example.

e Euxtraction of programs (algorithms) or bounds from proofs (of []3 statments). A state-
ment of the form Vz3y: R(x,y) may viewd as a program specification when rendered
thus: for every input z, there is some output y such that the condition R holds. From
a proof of such a statement one can, by normalization, obtain a recursive function F'
such that R(z, F(x)) (and, more generally, Vz3y < f(x) : R(x,y)) holds. Alternatively,
instead of extracting F' from the proof, the proof may itself be “executed” — again, by

normalization, to directly yield F'(x). This is obviously related to the preceding remark.

o The formulation of decision procedures for certain deviant logics. In many of these
cases — consider, for example, propositional intuitionistic and modal logics — the usual
methods from classical logic are of little help, whereas results such as the Hauptsatz

are quite useful.

!For example, to prove that 1 4+ 2 = 2 + 1, one might do it directly by reduction to 3 = 3 or first make a
detour to prove VaVy : z +y =y + =.

2Throughout this paper “normalization” will refer to this classification and “Normalization” to Prawitz’s
theorem

3For the Haputsatz, this means cut-free.

“Such as the Subformula Property, which is discussed below.
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e (Consistency proofs. Typically, consistency trivially follows from a full cut elimination
theorem and the proofs are elementary (finitary) or almost ® elementary. Because of
this, a careful study of such a proof allows the extraction of precise mathematical infor-
mation from philosophically shaky results: As a consequence of Godel Incompleteness
Theorems, it is clear that these proofs, for non-trivial mathematical theories, stand
on shaky ground (see [44], for example, for a discussion). Nevertheless, they do have
mathematical significance which one obtains most easily from the application of cut-
elimination; this, of course, implies that they are not totally devoid of philosophical

value.

e The derivation of other important results. For example, Herbrand’s Theorem (which
is of great importance in mechanical theorem proving, Kreisel’s No Counterexample

Interpretation, as well as other standard results of logic ( as obtained via model theory).

In reading the published literature, I have especially relied on the writings of Kreisel
and Girard, and if the reader finds any obscure remarks, most can probably be clarified by

recourse to these sources.

2 Normalization in the sequent calculi LK and LJ

In what follows uppercase Greek letters denote sequences of formulae of the usual sort of
first order language and uppercase Roman letters denote formulae of the language, except in

discussions of logical complexity where the latter will have the usual meaning.

Definition 1 A sequent is an expression I' - A (read as “ I' yields A”) where I' and A
are finite sequences of formulae of a first order language. I' is the antecedent and A is the

succedent.

The informal understanding is that A4,..., A, F By, ..., B, in the sequent calculus cor-
responds to A; A ... A A, — By V...V B, in the usual calculi for first order logic. In LK
(the calculus for classical logic) any number of formulae is allowed in the succedent; in LJ
(the calculus for intuitionistic logic) no more than one formula is allowed. Since most of the
results below hold for both LK and LJ, no distinction will be made, unless necessary, and a

result will simply be stated in terms of LK.

2.1 Rules of inference

We shall refer to rules as right rules or left rules according to whether they operate on the
succedent or antecedent, respectively, of a sequent.

Axioms

54Almost” because they go (slightly) beyond Hilbert’s strictly finitist standpoint: the real mathematical
world s 119,
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AF A
Structural rules
Thinning
T'FA I'FA
ATFA 'FA A
Contraction
AATEHA 'FAA A
ATHFA 'FA A
Ezchange
I'A, B, 11+ A I'FA,A B A
I'B,AIIFA I'FA,B,A A
Cut rule
'FAA ATl A
: Cut

T,IF A A

The resolution rule, that is so central in mechanical theorem proving and logic program-
ming, is easily seen to be a form of the cut rule. For example, the resolution deduction of
PV Q from PV S and Q V S is the application of the cut rule to the sequents - @, S
and S F P to obtain the sequent - P, Q. So we have the following dichotomy: in logic one
tries to eliminate cuts wherever possible, in many computational applications (and practical
mathematics) one uses cuts wherever possible; this is discussed further below, although we
should hasten to add that the real situation is not so clear cut as this.

Logical rules
Negation

TFA, A ATFA
SATFA TFA, A

5These remarks are only intended to convey a general picture. A precise discussion would be quite lengthy
and not necessarily more illuminating at this point. A detailed discussion of the relationship between cuts
and resolution will be found in [2].
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Conjunction
ATHFA B, TFA
AANB,TFA AANB,TFA
rFAA 'A,B
'FAAAB
Disjunction
ATEFA B,THA
AvVvB,I'FA
I'FA A I'FAB
I'FA AVB I'FA AVB
Implication

T'-AA B,IIF A
A= BTIFAA

ATHA,B
'HA,A— B
Universal quantification
A(t), THA I'FA, Ala)
VeA(z), T'FA I'FAVzA(z)

where t is an arbitrary term and a (the eigenvariable) does not occur in the lower sequent.
This will be referred to as the eigenvariable condition.

Ezistential quantification

Aa),T'FA I'FA, A(t)
dzA(z),'FA I'FA, JzA(2)

where t is an arbitrary term and a (the eigenvariable) does not occur in the lower sequent.

Remark For the simple purposes of providing a proof system for first order logic, some
economy and simplification of rules in the system above is possible but this is likely to lead
to complications in proving the Hauptsatz [12].
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Definition 2 An LK-proof, P, of a sequent I' - A, is a tree of sequents satisfying:

o All the leaf sequents of P are axioms.

e Every sequent except I' = A is an upper sequent of an inference whose lower sequent is
also in P.

e ' A is the lowest sequent in P.

We shall use P(a) to indicate the fact that the variable a occurs in the proof P and P[b/a]
to indicate the proof P with every occurrence of a replaced by b.

Remark Evidently, if a sequent is LJ-provable, then it is also LK-provable.

The following simple result will be of great utility in what follows:

Proposition 1 If a sequent has an LK-proof, then it has an LK-proof in which
o All eigenvariables are distinct from one another.

o If a free variable a occurs as an eigenvariable of some sequent, I' = A, then a occurs
only in sequents above I' - A.

Proof Obvious from a suitable renaming of variables.

Such a proof is said to be regular. This proposition is neede for the proof of lemma 1;
further explanation of its importance of is given in section 2.3. From this point on we shall
assume that all proofs are regular; in the proof of the Hauptsatz, we shall indicate where this
comes in directly (it is obviously used indirectly wherever lemma 1 is used).

Lemma 1 Let P(a) be an LK-proof of I'(a) = A(a), b some free variable not occurring in
P(a), and t some term. Then:

e P[b/a| is an LK-proof of T'[b/a]F Alb/a]

o If every eigenvariable in P(a) is different from a and not contained in t, then P[t/a] is

LK-proof of T'[t/a] F Alt/a]

o If P'(a) is obtained from P(a) in such a way that every eigenvariable is different from
a and not contained in t, then P'(t) is a proof of T'(t) F A(t)

Proof Straightforward; see [61].

This lemma is used in those parts of the proof of the Hauptsatz where quantifiers are
involved.

2.2 The cut-elimination theorem

Gentzen’s Hauptsatz (also known as the Cut-Elimination Theorem) is undoubtedly the most
important result in the proof theory for first order logic and indeed is a cornerstone of all
of proof theory. In this section we shall formally state the theorem and present Genzen’s
proof although not in the exact details in which it was originally given. Given the intended
readership, this presentation of the proof is slightly more laborious than is usual, even for the
Hauptsatz. A presentation such as Gentzen’s [12] is “factored”” in several parts: a number

"One needs to be awake while reading it ...
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of rules that are slightly different, and which therefore require slightly different transforma-
tions, are grouped together within a single transformation schema. In understanding such a
presentation, one might consider each inference rule in turn, find an appropriate schema, and
convince oneself that the right transformation could be obtained. Alternatively, one might
imagine that the general idea of the proof (reduction of cut “complexity”) is known but no
detailed proof is available and then go about formulating a complete proof by considering
each rule in turn. What we have done below is to transcribe this “understanding” or “proof
re-creation” process.® The similarities between the transformations then become apparent
and one can then “refactor” this tedious version according to taste, the most natural being
by rule structure (see, for example, [61]).

