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Abstract

Despite nearly three decades of study in the area of code reusability, pro-
grammers are still writing code that they will not be able to use again. In this
paper, we examine a set of C and C++ programming language features usually
considered to be relevant to code reuse: functions, defined types, macros, com-
position, generics, overloaded functions and operators, and polymorphism. Our
goal is to determine exactly how each of these features should be used to produce
more reusable code, and so develop an understanding of the nature of reusability.
We also discuss common misunderstandings of some of these programming lan-
guage features and, in doing so, provide some practical advice for more effective
programming.
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1 Introduction

Computer programming is a creative process, and necessarily involves invention; too often
it involves re-invention. Some re-invention is inevitable, as it is impossible to know about
all programs ever written. Of course, we would like to be knowledgeable about relevant and
important programming to avoid “re-inventing the wheel”. However, even in situations where
we know all about code already written, where that code is written in the same language,
and we have actually found a piece of code that we would like to reuse, we still experience a
kind of “deja-vu”. We know that we have written this code before, but are unable to escape
writing it again because the code does not quite work for the new situation. Writing code
that can be easily reused in a wide variety of situations is difficult.

It is important to distinguish between two distinct issues: the process of how to reuse
code, and the process of how to write more reusable code. Existing work in this area has
generally been on code reuse, [5] and work that does address reusable code is often more to
do with design, [7] or does not actually talk about reusable code [3].

This paper is an attempt to address the problem of how to write reusable code. We look
at how particular language features found in many modern (and some not so modern) should
be used to make code more reusable. Our goal is to help professional programmers write
reusable code, thus providing a starting point for addressing the more general problem of
programming without re-invention.

We hope this compendium will provide practical advice for practical programming. To this
end we consciously avoid theories of program design and idealized programming languages.
Instead, our discussion will focus on language level issues and will use existing languages.
The languages we have chosen are C [4] and C++ [8] because of their widespread use and
availability, and because they represent two related points in the evolution of programming
languages. However, knowledge of these languages is not necessary to understand our main
points. In fact, many important aspects of both languages will not be mentioned as they do
not directly contribute to the production of reusable code.

Writing reusable code is just one part of programming without re-inventing code, but we
believe that it is a crucial issue: the best design techniques for encouraging reuse of existing
code, and the most effective tools for finding relevant code fragments, are useless if the code
fragments were not written to be reusable outside very specific situations.

1.1 Why Reusable Code?

The goal of creating reusable code is to avoid repeating the same or similar code fragments
in different places by writing it once, in one place, and invoking it where it is needed. The
advantages of writing reusable code go beyond avoiding unnecessary writing. Firstly, any time
code is written, mistakes are made: avoiding the re-writing means avoiding more mistakes.

Secondly, even when no actual mistakes are involved, it is still so easy to allow incon-
sistencies between different versions. Inconsistencies can be irritating anyway, but as code
is modified, minor inconsistencies can become much worse. When code must be modified,
repeated code must be sought out and changed in the same way. Where code is specified in
only one place but used in several others, it can be changed in only one place and have the
change take effect in several others.

Thirdly, even if code is not being written, not being modified, but is simply being read
and understood, code reuse is a significant advantage. Not only is there less code to read and
understand, but there is an additional documentary effect: the connection between several
places is made clear and certain, rather than similar code merely hinting at similar purpose.



1.2 Qutline

Much of what we describe here, and what has appeared in the literature [1], comes from
hard-won experience from using the language features we are studying. While these lessons
are valuable in their own right, they are even more valuable if they can be used to give a
better understanding of what contributes to better reusability. The next section is a first
attempt at developing a framework for investigating reusability.

Section 3 looks at techniques for creating reusable code that are well established in many
languages, as represented in the C programming language. While these techniques may be
considered very basic, it is helpful to review them both as validation of our framework, and
as the foundation for understanding more sophisticated techniques. Following that, section 4
discusses encapsulation. This is a concept that should be considered established, given that
it was available in early languages such as CLU [6], but is not as widely used as it should be.

While this paper is mainly concerned with creating reusable code, it is useful to be aware
of the code reuse mechanisms available to ensure there is no undesirable interaction between
these mechanisms and the language features being used. This is discussed in section 5.

Section 6 presents our discussion on how to use certain language features to create more
reusable code and finally, section 7 presents our conclusions.

2 Understanding Reusability

When talking about reusable code, it is convenient to make a distinction between the piece
of code that is being reused — the code fragment — and the programs in which the code
fragment is being reused — the contexts. Often (though not always) the code fragment is
written at an earlier time than a context in which it is being reused. Because this paper is
concerned with the reusability of code rather than the process of reusing code, we will focus
on the writing of the code fragment, with the writing of contexts in the future, rather than
focussing on the writing of the context.

When talking about a code fragment, it is common to distinguish the interface of the
fragment from the implementation. We use interface to refer to all the ways in which the
code fragment and the context can affect or depend on each other, and implementation to
refer to all the details of the code fragment that are not part of the interface and are therefore
independent of the context.

For example, consider a fragment containing a single function and a variable declared
outside the function that is used to record state information between calls. The interface
would include the function name, the types of its arguments, the type of value returned (if
any), and the state variable (even if the designer intended the variable to be an implemen-
tation detail of the fragment). The interface would also include any variables or functions
defined outside the fragment, but referred to from inside the fragment. We also consider the
interface to include any additional constraints on the arguments of the function, such as a
requirement that an array of characters must be in sorted order, since these constraints arise
from dependencies between fragment and context that must hold for the fragment to behave
correctly.

We refer to those parts of the interface that are declared in the code to be part of the
interface (parameters of functions, public operations and variables of classes, etc.) as the
explicit interface, and the parts of the interface that a compiler could determine are part of
the interface, even though they are not declared to be, as the implicit interface. We refer to
the other parts of the interface, which can only be stated in comments (if they are stated at
all), as the informal interface.

The designer of the fragment may not intend later programmers to depend on all parts



of the interface. We find it useful to distinguish between the contract and non-contract
parts of the interface: contract parts of the interface are what the fragment designer intends
programmers to use to invoke the fragment and what programmers may rely on; non contract
parts of the interface are what fragment designer intends to be implementation details that
programmers should not exploit.

Note that “interface” is sometimes used in the narrow sense to refer to only the explicit,
contract, parts of the interface; we find this restricted usage to be less helpful than our wider
sense.

2.1 Dimensions of Reusability

The reusability of a code fragment is a concerned with how well it can be reused in different
contexts. There is not a single measure of reusability, since there are a variety of different
factors that determine how well a code fragment can be reused. Firstly, all the factors that
contribute to the usability of code — efficiency, correctness, robustness, clarity, etc. — also
contribute to reusability. We have also identified three additional factors that are particularly
important for the reusability of code: Generality, Safety, and Ease of Use.

One cannot apply absolute scales to these factors, so they cannot be used to compute
an absolute reusability measure. In many cases, one fragment may be more reusable by one
factor but less reusable by another factor. These situations represent trade-offs where the
programmer must make a decision.

2.1.1 Generality

A code fragment is more general to the degree that it allows a programmer to customise its
behaviour to suit the particular context the programmer is working on. Generality contributes
to reusability because it allows a code fragment to be reused in more different contexts than
a less general code fragment. There are several ways of making a fragment more general. For
example:

e Introduce implicit parameters by moving names in the fragment into the implicit inter-
face. These names (for example, variables or function names) will then be defined, or
at least accessible from, outside the fragment, enabling customisation by the context.

e Introduce explicit parameters by replacing fixed components of the fragment by formal
parameters in the explicit interface. These fixed components may be constant data
values, variable names, function names, types, collections of statements, or (in the case
of macros) arbitrary pieces of code.

o Add alternatives to the code in the fragment, and introduce new parameters to select
between the alternatives. Such parameters are often referred to as flags. This is a more
constrained way of generalizing than replacing a piece of the code of the fragment by a
variable to be given a value by the context since it merely allows the context to choose
between a fixed set of alternatives rather than specifying an arbitrary piece of code.

o Reduce constraints on parameters, both explicit or implicit, to allow a greater range
of possible values. Generalising the type of a parameter is one way of reducing the
constraints. For example, a function that computes a numerical function might be
generalized by extending the type of one of its parameters from integer to any kind
of number. A fragment implementing a sequence abstraction might be generalized by
increasing the range of possible types for the elements of the sequence.