Theorem 1 (Hauptsatz) If a sequent is LK-provable, then it is cut-free LK-provable.

Before diving into the proof a few remarks are in order. In particular, since the Cut
rule can be eliminated, it is natural to ask why it is there in the first place. There are at
least two good reasons. First, it makes helps shorten the length of proofs (see section 2.4);
second, it is necessary for an elementary proof of the equivalence® of LK and the arbitrary
formulations of predicate calculus — consider a system (for the latter) with Modus Ponens. It
is also crucial to note here that the importance of the Hauptsatz is not merely in establishing
the existence of cut-free proofs — as Kreisel [29] points out, this much is obvious'® simply
from the completeness of the cut-free rules — rather, it is to be found in the finitary nature
of the “official” proof of the Hauptsatz and in the Subformula Property which is a corollary
of the Hauptsatz. This makes the Hauptsatz of itself a mathematically!! shaky result, but
one which nonetheless is of unquestionable philosophical significance; see [29] for details.

2.2.1 Proof of the Hauptsatz

In outline the proof consists of showing that in a given proof every cut can be replaced by a
cut of smaller “complexity”; induction on the number and “complexity” of cuts then suffices
to complete the proof. This “skeleton” proof is visualized easily enough and is explicitly
laid out in [17], for example. Nevertheless, the completely “fleshed out” proof is somewhat
laborious. For technical reasons, to be discussed (in section 2.3) after the presentation of the
proof, the proof is carried out in the system LK* which is defined to be the same as LK but
with the Miz rule replacing the cut rule.The Mix rule is:

A ImEA
[, OM =AM A : miz

where IT and A both contain some common formula M, and the sequences IT'™ and AM
are obtained by deleting all occurrences of M in, II and A, respectively. M will be referred
to as the miz formule and when it is known, will be explicitly indicated. Clearly, a mix is
a generalized form of the cut in that a cut may be easily transformed into a mix by the
use of thinnings and exchanges. Conversly, a mix may transformed into a cut by the use of

8] suspect that a symbol-cruncher will prefer this anyway!
9In Gentzen’s case it was needed to prove the equivalence of the sequent calculi and the natural deduction
calculi.

10 Actually, only for classical logic. Completeness for intuitionistic logic is quite a delicate business (T got
more than my fill of the nature of this “delicacy” by reading [8]). This also shows that cut elimination is not
the same as completeness of cut-free rules since the “official” proof of the Hauptsatz applies to both classical
logic and intuitionistic logic with equal ease.

11t does have some mathematical significance: in the computational aspect of a normalization theorem and
from uses of the subformula property.
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contractions and exchanges, so LK and LK* are equivalent. Hence what will be proved is the
following:

Theorem 2 If a sequent is LK*-provable, then it is miz-free LK*-provable.
The proof of this theorem easily follows from the proof of:

Lemma 2 Suppose a sequent is LK *—provable, and suppose that the proof has only one miz
and that this miz is the last inference in the proof, then the sequent is miz-free LK*—provable.

Having proved this lemma, and this is where the hard work is, by straightforward in-
duction on the number of mixes it is easily proven that any sequent that is LK*-provable is
mix-free LK*-provable. From this, by the equivalence of LK and LK*, we shall have obtained
a proof of the Hauptsatz.

For the proof of the lemma we need a precise notion of proof complexity? ; this is
expressed in terms of the complexity introduced by a mix. In what follows we shall assume
that P is a proof satisfying the hypotheses of lemma 1.

Definition 3 A thread (of a mix as in lemma 2) is a sequence of sequents:
e that begins with a leaf sequent and ends with the mix formula

e in which every sequent except the last is the upper sequent of an inference and is
immediately followed by the lower sequent of the inference

Definition 4 The right (left) thread is the thread contains the right (left) upper sequent of
the mix.

Definition 5 The rank of a right (left) thread is the number of consecutive sequents, counting
upward from the right (left) upper sequent of the mix, that contains the mix formula.

Definition 6 The right (left) rank, pr(P) (pr(P)) of P, is the largest rank over all the right
(left) threads.

Definition 7 The rank, p(P), of P is the sum of the right and left ranks.
Remark p(P) > 2 for all P.

Definition 8 The degree, A\(A), of a formula, A, is the number of occurrences of logical
connectives it contains. The degree, A(P), of P is the degree of the mix formula (we are
assuming there is only one).

The proof of the lemma is by induction on both the rank and degree of P. Specifically,
the induction relation, <, is a lexicographic ordering, defined on finite ordinals as follows:
<)\1,p1> < <A2,p2> T Ay < Ay or A{ = X9 and p1 < p2.

From the observation above we have two major cases, one corresponding to p(P) = 2 and
the other to p(P) > 2. In the former case the inductive step will be on the degree of P and
in the latter case it will be on the rank. In each case and subcase below, given P (with only

20ne of the main difficulties in extending the Hauptsatz (specifically, the type of proof used here) to higher
order logics is that there is no “natural”, or even useful, measure of complexity; see below.
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one mix) a new proof P’ will be constructed, and this proof may have several or no mixes
in it. If P’ has any mixes, and each of these is considered in turn in the appropriate order —
at each step taking the mix “closest” to the leaves of the proof-tree — then for each subproof
P" with only one mix (this being the last inference) it will be the case that (Apr,ppn) <
(Ap, pp. Hence by the induction hypothesis, the mix in P” — and hence all mixes in P’ and
P — can be eliminated.

Case 1 p(P) = 2, which implies that pr(P) = 1 and pr(P) = 1. Then it must be the
case, since both threads contain only one sequent, that either the thread is an leaf sequent
(axiom) or that the mix formula has been introduced by a thinning, or that it is introduced
by a single logical inference. For the first two cases, we consider only the cases of the left
thread, the right case being symmetrical.

Case 1.1 The upper left sequent of the mix is an axiom. Then the conclusion of P has the
form:

MEM - A
M, IIME A

We obtain a mix-free proof by transforming to:

IIFA
exchanges
M, .., MM EA
contractions

M, IIME A

Case 1.2 The mix formula in the upper left sequent comes from a structural rule. As the
only structural rule that can introduce a new formula is a thinning, the conclusion of P has
the form:

LFA
F''EAM TIFA
[LIIMEAA

We obtain a mix-free proof by transforming to:

kA
thinnings
OM T FAA
—enchanges

[,IIMEA A

Case 1.8 The mix comes from a logical inference. In this case, because pr(P) = 1 and
pr(P) = 1, the logical symbol must have been introduced in both the left and right upper
sequents of the mix.

Case 1.3.1 The logical symbol is A. Then the conclusion of P has the form:

THAA TFAB  ATFA
TFA,AAB AAB,IIFA
T,I0F A, A

: mix
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Transform this into:
TFAA ATIE A,

mix
I,I14 - A4 A
thinnings and exchanges
| A I B VAN

The complexity of the new proof is (A(A),n), where n > 2, which is < the complexity,
(MA A B),2), of the original proof. By the induction hypothesis, there is a mix-free proof
of T',TI4 - A4, A and hence there is a mix-free proof of I,II - A, A. A similar argument is
easily seen to be applicable to the following subcases and we shall not explicitly state it at

every turn.

Case 1.3.2 The logical symbol is V. Then the conclusion of P has the form:

TFAA  ATFA B,IIF A
THA,AVB AVB,IIFA
T,IF A, A

: mix

Transform this into:
T'FAA ATIEA,

mix
[LIA F A4 A
thinnings and exchanges
OIIEAA

Case 1.3.3 The logical symbol is —. Then the conclusion of P has the form:

ATFA,B TIFAA B,S 0
TFAA—B A—BI,XFA,0O

T.ILSFA,AO -
Transform this into the proof:
ATHAB B,YXFO. .
D ImMix
A A AT 2B AB O L
. INIX

I, T4, =B - A4, A8 0
thinnings and exchanges

T,ILSF A A0

The new proof has two mixes but each has a complexity that is smaller than that of the
original proof.

Case 1.3.4 The logical symbol is V. Then the conclusion of P has the form:

' A, Aa) A(t),ITF A
' AVzA(z) VoeA(z),IFA
[LIIEAA )

mix

Transform this into;
- A, A(t) A(t),IT- A

[, I40 | AAG A
thinnings and exchanges
ILITE A A

mix
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Here the proof of ' = A, A(t) has been obtained from the proof of I' - A, A(a) by replacing
all free occurrences of a by t; see lemma 1.

Case 1.3.5 The logical symbol is 4. Then the conclusion of P has the form:
I'FA At Aa),ITF A
LA 3zA(z) JzA(z),IIF A
IIFEAA

: mix

Transform this into:
THAA®)  A®),TTFA
D,IA0 F AAD p

thinnings and exchanges

T,I0F A, A

mix

Here the proof of A(t),II - A has been obtained from the proof of A(a),II - A by replacing
all free occurrences of a by t; see lemma 1.

Case 1.3.6 The logical symbol is —. Then the conclusion of P has the form:

ATFA TFAA
TFA A —ATFA
T,OF A A

: mix

Transform this into:

IIEFAA ATFA,
T4+ A4 A
thinnings and exchanges
ILIIFEAA

mix

Case 2 p(P) > 2. There are two main possibilities to consider, depending on the magnitude
of the left or right rank. These are pr(P) > 1 and pr(P) > 1 or pr(P) > 1 and pr(P) > 1.
Because of the obvious symmetry, we will go into the details of only the former case. The
three subcases considered below correspond roughly to the three considered above. However,
there is one major difference: In the former cases, new proofs were constructed in such a
way that the degree was lowered; in the following cases new proofs will be constructed in
a manner that lowers the rank. For the case considered below (pr(P) > 1), the right rank
will be reduced (in most cases by 1) whereas the left rank will be unchanged (the other,
symmetric, half of the proof covers this). In a few cases a new mix is introduced by the
transformation; in such a case the degree of each new mix will also be lower than that of the
original mix.

Case 2.1 T or A (see the definition of mix) contains M. Then a mix-free proof can be
constructed by transforming the mix as follows:

_IIEA
TEA contractions and exchanges
contractions and exchanges M, IME A
T+ AM,M thinnings and exchanges
thinnings and exchanges L, oM EAM A

L, IIMEAM A
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Case 2.2 The inference, I, ending with the right upper sequent of the mix is an application
of a structural rule.

This case demonstrates quite well the general situation in the remaining subcases and
provides a rather clear way to visualize'® the general process of miz elimination: the miz is
“pushed upwards” through the proof (in the new proof the mizx appears above the inference);
in this process, it may break into other mizes (inferences involving two upper sequents) which
are in turn pushed upwards; the process ends with all mizes “falling off” the top of the proof
or “disappearing” within the proof. FEuvidently, each time a mix is pushed up, the rank is
reduced.

(a) Left Rules
e The mix formula is the same one that is introduced by a thinning (¥ = X g) or
contracted (M € X)), or exchanged (M € X). Then the conclusion of P has the form:

YEA. I
TFA TIFEA - mix
L,YMEAM A
This is transformed into:
TFA XA,
: mix

L,YMEAM A

e If the mix formula is not the same one that is introduced (in the case of a thinning), or
contracted, or exchanged, then the conclusion of P has the form:

SEA
PEA TIFA

O,IMEAM A

: mix

This is transformed into:

F'FA YEA. nix
L,YME AM A
exchanges
SMIDEAMA
oM T AM A
exchanges
L, IME AM A

The mix which concludes the proof, P/, of I', ¥M = AM A occurs above the inference I
and, therefore, can clearly be seen to have a smaller rank: specifically, pr(P’) = pr(P) — 1.

(b) Right Rules
The conclusion of P has the following form:

IFO.q
PEA TOEA" e
L,OME AM A

13¢f. Kreisel’s remark that a proof is elementary if one can visualize it.
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This is transformed into:
TEFA I+ 6: mix
r,IMEAM o
[,OME AM A

Case 2.3 The inference concluding with the upper right hand sequent of the mix is an
application of a logical rule. The various cases are considered according to the outermost
logical symbol.

Case 2.3.1 The outermost logical symbol is A.
(a) Left Rules. Because of the symmetry we consider only one of the two rules.

e If A B is the mix formula, then the conclusion of P is:

B,IIF A

——— A
'FA AAB|IIFA .
mix
F,HA/\B - AA/\B,A
This is transformed into:
A BJTEA . ik
T, B, AN |- A4NB A
exchanges
B,T,T4B + A4NB A
) b) ) . /\

A AABTIAB L AAMEB A

F,F,HA/\B - AA/\B,AA/\B,A
contractions and exchanges

F,HA/\B - AA/\B,A

The upper mix has right rank pg(P) — 1; the lower mix has right rank 1. Therefore,
by the induction hypothesis, I, B,IT4B | A4"B A has a mix-free proof. Having obtained
this mix-free proof, the lower mix can now be eliminated (induction hypothesis) to obtain
a mix-free proof equivalent to P. (In the rest of the proof we shall simply state the ranks
rather than repeat this entire, and obvious, argument).

e If AA B is not the mix formula, then the conclusion of P is:

BIFA
TFA AABTIIFA

: mix
[LAAB,IIMEAM A

If B is not the mix formula, then this is transformed into:

kA B, ITEA.
[, B, IIME AM A
exchanges
B, L, oMEAM A .,
AANB,T,TIME AM A
exchanges

[LAAB,TIME AM A

X
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If B is the mix formula, then the transformation is the same except that the proof of
B,T,IM - AM A is replaced by
kA B,IIFA
DM EAM A
B,I, TIMF AM A

In either case, the mix has right rank pg(P) — 1.

(b) Right Rule.

A A MEAB .,
THA II-AAAB '

ILIME-AM A ANB

: mix

this is transformed into:

THA MFAA . TFA I+ AB.

TIVEAM A A T T oMEaMaB %
A
I,OIM+AM A ANB
Case 2.3.2 'The outermost logical symbol is V.
(a) Left Rule.
o If AV B is the mix formula, then the conclusion of P is:
ATTEA B,IIFA . Y
'FA AV B,IIFA ) .
: mix
F,HAVB - AAVB,A
This is transformed into:
A ATEA . i THEA B, ITEA . ix

T, A, TTAVE - AAVE § T,B,IT1AVB | AAVB A

exchanges exchanges
AT, TTAVE - A4VE A B, T, T4VE + A4VB A
b) b) ) b b) b) . v
LA AV B, T, TIAVB - AAVB A

: mix
F,F,HAVB - AAVB,AAVB,A
contractions and exchanges

F,HAVB - AAVB,A

If AV B is not the mix formula, then the conclusion of P is:

ATFA BIFA |,
THA AVBIFAB

D,AV B, ITME AM A

: mix

o If neither A nor B is the mix formula, then this is transformed into:
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'FA AODEA i TEA B ITEA. ix
LA TIM E AM A ,B,IIME AM A
exchanges exchanges
AT, TIMEAM A B, D, TIMF AM A
VvV
AVB,I,TIME AM A
exchanges

LAV B, IIME AM A

If A or B is the mix formula then the proof of A,T,TIM - AM A or B,I',TM - AM A
is replaced by:

IFA AT A IFA B,IIF A
L, IME AM A L, IME AM A
AT, TIME AM A B,I, TIM+ AM A

(b) Right Rules. Because of the obvious symmetry, only one rule is considered.
The conclusion of P has the form:

MFEAA
I'A OFAAVE

O,IIMEAM A AVB

: mix

This is transformed into:
IFA M-AA .
- ImMix
D,OMEAM A A Ly
O,IME-AM A AV B

Case 2.3.3 The outermost logical symbol is —.