2.1.2 Safety.

A code fragment is more safe to the degree that it could not contribute to errors in the
final system. Safety contributes to reusability because it allows a programmer to rely on the
fragment more than on a less safe fragment. More importantly, the simplest ways of obtaining
more general fragments lead to unacceptably unsafe code. A running theme of this paper is
to demonstrate how various language techniques are able to retain or increase safety at the
same time as providing increased generality. The distinctions made above between interface
vs. implementation, and contract vs. non-contract are important for evaluating safety.
There are three different kinds of safety that we are concerned with:

Integrity: A fragment has integrity to the degree that the fragment and the context cannot
interfere with each other’s correct operation. This means that the context and fragment
should not be able to change either the data or the actions of the other except by using
the contract part of the interface. Examples of fragments with reduced integrity include
the following:

e A fragment that keeps some internal state in global variables that the context can
modify directly, resulting in undefined behaviour of the fragment.

o A fragment that refers to a function name that it assumes has been defined in one
way, but could be redefined by the context.

Independence: A fragment is independent to the degree that any program using the frag-
ment will still work if either the fragment or the context is modified, as long as the
contract interface of the fragment is unchanged. Independence requires that the frag-
ment and the context may not depend on any part of each other except by using the
contract interface. For example, the context should not be able to depend on the way a
fragment has implemented its internal data structures, nor should the fragment be able
to depend on data structures or functions in the context, other than those specified in
the contract.

Achieving both integrity and independence require that the compiler be able to check for
possible interference between the fragment and the context. This requires that as much as
possible of the contract interface is made explicit, that the non-contract interface should be
as small as possible, and that the compiler should enforce the interface.

Preventiveness: A fragment is preventive to the degree that it prevents a programmer from
misusing the fragment in ways that are likely to lead to errors (in the context). For
example, a fragment that implements a sequence abstraction using a list of void* would
allow the context to construct sequences of mixed types. This is conducive to errors
where the context inserts an item of one type, and then treats it as another type when
removing it. A fragment that implemented the same sequence abstraction in a different
way that required all the items in one sequence to be the same type would prevent this
kind of error and would therefore be more preventive.

2.1.3 Ease of Use

The final factor concerns the subjective measure of how easily programmers are able to reuse
the fragment in their program. For example, fragments that require the programmer to set up
elaborate structures or require very complex invocations will generally be less easy to reuse
than fragments with very straightforward interfaces. The consistency and completeness of
the interface will be significant components, as will the design of the parameterisation of the
fragment.



Although we consider this factor to be important for reusability, it is concerned with design
more than the programming language techniques. Since this paper addresses programming
language techniques to support the creation of reusable code, we will not address ease of use
in this paper.

3 Established Techniques

Code reusability is not a new idea, and some techniques were developed early in the history
of programming. In this section, we discuss three established techniques: functions, user
defined data types, and macros. Our aim is to develop better a understanding of how these
techniques achieve reusability, and how various aspects of these techniques affect the degree
of reusability obtainable.

3.1 Functions

Probably the most common (and historically successful) technique for creating reusable ex-
ecutable code is to package up the code as a function or procedure, allowing it to be called
from several places. This also saves the space of repeated code, and the name can play a
helpful documentary role. Even more importantly, all the advantages of reusability apply,
and the programs become easier to maintain, more understandable, and easier to develop
further.

The most primitive way to reuse executable code is simply to use explicit flow control to
route execution through the same statements more than once. This is so commonplace we
don’t usually think of it as code reuse, but the principle is similar: avoiding duplication by
invoking the same piece of code from different contexts. Unlike an explicit branch, a function
call also specifies a return address. The function definition and call facilities are really simply
extra support that enhance both generality and safety, and so reusability.

Sometimes we wish a function to do exactly the same thing each time we call it. More
usually, however, we want the actions of a function to depend on the context in some way. We
can accomplish this by using expressions and selection statements involving data values from
the context, and by calling other functions defined in the context. The function definition
can access the relevant data and functions from the context in two ways: by referring directly
to the names of variables or functions defined in any available context (implicit interface), or
by having the data values or functions passed as parameters (explicit interface).

Referring directly to names defined in the context is both an advantage and a limitation.
The advantage is that we need not bother specifying the data in the call to the function,
and so the code is easier to use. The limitation is twofold. Firstly there is a limit on
generality, because the reusability is limited to contexts where the data is correctly set up.
Secondly there is a limit on safety, because direct use of names from the outside context
will immediately compromise independence between the context and the function code, and
potentially compromise integrity.