(a) Left Rule.
e If A — B is the mix formula, then the conclusion of P is:

NEO,A  BIIFA
I'YA A-BXIFOA
1-\7 EA_)B7HA_)B - AA—>B,@7A

: mix

If A— Bisin X and II, then this is transformed into:
TFA  BIFA . .
[, B, II*~B 1 A4=B A

r-A YFO,A . mix exchanges

[,247B L A48 9, 4 BL.OPEAB N
A— B.I,SA7B T I4~B+ A48 @, A B A .
[,0,%4~8 0, 14~0 - AM=B AA=F o AA=F ) I
contractions and exchanges
IV | St

'FA
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If A— Bisnotin ¥ or not in © (it must occur in one since pr(P) > 1) , then the proof
of I, 2A4=B - AA=B 9. A or of B,I',IA~8 - A4=B A is replaced by:

YFO6,A B, IIFA
thinnings and exchanges thinnings and exchanges
YA BA B,TIIFAA

e If A — B is not the mix formula, then the conclusion of P is:
YFO,A B,IIFA |

kA A— B X IIFO,A

[LA— B,YM IIMEAM 6, A

: mix

If neither A nor B is the mix formula, then this is transformed into:

TFA B,Il+ A: mi
L, B, IIME AM A
T'FA YFO,A. mix exchanges
L, xMEAM O, 4 B,I, TIMF AM A
A— BT SMT IOMEAM @ AM A
contractions and exchanges
ILA— B,SM 1M EAM A

X

If A or B is the mix formula then the proof of T, ¥M - AM ©, A4 or B,T, TIM F AM A
is replaced by:

IFA B,IIF A
I'kA YEO,A LM AM A
ILYMEAM 6. A B, T, I AM A

(b) Right Rule.
The conclusion of P has the form:

ATEAB |
'cA TTHFAA—- B’

LIME-AM A A B

: mix

This is transformed into:
TFHA ATIFA B,

LA TME-AM A B
exchanges
AT TMEAMAB |
LLIMEAM A A B

mix

Case 2.3.4 The outermost logical symbol is —.
(a) Left Rule.
o If = A is the mix formula, then the conclusion of P has the form:
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IMEAA | _
F'FA -ATIFA .
: mix
L4 EA™ A
This is transformed into:
TFA IME A, A: mix

DITAFA™ A A
't A A DI A A
OO, ITAFA™ AT A

contractions and exchanges

OLITAEA™ A

: mix

o If = A is not the mix formula, then the conclusion of P has the form:

MEAA
P A —ATFAS

[, —-A,T0MEF AM A

This is transformed into:
'FA MEAA s
D, IIMEAM A A
—A, T, TIM - AM A
exchanges
[, —AIMEAM A

(b) Right Rule.
The conclusion of P has the form:

ATEA
PFA TIFA-A°
OLIMEAM A -4

If A is not the mix formula, then this is transformed into:

LFA ATEA, .
DA TMEAM A
exchanges
ADTMEAMA
L,IMEAM A, -A

If A is the mix formula then the proof of A,T,TIM + AM A is replaced by:

17
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IFA ATEA
O, IMEAM A
AT, TIME AM A

Case 2.3.5 The outermost logical symbol is V.
(a) Left Rule.
o If VxA(x) is the mix formula, then the conclusion of P has the form:
At),ITFA v
A VeA(z),IFA
F’HVmA(m) - AVJZA(JS)’A’ )

mix

This is transformed into:

TEA  AWIIFA
: X
F,A(t),Hva(x) E AVIA(I),A
exchanges
A(t),F,Hva(x) - AVwA(w)’A Y
IFA  VzA(z), D, I7A@) | AV2AE@) A
F,F,vaA(w) - Ava(w)’ Ava(w),A

contractions and exchanges

F, HV:EA(:E) - AV:CA(:C), A

o If VxA(x) is not the mix formula, then the conclusion of P has the form:
At),ITFA v
A VeA(z),IFA
D,VzA(z), I+ AM A,

mix

If A(t) is not the mix formula, then this is transformed into:

kA A(t),TTH A,
T, A®), TM - AM A
exchanges
A@), D, IM F AM A
Ve A(z), T, ITM - AM A
exchanges

D,VzA(z), TM - AM A

mix

v

If A(t) is the mix formula then the proof of A(t),T,II™ - AM A is replaced by:
THA  A®),TIF A
L, IME AM A
A(t), T, M - AM A
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(b) Right Rule.

ITH A, A(a) .
A TIFAVzA(z) - mix
L,TM E AMA, Vo A(2)
This is transformed into:
kA HI—A,A(a):miX
D, IMF AM A, A(a) Ly

D, IMF AM A VzA(2)

Note that the regularity condition is tacitly being invoked here. In the absence of this, a
may occur, for example, in A™ and the new proof would violate the eigenvariable condition.
Also, A(a) cannot be the mix formula since this too would violate the same condition.

Case 2.3.6 'The outermost logical symbol is 3.
Left Rule.
o If the 3z A(x) is the mix formula, then the conclusion of P has the form:

A(a),ITF A | =
TFA JzA(z),IIFA
F,HEI:CA(:C) = AE:;UA(:/U),A

This is transformed into:

kA Aa), T A
T, A(a), II7"A() | AF7A@) A
exchanges
A(a),F,HEIwA(w) - AE'CCA(CC)’A 3
THA  3zA(z),T,IP%4@ | A34@) A
[T, AR | AJeAR) AFeA@) )\
contractions and exchanges

F,HHIA(I) = AEIA(E),A

: mix

o If the 3z A(z) is not the mix formula, then the conclusion of P has the form:

A(a),TTEA
I'FA JzA(z),IFA

D, 3zA(z), M - AM A

This is transformed into:
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A Aa),ITF A,
T, A(a), M F AM A
exchanges
A(@), D, TMEAM A 4
JzA(z), T, M - AM A
exchanges

D, 3zA(z), TM - AM A

mix

Again, as above, the regularity condition is tacitly being invoked; similarly, A(a) cannot
be the mix formula.

(b) Right Rules.
The conclusion of P has the form:
IT-A,A(t)
F'FA Ik A JzA(x)

: mix
D, OME AM A, 3z A(x)
This is transformed into:
IFA IEAAD,
D, IME AM A A(Y) 3

D, OM b AM A FzA(x)
End of Proof (Hauptsatz)

2.2.2 Discussion of the proof

Typically the first question one asks about the proof is: why the miz instead of the cut? The
answer is that the mix simplifies the proof. To see the type of difficulty that might arise with
the cut, consider the following proof:

AATFA
THAA ATFA
T,IF A, A

: contraction

If T is taken to be a mix, then we can easily reduce the rank of the proof by eliminating
the contraction and by applying the mix to the original upper sequent of the contraction —
thus:

A A AATTEA
: mix
IIIFEAA

On the other hand, if I is taken to be a cut and we try to apply this simple (and rather
natural) transformation with, we get:

'FAA A,A,HI—A,Cut
DAIIE AA )
exchanges
A A AT ITEAA
I IVITEAAA
ILIIFEAA

:cut
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It is apparent that no progress has been made since, although the upper cut has a smaller
complexity than the original, the complexity of the proof has been increased by the lower
cut! And should we simple-mindedly (try to remedy the situation by chosing to) apply the
procedure of thinning to re-introduce a formula deleted by a “less complex” cut and having
the original inference end up between the two cuts, we would end up with a non-terminating
sequence of transformations, starting with:

'FAA AATEA. ot
LLATTE AA
exchanges
AT TITEAA
AATITEAA
'-AA AT IIFAA
ITJITEAAA
LIITFEAA

:cut

It is of course possible to work with the Cut instead of the Mix — in Szabo’s [55] category-
theoretic formulation of proof theory, for example, it is not possible to use the Mix; likewise
in Zucker’s [64] work on the correspondence between the Hauptsatz and the Normalization
Theorem — but only, it seems, at the cost of additional complications in the proof.