Parameters require both specification and special handling, but they allow us to customise
the behaviour of a function without any particular context of external data being necessary.
Accordingly, customisation with parameters generally affords wider reuse by widening the
set of contexts from which the function may be called. Furthermore, if the function does not
refer to any data in the context other than what is passed in the parameters, the language
provides some integrity protection by ensuring that the function cannot have any side-effects
on data in the context that is not passed in the parameters. This widens the set of contexts
from which it is safe to call the function.



The advantage of passing data values explicitly in parameters is well understood and
generally used, but fewer programmers seem to use function parameters to achieve the levels
of reuse that they could. A general implementation strategy to make more general code is to
make the function take function parameters that specify the action in a particular context.
For example, a binary search can take a function parameter that specifies how to compare
two elements of an array. This approach is limited in C because any functions passed as
arguments must all take arguments of the same type. Generality can be increased by using
functions with parameters specified to be the anonymous pointer void*, but this approach
disables preventive safety. We will discuss more powerful ways of addressing this problem
later.

Despite the advantages of the explicit interface of parameters, the implicit interface of
names used from the outside context is still widely used. Use of global data, for example,
can make function calls simpler. Moreover, calls from one function to another function also
constitute an important part of the implicit interface, a part that is often under-emphasised.
Sometimes a function appears reusable, but it depends on calling other functions that are
not so easy reuse.

Early definitions of the C language made no provision for a calling context to explicitly
declare the types of parameters of a function it was calling. Moreover, language implemen-
tations seldom detected inconsistencies between calls, and where functions were compiled
separately, types of parameters were seldom checked either at link or run time. All this
compromised the safety of function calls significantly. C++, and more recent definitions of
C, allow explicit declaration of the types of parameters in a call (the prototype facility), and
more recent implementations of the languages check function parameter types as part of the
linking process. C and C++ both allow constructs where safety can not be guaranteed (for
example, the anonymous pointer), but these constructs are explicit, and can be treated with
the caution they deserve.

3.2 User Defined Types

The most common approach for creating reusable data declarations in C is to package up the
declaration with a typedef, and then use the name as a type name in further declarations.

This generality requires the programmer to detail the declaration separate from any single
place where it might be used, but allows use of the declaration in a variety of places with ease.
This is useful because detailed type declarations do not have to be repeated when other data
of the same type are declared. Moreover, by declaring data with the type name, no possibility
for accidental difference is allowed, and the name can also play a helpful documentary role.

Data declared with a typedef type name are indistinguishable from data declared directly
with the same specifications as the typedef. In both cases, the details of the type structure
are directly accessible. The safety is limited, therefore, because the internal structure is
completely accessible and cannot ensure integrity or independence.

However, types created with typedef can be specified in such a way that increases gener-
ality. Instead of specifying the new type using built-in types, it may be specified using other
user defined types. In the example below, the Queue type is specified using the Item type,
which must be defined by the context.

typedef

struct {
Item data[MaxLength];
int front, rear;
int length;

} Queue;



As a result, instead of being limited to using the type for queues of, say, characters,
the generality allows the declaration to be reused for queues of any other type as well. All
that needs to be done is to specify the Item type differently, and the Queue type uses that
definition. The example above is made even more general by the typical C use of a macro
MaxLength to specify the size of the array.

This form of customisation is implicit, similar to use of a global variable in a function,
but still very useful because the increased generality allows the type declaration to be used
in more contexts. We shall return to this issue in the next section. The approach has a
significant limitation: it can only be used once in the scope of the type definition. Two
queues based upon different item types can never be used together.

3.3 Macros

We have discussed the established techniques for creating reusable executable code and
reusable data declarations, but there is an established technique for creating reusable code of
any kind: the macro. Essentially, a macro specifies a (parameterised) piece of text that can
be inserted anywhere in a program as if copied by an editor, but the piece of text is written
in just one place so that changes to the macro definition are automatically propagated to all
the places that it is used.

Macro processing essentially deals with the lexical surface of a program, and so may be
done by software quite separate from the programming language being used. In the case of C
and C++, the macro pre-processor is usually a separate piece of software from the compiler,
but programmers quickly rely on it always being available and applied before compilation.