Now to the classification of the Hauptsatz. As given above, it is clearly a normalization
result; the proof gives a definite procedure (a set of rewrite rules) for eliminating cuts (mixes).
It is, however, a weak normalization result due to the restriction that in any given proof cuts
(mixes) must be eliminated from the “top” of the proof downwards, as indicated by the main
lemma above. This restriction is necessary since there are instances in which permitting the
permutation of mixes can lead to non-terminating transformation sequences. Let us suppose
that the transformation rules permit pushing mixes up past other mixes. Then consider the
following example, due to Zucker [64]:

Starting with the proof whose conclusion is:
BFA A BFC
A B B,B+-C
AFC

the first two transformations produce:

AFB BFA AEB A, BEC
AF A AAFC

AFC

and

A+ B A BFC
B A A,AFC
AF B BFC

AFC

Now the original proof is clearly isomorphic to part of the last proof, and it is apparent that
no progress has been made.

For the classification according to logic complexity, it is easily seen that the Hauptsatz
is a [[9 statement. What is says is that for every proof z with cuts there is an equivalent
cut-free proof y. That is, in Vz3y : R(x,y) x and y are variables for codes of finite proofs
and R states that x encodes a proof with cuts, y encodes a cut-free proof, y is equivalent to
x, and so forth; evidently, R is recursive.
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Lastly, a point which is of relevance later: the termination of the cut elimination procedure
has been proved by induction up to w. Superficially, this is transfinite induction up to w?
since the proof is carried out using three nested inductions (on the number of mixes, the
degree, and the rank) but this is evidently reducible, by suitable encoding, to mathematical
induction — encode every triplet as a single ordinal.

2.3 Size of cut-free proofs

An issue that is undoubtedly of interest in computation but less so in logic is that of the
relation between the size of a proof with cuts and the corresponding cut-free proof. For the
main result in this section we shall need a notion of depth (analogous to that of degree) and
of height (analogous to rank).

Definition 9 The depth, d, of a formula is defined inductively as follows:
e If A is atomic then d(A) =0
e d(AVB)=d(AANB)=d(A — B)=max{d(A) +1,d(B) + 1}
o d(—A) =d(FzA) =d(VzA) =d(A) +1

The depth of a cut is the depth of its cut-formula and the depth of a proof is max{d(C)+1},
over all cuts, C, in the proof. The depth of a cut-free proof is 0.

Definition 10 The height, h, of a proof, P, is defined inductively as follows:
e if P consists of one axiom, then h(P)=0,
e if P is obtained from P’ by an application of a structural rule then h(P) = h(P’).

e if P is obtained from P’ by an application of a logical rule with one premise, then
h(P) = h(P") + 1.

e if P is obtained from P’ and P” by an application of a logical rule with two premises
or a cut , then h(P) = max{h(P’') + 1, h(P") + 1}.

It is easy to see that the above proof of the Hauptsatz can be reformulated with depth
and height instead of degree and rank; see [ 11, 17, 48], for example. From such a proof!*
one readily obtains:

Theorem 3 If a sequent has an LK-proof of depth n and height k, then it has a cut-free
proof of height < H(k,n), where H(k,0) = k and H(k,m + 1) = 4Hkm),

This potentially’® astronomical blow-up in the size of the proof is the main reason why
one uses the cut-rule in computation (and, in general, in practical mathematics). Logicians
on the other hand strive for cut-free proofs. So one sees here something of a supporting
case for Kreisel’s [35] warning about the irrelevance of logical proof theory to mechanical
theorem proving (and, in general, computer science). Nevertheless, it may be admitted that
cut-free proofs are easy to find (both for human and machine) and is the sort of proof that

one naturally looks for when working backwards (which is also natural) from the theorem®.

14Note that this is an elementary proof and see the discussions in section 3.3.2.
15Statman [52] shows that there are cases in which the blow-up is always as large as the upper bound
1This may be just the way I do things and may not be “natural” to others!
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2.4 A calculus with equality

The relevant calculus, LK_, is obtained by adding (as initial axioms) to LK all sequents of
the following form:

e s—=3s

® 51 =11,y Sy =ty F f(81,.0380) = ft1, s tn)

for every n-ary function letter f

® 81 =11,y Sy = by, P(S1, .0y $n) F P(t1, .0y tn)

for every n-ary predicate letter P
where s, s1, ..., Sp, t1, -.-, t, are arbitrary terms.

The main point here is that in this new calculus it is not possible to eliminate every cut!?.
The best that one can do by way of cut elimination is:

Theorem 4 If a sequent has an LK_-proof, then it has an LK_-proof in which in which all
cuts except those of the form s =t have been eliminated.

A proof of this may be found in [61] and also in [11] where calculi with equality are
discussed in great detail.

2.5 The Hauptsatz and higher-order logics

The Hauptsatz for second order logic was first conjectured by Takeuti [60] and, consequently,
the result is also popularly known as “Takeuti’s Conjecture”. Based on work by Schutte,
Tait [56] gave a semantic proof. Girard produced additional developments, which included
showing how to obtain the applicable cut-elimination procedure [14, 17]. Related discussions
include [41, 58, 61] on cut elimination in type theory.

The second order sequent calculus, L?K, is defined as consisting of the the obvious rules
as in LK plus the following set quantifier rules (¢ and ¢ are set variables and T is a set or
predicate constant):

universal
' A(p), A VAT E A
['-VYoA(p), A [\VoA(o) F A
existential
'+ A(T), A [ A(p) F A
T+ 39A(9), A T,36A(9) F A

with the usual proviso that ¢ does not occur free in I' or A.

The main point in this section is to briefly highlight the difficulties of finding an elementary
proof of a cut-elimination theorem in higher-order logics; specifically, why the approach used
by Gentzen will not work here. the problematic aspect is easily explained: If one considers
a rule such as right 3, one cannot really say, in any reasonable fashion, that 3pA(¢) is more
complex than A(yp) if ¢ is abstract [10, 39]. For example, if ¢ = {z | B(x)}, it might very

!"Presumably this is the sort of thing Girard [17] has in mind when he says that equalitarian theories are
“not nice”.
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well be the case that B is more complex than A; more on this below (section 3.1). Another
point is that a study of Takeuti’s Conjecture gives insights into the limits of the usefulness of
cut elimination'® and the importance of semantic notions (specifically, 3-valued semantics)

19'in proof theory; these points are discussed in great detail in [14, 17].

3 Corollaries and applications

3.1 The subformula property

We now turn to the important corollary of the Hauptsatz.

Definition 11 Let A be a wif. The subformulae of A, Subf(A) are given by:
e if A is atomic then Subf(A) = {A}
e if Ais BAC,BVC or B— C, then Subf(A) = {A} U Subf(B)U Subf(C)
o if Ais ~B, then Subf(A) = {A} U Subf(B)
o if A is 32B(x) or Yo B(z), then Subf(A) = {A} U Subf(B(1)), t is an arbitrary term.

Corollary 1 (The Subformula Property) Let P be a cut-free proof of ' = A. Then each
formula in P is a subformula of some formula in T' - A.

This is easily seen from the fact that all formulae that appear in the premises of the logical
rules also appear in the conclusion (the proof is by induction on the cut-free proofs). From
a philosophical standpoint, the subformula property is satisfying since it is a more precise
statement of Hilbert’s “purity of methods”2°.

The subformula property has a number of important applications; typical example is in
obtaining consistency proofs. For consistency one proves that the empty sequent F is not
provable; this is equivalent to the usual forms of statement: For example, suppose we have a
proof of - A and a proof of F =A. Obtain a proof of F as follows:

FA
FA —AF
l_

And one readily sees that from a proof of F thinnings will give a proof of any and every
sequent.