Because macros involve only the surface structure of a program, their body and parameters
can allow extreme generality, involving executable code, data declaration, or even incomplete
code fragments. However, this flexibility means that there is no assurance of safety. Macros
may destroy the integrity of the invoking context, and details of their expansion may result
in unhelpful dependencies. Moreover they cannot be checked in even rudimentary ways
independent of particular invocations. Macros are invoked at compile time, so syntactic
checking of macro expansions is done, but even then, error diagnosis and recovery is very
difficult. All these characteristics usually mean macros are used as a last resort to create
reusable code.

However, this is an important role in the creation of reusable code. One aspect of this role
is the fostering of language evolution. The C language, for example, did not originally have
constructs for either constants or enumerated types, but similar facilities using macros were
very widely used to create more reusable code. More recently, many C++ implementations
lacked the template capability, and programmers made extensive use of macros instead. As it
turns out, C and C++ have frequently evolved to provide facilities that allow reusable code
to be created with more safety than macros can ensure, and so the reliance on macros for
several aspects of programming has diminished.

4 Encapsulation

So far we have discussed how particular sequences of executable statements or data decla-
rations may be made reusable, and also the very general capabilities of macros. However,
it proves a very useful idea to consider sets of data and functions as a reusable unit. For
such sets of data and functions to be made reusable yet safe, they must be regarded as
encapsulated: bound together with strictly controlled access to the constituent elements.



4.1 Encapsulation of Data with Functions

There are very common situations that illustrate the desirability of encapsulation of data
with functions. Most involve functions that use data to maintain some state from call to
call. There are two safety issues involved: integrity and independence. Integrity is at risk
from interference by the context, where the data maintained by functions may be changed
to an invalid or inconsistent state. Independence is at risk from the context accessing the
data directly, so depending on its exact representation. Without encapsulation, the data is
an implicit part of the interface, and subject to both these threats.

The C programming language offers two facilities for encapsulating data with functions.
For a function that uses external data only to provide “memory” from one call to the next, we
may instead use data internal to the function but specified static. By default, data declared
internal to a function is automatic, and is newly allocated on each call, and de-allocated on
return. Internal static data is also visible only to the function, but has a lifetime that spans
calls, so providing memory from one call to the next.

Some functions work together in management of a data structure, and must share visibility
of the structure, so cannot use internal static data. For example, a single buffer might be
accessed by functions for both storing and retrieving data. For such cases, external data
is necessary, but it too may be specified static. C programs may consist of several files
as separate compilation units. By default, all external data is visible across all compilation
units. External static data, however, is only visible within its own compilation unit. By
encapsulating external static data together in a unit with the functions that must use it, the
functions may still be called, but the external data they require may not be interfered with
or depended upon by the context.

By use of these techniques, functions and necessary data may be encapsulated together,
allowing reuse, yet safe from the dangers of interference and dependence.

The following unit contains functions to manage a FIFO queue implemented by circular
use of an array. The array must be external to any function because it must be accessible by
both the enqueue and dequeue functions. So that other code outside the unit may neither
interfere with nor depend upon its structure, the array (and supporting variables) are declared
static.

static Item data[MaxLength];
static int front, rear;
static int length;

Init_Queue() {
front = rear = 0;
length = 0;

int DeQueue(Item &x) {
if (length == 0)
return O;
}
x = data[front++];

int EnQueue(Item x) { front %= MaxLength;

if (length == MaxLength)

--length;
return O;
return 1;
datal[rear++] = x; }
rear %= MaxLength;
length++;
return 1;



Notice that because this approach encapsulates the actual data with the functions, it is
limited to managing one instance of a structure. For example, the above unit only provides
one queue. The generality of such fragments is therefore severely limited. There are ad hoc
ways around this restriction (using tokens or anonymous pointers) but they are not very safe,
and have other limitations.

4.2 Encapsulation of User Defined Data Types with Functions

As outlined earlier, the C typedef mechanism does enable the creation of reusable type
declarations, but offers little more. In particular, the structure of data so declared is as
accessible as if it had been separately detailed. As a result, any context using such data may
directly access the internal structure.

In a situation where data is encapsulated in a compilation unit and never directly accessed
from any context, the accessibility of type structure is irrelevant. However, some situations
require that data be passed between an outside context and an encapsulated unit. An outside
context must then know the type of the data, for code generation and type-checking, but if
it can also access the internal structure then integrity and independence are compromised.
Safety is then diminished, and reusability of the compilation unit is limited.

The most important addition made by C++4 to C, the notion of class, allows us to
overcome these problems. Like a typedef, a class specification allows a detailed data
declaration to be given a name, and allows that name to be used as a type when declaring
data elsewhere. However, a class allows the internal structure to be specified either public
(as is always the case with a typedef), or private, in which case access is limited to a
specified set of functions. These functions may also be specified public, in which case they
form the explicit interface and may be called from any location to access the data structure,
or specified private and so provide a service layer beneath the public interface.

In this way, the definition of a type may be encapsulated with an interface set of functions.
The type may be used to declare variables anywhere, but access to the implementation details
is restricted to a strict explicit interface. Encapsulation of types allows explicit reuse of defined
types, without the dangers of any implicit interference or dependence. Moreover, because the
encapsulation comes with the type, any data declared with the type has the safety advantages
of the encapsulation.

Following is a class declaration for the kind of FIFO queue described earlier. Both the
functions and the data type are encapsulated together in the class. Because a class creates a
type, the name of this class, Queue, can be used to declare queues wherever necessary.

In contrast to the fragment in the previous section, this fragment allows the program to
have many instances of Queue. The generality comes from having a user defined type; the
safety comes from encapsulation. However, like the simple typedef example given earlier,
instances of the queue in the same scope must all have the same kind of item, limiting the
generality.



class Queue {

int DeQueue(Item &x) {

public: if (length == 0)
Queue ) { return O;
front = rear = 0; x = data[front++];
length = 0; front %= MaxLength;
¥ --length;
return 1;
int EnQueue(Item x) { }
if (length == MaxLength)
return 0; private:

datal[rear++] = x;
rear %= MaxLength; int front, rear;

length++; int length;
return 1; }:

Item data[MaxLength];

5 Reusing Encapsulated Types

Once an encapsulated type has been created, there must be some way for the programmer
to use it. An obvious way is to declare variables of the new type. It would also be of much
greater use to be able to create new types by reusing the existing ones. There are two general
ways in which this can be accomplished: composition and differential programming. Both
methods produce new types without repeating code available in existing types and so provide
all the benefits available through having reusable code. In fact, these methods apply equally
well to non-encapsulated types, but the results can be unsafe.

5.1 Composition

Encapsulated types must have some way to represent the abstraction they describe. This
representation may consist of a data structure described by types built-in to the language.
However the representation of the new type may also use other encapsulated types, that is,
it is composed of other encapsulated types.

For example, consider an application that manages customer records. Customers might
have attributes such as account number name, address and current balance. If types ap-
propriate for account numbers, names, addresses, or money amounts are already defined, a
customer type can be more easily developed by composing these existing types together. An
implementation is showed below. For brevity, only the class definitions are shown.

class AccountCustomer {
public:
CreateAccountCustomer (String name, String address);
void PrintAccountInfo();
Money CurrentBalance();
void Payment (Money m);
Money PrintPrice(Article a);
private:
AccountNumber accnum;
String accname;
String billing_address;
Money balance;

};

10



This method has been taught in introductory programming courses as a way to create
programs for so long that it is usually completely overlooked that it reuses code. Nevertheless,
composition provides the greatest benefits for reusing code.

5.2 Differential Programming

A common situation is when the programmer requires a type that is similar to, but not
exactly the same as one provided. As discussed in the introduction, copying the source for
the type provided and making the necessary modifications is undesirable, so what is needed
is some way to modify selected parts or add new parts to the existing type to create a new
type. This is known as differential programming, because only the difference between what
exists and what is needed has to be implemented.

A solution that is available in most languages is that of composition. The new type is
created with the existing type as one attribute and access to the operations of the existing
type is provided through the use of “wrapper code”, that is, code that just passes on the
arguments to the appropriate operation and returns any relevant results.