It is easy to see that any calculus with a subformula property is consistent. The subformula
property also has uses in formulating decision procedures; see below.

Another important consequence is this: although Tarski’s famous result on the undefin-
ability of truth for arithmetic states that unrestricted truth definitions are an impossibility,
we do have partial truth definitions for subformula of a cut-free provable formula [29]. Stated
another way: the subformula property allows us to bound the logical complexity (number of
quantifiers) of the formulae used in a proof (these are exactly the subformulae) and truth
definitions do exist for bounded logical complexity; this is important for, among other things,
proving reflection principles (see below). This leaves the significance of the subformula
property in no doubt.

'8In Girard’s words: “Cut elimination theorems (if one forgets pretentious more or less <<philosophical >>
consequences) can easily become trifling.”

19Semantic notions are needed for the analysis of cut since syntactic notions clearly do not suffice: provability
has the same meaning for both proofs with cuts and cut-free proofs.

20Roughly: “All methods used and all intermediate results must be directly related to the conclusion”.
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Also, to go back to the higher-order logic case, we can now summarise the situation as
follows: there is no meaningful/useful notion of a subformula in these logics. If we look
back at the proof of the Hauptsatz, it is immediately obvious that the subformula property
is being implicitly invoked: new mixes introduced by the transformations apply (whenever
the degree is being reduced) to a subformula of the original mix formula. In other words,
“thinking backwards”, it is the subformula property that allows us to define (one part of)
proof complexity in terms of the number of logical connectives.

Indeed, in proof theory one generally regards?' a cut elimination theorem without a
subformula property as being practically useless; see earlier comments on the significance of
cut elimination. At the very least, if a full cut elimination is not possible then one tries to
get a subformula property for formulae of a restricted logical complexity.

3.1.1 The Hauptsatz and logical complexity

A major premise in Girard’s?? [17] work is that progress in proof theory goes hand in hand
with an increase in logical complexity. Let us see how this relates to the Hauptsatz:

Cut elimination with a subformula property holds for the Z? subset of Peano Arithmetic
(which subset can be developed using predicate calculus); since we have the subformula
property, we also have completeness for Z? statements. Also provability here is 2(1)- In order
to make progress we must consider a system (w-logic) in which mathematical induction can be
proved; this yields similar results for [} statements. Further progress is made by considering
a system ((3-logic) in which transfinite induction can be proven; this yields similar results for
H% statements. And so on, and so forth ... The general idea is that the logical complexity of
what we work with must equal to at least that of what we want to analyse; thus, for example,
in section 3.3.1 we shall see the Hauptsatz (of 2.2) used most naturally in the analysis of Hg
statements.

Since the concepts (e.g., finite trees, well-founded trees, dilators, etc.) involved in these
logics are of increasing complexity, we see that to get the subformula property for increasingly
bigger systems, one is naturally led to an increase in logical complexity. A quick summary of
all this may be found in (Table 1 of) [15].

3.1.2 A Comment on the regularity condition

To conclude this section, we are now in a position to to give another explanation of why
the regularity condition (see Proposition 1 above) is required. First, observe that since only
the —-rules and the —-rules move a sequent from antecedent to succedent, or vice versa, the
following also obviously follows from the Hauptsatz:

Corollary 2 Let P be a cut-free, —-free, and —-free proof of I' - A. Let I - A be any
sequent in P. Then each formula in 11 is a subformula of a formula in ' and each formula
mn A is a subformula of one in A.
Now consider the following proof (this is due to Kleene [24]):
A(z) F A(x)
B(y)NA(z) F Az
Vy(B(y) A A(z)) F A(x)
VaVy(B(y) A A(z)) - Alz) A(y) F A(y)
VaVy(B(y) A A(x)) - VoA(z) Ved(z) F Ay)
Vavy(B(y) A A(z)) F A(y)

21 This, however, is not the case in some important applications in Computer Science.
22In view of the title of his rather long book, it would be silly of me to attempt more than a sketchy
explanation of all this.
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This is not regular since x is the eigenvariable of a V-rule but it also occurs free in a
sequent below the V-application. Now the subformulae of VaVy(B(y)AA(z)) are: VaVy(B(y)A
A(z)),Vy(B(y) N A(t)), B(u) A A(t), B(u), and A(t), for every term u and every term ¢ not
containing y free. The only subformula of A(y) is A(y). The cut in this proof cannot (without
suitable variable renaming) be eliminated: consider corollary 2 and the fact that A(x) is not
a subformula of A(y).

3.2 The Sharpened Hauptsatz and Herbrand’s Theorem

Lemma 3 If a sequent I' - A has an LK-proof, then it has an LK-proof in which
o the formulae in the axioms are all atomic and
o the formula introduced in all the thinnings are atomic.

Proof 22 By induction on the degree of formulae.
(i) Assume we have cut-free proofs of A+ A and B F B from atomic formulae. Then:

o Conjunction: obtain a cut-free proof of AA B+ A A B as follows

AFA BEB
A BFAANB
AAB,BFAAB

B,ANBFAAB
AAB,ANBFAANB
AANBFANAB

e Disjunction: obtain a cut-free proof of AV B+ AV B as follows

AFA  _BFB
A-AB BFAB
AVBF A, B
AVBFAAVB
AVBF AV B, A
AVBFAVB,AVB
AVBFAVB

e Implication: obtain a cut-free proof of A — B+ A — B as follows

AFA BFB
A— B,A+B
A—BFA—B

e Negation: obtain a cut-free proof of -A F —A as follows

AFA
FA,-A
—AF-A

e Quantification: from a cut-free proof of A(a) - A(a) obtain cut-free proofs of VzA(x) F
VzA(z) and JzA(x) F JzA(x) as follows

A(a) - A(a a) - A(a)
VzA(z) F A(a) A(a) F 3z A(z)
)

)
VzA(x) F VzA(z) FzA(z)tF JzA(x)

) A

23[17], exercise 2.1.7-(ii).
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(ii) Assume we have a proof of I' - A

o Conjunction: obtain proofs of ' A, AAN B and AA B,I' - A as follows

TEA TFA TFA TFA
TFAA TFAB ATFA BTIFA
I'FAAAB AAB,TFA AABTFA

Disjunction: obtain proofs of AV B,I' A and I' F A, AV B as follows

TkA T-A TkA TkA
ATFA BTFA TFAA TFADB
AVB,TFA TFAAVB TFAAVB

Implication: obtain proofs of A— B,'+ A and '+ A, A — B as follows

TkA TkA LA
TFA A BTFA ATFA
A-BITFAA ATFA,B
A—BTFA TFA,A— B

Negation: obtain proofs of —A, '+ A and I' F A, A as follows

TA TEA
TFAA ATFA
—ATFA TFA,-A

Quantification: obtain proofs of VxA(z),[' - A and I' - A,VzA(x) and of VxA(z),T
A and T'F A VzA(z) as follows

'EA 'FA
At),I'FA I'FA A(a)
VzA(z), A T F A VzA(z)

and

'FA 'FA
Aa), T F A ' A A(?)
dzA(z),TFA TFAIzA(z)

Lemma 4 Let P be a cut-free proof of a sequent I' = A consisting only of prenex formulae.
Then we can construct another proof, P™, of I' - A such that in P™:

o if a Tule, R, is applied below an application of a quantifier rule, then R is either a
structural Tule, a right V-rule, or a 3-rule.

o all uses of initial axioms are on atomic formulae.

e the formula introduced in each thinning is an atomic formula.

Proof By lemma 3, we can obtain a proof, P’ satisfying the last two conditions. From
P’ we obtain P™ by appropriately interchanging the positions of the inferences; see [11, 12,
17, 61] for this last part of the proof.
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Theorem 5 (The Sharpened Hauptsatz) 24 If a sequent T = A consisting only of prenex
formulae is LK-provable, then there is a cut-free proof, P of the sequent such that P satisfys
the conditions of lemma 4 and there is a sequent (the midsequent), I+ A, of P such that:

o II F A s quantifier-free.
e no quantifier rules are used above I1 = A

e only quantifier and structural rules are used below IT+ A
Proof Immediate from the Hauptsatz and lemma, 5.

Corollary 3 If3xq,...,3x, : R(z1,...,z,), R quantifier-free, is provable in predicate calculus
then there exist terms t1, ..., tL .. 7 ... ™ such that R(t},...,t1)V..VR(", ...,t™) is provable

U b
in propositional calculus.

Proof Immediate from the Sharpened Hauptsatz (the terms in the midsequent are exactly
the terms which make up the conjunction) and the completeness of LK.

The preceding theorem and corollary apply only to LK; the sharpened Hauptsatz does
not hold for LJ unless applications of left V-rules are disallowed. Here is a counterexample
(due to Kleene [24]):

Aa) F A(a) A(b) F A(b)
A(a) F 3zA(z) A(b) F JzA(x)
A(a) V A(b) F Az A(x)

If the sharpened Hauptsatz were applicable for proofs of A(a) vV A(b) F JzA(x), then
the midsequent would be of the form II F A where II consists if at least one occurrence of
A(a)VA(b) and A is A(t) for some term ¢. Suppose then that I+ A is A(a)VA(b) - A(t). Then
t may be either a or b or neither. Consider the case when ¢ is a: Then A(a) V A(b) — A(a),
and hence AV B — A, would be provable in propositional calculus; clearly this is impossible.

Theorem 6 (Herbrand’s Theorem) 2° Let F be a formula in prenez normal form. Then
F' is provable in predicated calculus iff there is a sequence of formulae F1, ..., Fy, in which
bound variables have been replaced by certain®® terms, such that the disjunction Fy V ...V F,
15 provable in propositional calculus. Furthermore, Fi,..., F, can be obtained from F, and F
from Fi,..., F, by primitive recursive operations.

Proofs of the theorem (from the sharpened Hauptsatz) may be found in [11, 17]; the
original proof of the theorem is in [19] but it is difficult to follow and it is also known to be
flawed.

The first half of the proof consists of showing that from the midsequent one can get a
sequent that essentially consists instances of the skolemized formula; the second half, that
from the latter one can get a sequent to which right V-rules and right 3-rules can be applied
to obtain the original formula. Note also that corollary 3 is already quite close to what needs
to be proved; the only information missing is on the detailed nature of the terms involved.

For other proofs of Herbrand’s Theorem, not involving the Hauptsatz, see [1, 46].

24 Also known as the Midsequent Theorem or the Miteilsatz.
?5The generalization, in LK and LJ, to formulae other than prenex is given in [4].
268kolem.
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3.2.1 Comparison of the Sharpened Hauptsatz and Herbrand’s Theorem

The similarities between these two results are quite apparent from the corollary to the Sharp-
ened Hauptsatz: one can readily see that after (“jumping ahead” and) skolemizing the univer-
sal quantifiers, the midsequent consists (essentially) of the terms in the Herbrand disjunction.
Indeed, the system Herbrand worked with was the first example of what we now call a cut-free
system [62]. The Sharpened Hauptsatz appears to be sharper result than Herbrand’s theorem
since the latter may be obtained from the former, but not the former from the latter. We
summarise some of the main differences:

e From one point of view, the Sharpened Hauptsatz tells us more than Herbrand’s The-
orem: that the midsequent has a cut-free proof.

e From another point of view, Herbrand’s Theorem tells us more than the Sharpened
Hauptsatz: we know what the terms in the midsequent look like.

e The Sharpened Hauptsatz applies to both classical logic and intuitionistic logic, with
certain restrictions in the latter case, whereas Herbrand’s Theorem applies only to
classical logic.

e Herbrand’s Theorem applies also to formulae not in prenex normal form while the
Sharpened Hauptsatz does not.

e Herbrand’s Theorem can be extended to apply to w-logic, this gives Kreisel’s No Coun-
terexample Interpretation, but in the case of the Sharpened Hauptsatz this is not pos-
sible since the notion of a midsequent is problematic in the presence of infinitary rules
(see below).

e The (proof of the) Sharpened Hauptsatz is more “proof-theoretic” than (that of) Her-
brand’s Theorem which smacks of semantics: it is?” natural in trying to understand the
champs finis (which tells us how to obtain the F;s) to think of models.

o It seems impossible, or, more accurately, nobody has tried, to extend Herbrand’s The-
orem to modal logics as has been done for the Sharpened Hauptsatz.

More on the subject of the differences and similarities of the two results may be found in
[15, 17, 62].

3.3 Applications of the Hauptsatz
3.3.1 Extraction of bounds and algorithms

Given a proof of Vz3y : R(z,y), we want to find a recursive function f such that Vz3y < f(x) :
R(x,y). The connection with computation (programming) is obvious: render Va3y : R(z,y)
as “for all inputs x, there is an output y that satisfies specification R”. Hence from a proof we
can, in principle, extract an algorithm. The same techniques used also apply to the practice
of everyday mathematics where the problem of extracting bounds (“unwinding theorems”) is
common.

In what follows, we are greatly simplifying the story; for a more complete presentation
see [48]. Suppose we have a proof of - Vz3y : R(z,y). The conclusion of this proof is

- 3yR(a,y)
FVzdy : R(z,y)

2TThis may simply be something of a rather personal reaction.



3 COROLLARIES AND APPLICATIONS 30

Now consider the (sub)proof of - JyR(a,y). By lemma 1, we may suppose that from
this we have a proof of?® - JyR(m, ) for any 7. If we normalize this proof then by corollary
2 there are terms t1,...,t,, such that R(7m,t1) V ...R(7,ty,) is true. This means that the set
{t; | R(m,t;) = true} is non-empty. From this set pick the term with the least numerical
value; this is the value for f(7). Here one clearly sees the link between logic and computation:
we plug in some input value, 77, run through some algorithm (normalization), and read off an
output value, f(m). Although it is possible to extract f from a normalized proof (the process
just outlined above will, generally, give a definition for f), for purely mechanical work cut
29 more suited to ezecuting proofs rather than extracting programs.

Completely worked out examples for extraction of bounds can be quite tedious for any-
thing but the simplest cases; recall the nasty bounds for the size of cut-free proofs. Several
mathematically non-trivial examples are discussed in [25, 32, 17]; these omit some details but
would still be too long to present and explain here. Takasu [59] also presents (in all detail) a
small example of how to use cut elimination to mechanically extract programs from proofs in
system a that implements Godel’s functional interpretation for intuitionistic number theory.

An important point to note: straightforward normalization will remove even those cuts
which have nothing to do with the computational content of the proof. Since this is a
computationally expensive business, in practice one needs to be careful about the choice of
the cuts to be eliminated [33, 34]. [Kreisel 1981a, 1981b].

elimination seems

3.3.2 Consistency of elementary number theory

Gentzen’s proof of the consistency of elementary number theory is generally regarded as (one
of) the most outstanding result(s) in proof theory: essentially, it saved proof theory after
savage blow of Godel’s Incompleteness Theorems®?. We shall sketch the main points of the
proof below. This is based on Schutte’s work using w-logic [39, 47]; technically, this is more
satisfying3! than the exact proof of Gentzen who rejected such rules as the w-rule3?:

T+ A®D),A TFA®T),A TFAQ),A ...
['FVzA(z),A

on ideological grounds connected with Hilbert’s program.