For example, suppose there are two kinds of customer in the management of customer
records: account and mail-order. The mail-order customer has the same attributes and
operations as account customers but will have in addition a delivery address and an operation
for printing that address. Having implemented the account customer type, it should only be
necessary to implement the details corresponding to the delivery address of a mail-order
customer to get the mail-order type. Below is such an implementation using composition.

class MailOrderCustomer {

public:
CreateMailOrderCustomer (String n, String a, String d)
{

ac.CreateAccountCustomer(n,a);
// MailOrderCustomer initialisation

. e
void PrintAccountInfo() { ac.PrintAccountInfo(); }
Money CurrentBalance() { return ac.CurrentBalance(); }
void Payment(Money m) { ac.Payment(m); }

Money PrintPrice(Article a) {
// Implementation specific to MailOrderCustomer omitted

}

void PrintDeliveryAddress() {
// implementation omitted.

}

private:
AccountCustomer ac;
String delivery_address;

}

11



The result reuses the code written for AccountCustomer. It also makes it quite clear that
MailOrderCustomer is a “bigger” type than AccountCustomer.

C++ provides a more flexible form of differential programming through its inheritance
mechanism. Inheritance allows new types to be specified as derived from existing types. This
means that the new type has all the code of the existing code and it can be accessed directly,
rather than through wrapper functions. The new type can also replace existing functions or
add new ones. This is shown below:

class MailOrderCustomer : public AccountCustomer {
public:
CreateMailOrderCustomer(String n, String a, String d) {
CreateAccountCustomer(n,a); // Initialise the Account Customer part

Money PrintPrice(Article a) {
// Implementation specific to MailOrderCustomer

void PrintMailingAddress() {
// implementation omitted.

L
private:
String mailing_address;

}

This is clearly a much more concise implementation than the composition version. It
also reduces the maintenance required since, in the composition version, the wrapper code
has to be written and there can also be inconsistencies when a new operation is added to
AccountCustomer; that operation is not automatically added to MailOrderCustomer.

6 Reusable Encapsulated Types

Just because a type is encapsulated does not necessarily mean that it will be usable for any
situation other than the specific one it was created for. In this section, we describe techniques
for using certain language features to make an encapsulated type more reusable by increasing
its generality while maintaining safety. These techniques are most effective on a particular
(but very large) variety of encapsulated type: container types.

6.1 Container Types

A common concept that appears in software is a structure that is a repository for one or
more items. Being a repository means that the structure allows the items to be directly
manipulated: in particular the items can be removed from the structure and either returned or
replaced by other items. Such structures are commonly called containers, and their software
representation container types. To provide the behaviour described, the interface to the
container type must provide operations that allow its contents to be accessed or changed.
For example, consider a point type that consists of a pair of integers corresponding to
an x-coordinate and a y-coordinate. This pair can be thought of as a container that holds
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two integers. The interface to point must allow the programmer to inspect and modify the
individual integers. Thus for the point value (3,65), the programmer could determine that
the x-coordinate is 3 or change the y-coordinate to 66.

A container type is like a composite type that allows the programmer to directly access
some attributes. In fact, it is not necessarily the case that the implementation of the container
type directly represents its contents as attributes. For example, the point type may actually
represent the pair of integers as a string, such as ¢ ‘(3,65) ’’. Nevertheless, the interface of
point will allow the individual coordinates to be inspected or modified.

For an example of a non container type, consider a “statistics” type. Its purpose is to
gather statistics on properties of another type, such as observation. Although instances
of observation will be passed to the statistics type, it is likely that the statistic computed
(e.g., the mean) will not allow those instances to be recovered.

Container types and Reusability

As discussed in section 2, to make a type more reusable the type must be made more general
while at the same time maintaining safety. However this is not specific enough — it does not
say what to make general or how to achieve generality safely.

Container types provide a large part of the solution. Most types created for an program
either are container types by conscious design, or can be made into container types without
sacrificing design goals. Also, it is clear how to make container types more general: increase
the number of kinds of things they can hold.

Thus, not only do container types clearly identify a large well-understood category of types
for creating reusable code, they also have quite specific guidelines for how their reusability
can be increased. We believe the importance of the relationship between container types and
reusable code has not been sufficiently realised.

Collections

The most familiar kind of container type is the collection. A collection is a container of
homogeneous items, a common example being the array. Since many computer programs
require the management of a group of relatively homogeneous pieces of data, collections are
an often-implemented container type.

Many different kinds of collection types have been developed. The variations are due to
different access disciplines, such as FIFO (queue) versus LIFO (stack), or maintaining different
relationships between the items in the collection, such as a particular order (sequence) or
the relationship between a key and a value (maps or lookup tables). Each variation has a
well-understood abstract behaviour and appears in a large number of programs, and so is
worthwhile making more reusable.