Let PA,, be a system, with the w-rule, for Peano arithmetic and PASY the corresponding
system without the cut rule; see [Schwichtenburg 1977] for appropriate examples of PA,, and
PASF. Then it is provable that if a formula has a proof in PA, then it has a proof in PA.;
this latter proof has height < w -2 and depth < w. Now Schutte’s work shows that w-logic
enjoys full cut elimination (with a subformula property) and what has been done above is
to embed Peano arithmetic in w-logic. So by applying this cut elimination procedure, we
obtain a corresponding proof in PASF; this proof has height®® < ¢y and, furthermore, this
bound is minimal. From the subformula property, it is easy to see that the empty sequent
F is not provable in PACF and the consistency of PA is thus established. One also sees
where transfinite induction up to €9 comes in: it is used to prove the termination of the cut
elimination process. Furthermore, this is quantifier-free transfinite induction. The question
of whether or not Gentzen’s proof is elementary or not then boils down to whether or not the
use transfinite induction is elementary; see [6] for an elementary (no pun intended) discussion
of this, as well as [17], the introduction of [54], and also [13].

%8From here on 7 will denote the nth numeral, i.e., Succ™(0).

2To me at least ...

30Recall that the whole purpose of early proof theory was to vindicate Hilbert.

310ne sees quite clearly how the transfinite ordinals get into the picture. It is certainly easier to follow!
32The notion of a midsequent is problematic here since a unary rule is required for that.

33¢0 is the first ordinal o such that w® = a.
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Let us now examine what is special about this proof. This is discussed in detail in the
works of Kreisel [28, 29, 30], who is largely responsible for redirecting the focus of attention
in these proofs, and also, to some extent, by Girard [17]. A summary: no one has the
slightest doubts about the consistency of this theory: we call it “elementary” because we
have absolute faith in it. Therefore, the value of an (almost?) elementary consistency proof
is not in boosting our confidence; it lies elsewhere. The correct question to ask then is not to
what extent the proof makes us feel good (we already feel quite good about the theory) but,
as Kreisel points out: what more do we know when we have proved a result [by limited means/
than if we merely know it to be true [or have proved it by more abstract methods/? The answer
is that in general we know more because we must prove more; in the example at hand, we
know that our methods of proof must include at least quantifier-free3* transfinite induction
(not full transfinite induction!) up to £ (not just any old well order); i.e., gg is the ordinal
of arithmetic. (Correspondingly larger ordinals appear with increasing logical complexity).
Since this use of transfinite induction is not provable in elementary number theory, it easy
to see that this can be regarded as a sharpening of Godel’s second Incompleteness Theorem;
in fact this result says something quite close to a truly finitary consistency proof of number
theory [17]. Additional details of what one gets from carrying out this proof may be found
in [48]; these have to do with the nature of certain functions/functionals in PA /extensions of
PA.

In addition to the references named above, relevant material is in [61] where Gentzen’s
original proof is analysed in great detail.

Note The system that is obtained by a straightforward addition to LK of sequents
corresponding to Peano’s axioms and using the induction rule:
A(a), T F A, A(Succ(a))
A(0),T' F A, A(t)

where the variable ¢ may occur in the term ¢.

will not do since one does not have a full cut elimination theorem here, this would imply a
complete and consistent formalization of PA. Gentzen’s original proof uses reductions (similar
to those used to prove the Haupsatz) which add up to something weaker than cut elimination.

3.3.3 Miscellaneous

In this section, we briefly mention other situations where the Hauptsatz is of importance;
typically, in proving some fundamental result.

3.3.3.1 The reflection schema

[15, 17]: It is trifling (mathematically although perhaps not philosophically) to say (sound-
ness) that all theorems of PA are true, simply because we have agreed beforehand on the
axioms we believe to be true and on the rules of inference we believe preserve truth; what
the reflection schema do is to allow us to salvage something from this trifle by formalizing it
[actually, slightly diluted] and applying it.

Let Provy(u,v) denote the fact that w is the Gédelnumber of a proof, in the theory 7°
(which we assume includes PA), of the formula with Gédelnumber v, and Trz(w), that the
formula with Godelnumber w is true. Then a first attempt at reflection is:

Global Reflection Principle

VuYv[Provr(u,v) — Trr(v)]

34This is particularly important; as Kreisel points out, it is this that removes (what would be) the silly part
of the joke: “Gentzen is the guy who proved mathematical induction by using transfinite induction”.
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Now from Tarski’s theorem, Tr cannot possibly exist so, instead, one usually works with
the following ([...] denotes the Gédelnumber of ... ):

Local Reflection Principle
Vu[Provr(u, [A]) — A

1st Uniform Reflection Principle
Yu[Provr (u, [A(T)]) — A(x)]
2nd Uniform Reflection Principle
VuVz[Provr(u, [A(T)]) — A(z)]

An immediate explanation of the interest in reflection principles is that consistency is
equivalent to a restricted reflection principle; for example, Godel’s Incompletenesss Theorems
are easily stated in terms of reflection [49]. Also Hilbert’s concerns can now be summed as
follows: prove the local reflection principle for finitary statements.

Reflection principles form some of the fundamental tools of proof theory. Typical appli-
cations are [36]:

o for sound systems, they provide methods for constructing stronger systems

e they provide methods for comparing the strength of given formal systems
Typical results are:
Theorem 7 PA+reflection schema = PA+eg-transfinite induction.

Theorem 8 The uniform reflection principle is provable in PA if T is predicate calculus or
a finitely axiomatizable subsystem of PA.

And following from this:
Theorem 9 PA s not finitely aziomatizable.
Theorem 10 PA proves the consistency of all its finitely ariomatizable subsystems.

Where does cut elimination come in? If we consider theorem 8, for example, and attempt
to formalize the proof in a naive fashion, we immediately run into the limitations of Tarski’s
theorem. But by using the subformula property, a proof may be carried out by bounding the
logical complexity of the formulae considered in a proof of A(T).

3.3.3.2 No conterexample interpretation

No Counterexample Interpretation is the extension of Herbrand’s Theorem to the case
of w-logic. We explain by considering a specific formula, 3xVy32Vt : R(z,y,z,t), with-
out loss of generality. Herbrand’s Theorem tells us that this formula is provable in pred-
icate calculus iff there are terms, Us and Ws, such that R(Uy, f(U1), W1,g(Ur, W1)) V
.V R(U,, f(Uy,), Wy, g(U,, W,)) is provable in propositional calculus. No Counterexam-
ple Interpretation tells us that it is provable iff there are functionals U and W such that
R(U(f,9), f(U(f.9)), W(f,9),9(U(f,9), W(f,g)) is provable for every choice of f and g.

A fairly straightforward proof of No Counterexample Interpretation (from the Hauptsatz)
can be found in [48]. Like Herbrand’s Theorem and the Hauptsatz, the No Counterexample
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Interpretation is also useful for the extraction of bounds/algorithms; a number of examples
may be found in [25].

3.3.3.3 Decision procedures

Another application of the subformula property is in decision procedures. For proposi-
tional calculi, this is straightforward: each formula only has a finite number of subformulae
to consider. This is of interest in formulating decision procedures for uneven calculi, such as
intuitionistic and modal calculi, for which the standard truth table approach does apply; see
[13, 17] for the outlines of such procedures for intuitionistic logic, and [63] for sequent-style
formulations, together with cut elimination theorems, of several modal calculi. For a quanti-
fied formula, one has an infinite of subformulae but all is not lost for provable formulae (see

11)).

3.3.3.4 Craig’s interpolation lemma
References here are [11, 17, 61].

Theorem 11 (Interpolation) If A — B is LK-provable and A and B have at least one
predicate in common, then there exists a formula I such that: A — I and I — B are LK-

provable, and I contains only those predicates, constants, and variables that occur in both A
and B.

A constructive proof of this can be given from the Hauptsatz. The result is useful for
proving such results as Beth’s Definability Theorem and Robinson’s Joint Consistency The-
orem; the importance for a proof theorist here is (I think) the satisfaction of being able to
prove standard results of logic (model theory) within a purely proof-theoretic framework.
Also, for computation it is well known that the latter result can be used to combine decision
procedures.
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