Despite this, it is surprisingly often the case that when an program requires a collection
type, even if someone has already implemented that same type for another program, that
type will be reimplemented. This is because the existing implementation is not sufficiently
general for use in the new program.

In the remainder of this section, we will use collection types as our main focus for ex-
plaining how to make container types more general, and so more reusable.

6.2 Generic Types

Implementing collection types requires further support than just type encapsulation. A prob-
lem that often arises when trying to reuse an existing user defined collection type is that the
type of the item it can contain is not what is wanted. This usually means that the type has
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to be reimplemented. This is in contrast with the language-provided array collection type,
for which the item type does not need to be specified until the time at which the array is
being used, that is, instantiation time.

As discussed earlier, one solution to this problem to use a generic name for the type.
When the code is needed, that name could be set to the appropriate type, using a mechanism
such as C’s typedef. This will work quite well in many situations. However it will not work
if it is necessary to have several collections holding different types in the same program.

Alternatively, the item type for the implementation could be an anonymous type, such as
C’s void*. This allows items of any type to be put in the collection, so several collections can
be used in the same program. However this method is unsafe because it also allows items of
different types to be put in the same collection. For example, suppose that previous version
of a program only put customer numbers in the queue but it now has been decided to put
the customer type in the queue. In the process of making the change it would be very easy to
miss one use of customer numbers in the code, and chaos would ensue. This form of generic
type is unsafe. Specifically the problem is that of preventiveness: the programmer is not
prevented from using the type incorrectly.

The best solution to this problem is to have the language support the type of the con-
tained type being a parameter in the interface of the collection type. Such types are called
parameterised types.

C++ provides parameterised types by way of templates. A template defines a family of
types, where each member of the family differs by the value of the template’s parameter(s).
The parameter may be a type or a value. Below is the template version of the circular FIFO
queue introduced earlier. Two parameters have been introduced (by just the addition of the
template clause): one is the type of the items in the queue and the other is the maximum
size of the queue.

template <class Item, int MaxLength>

int DeQueue(Item &x) {
class Queue {

if (length == 0)

public: € 0:
Queue () { return O;
ironzh=—rgér =0; x = data[front++];
3 engta = U; front %= MaxLength;
--length;
t 1;
int EnQueue(Item x) { } return
if (length == MaxLength)
return O; . .
private:

It data[MaxL th] ;
datal[rear++] = x; cLem da a[MaxLength];
int front, rear;

rear %= MaxLength; int length:
length++; 3. gLl
return 1; !

Below are the declaration and use of two different queues: one, a queue of at most 10
characters and the other, a queue of at most 100 customers.

Queue<char,10> ch_queue;
Queue<Customer,100> cust_queue;

ch_queue.Enqueue(’a’);
cust_queue.Dequeue (newcustomer) ;
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Parameterised types are the result of generalising the fixed-type collections but doing so
in a safe way — there is no way a non-customer can be enqueued in a queue of customers.

6.3 Overloading

Queues make no assumptions about the type of the items that they hold. This is not the case
with all collection types. For example, consider a set which includes a test for membership
as an operation. The following is an implementation of a (template) set that uses an array
to store the items. The membership operation must scan through the array until it either
finds the element or has checked every element in the set.

template <class Item> class Set {
public:

int membership(Item element) {

for (1 = 0; i < length; i++)

if (data[i] == element) return 1;
return O;

}

// Other operations omitted
private:

Item data[MaxLength];

int length;
}

The problem with this implementation is the set implementation is not as general as
it first appears. Part of its implicit interface is the requirement that Item must allow the
equality operator, ==, to be applied to it. For non-built-in types, this is not usually the case.
This is a subtle point but the result is code that is not as reusable as it might be.

One solution to this problem is to use a function, such as equals, instead of using the ==
operator:

int membership(Item element) {
for (i = 0; i < length; i++)
if (equals(data[i],element)) return 1;
return O;

}

This requires having many definitions of equals, one for any type that will appear in sets,
and also requires having to write more code (namely equals for the built-in types). In C,
this is a problem because it does not allow the same name to be used for more than one
function.

C++ allows this, provided the functions can be distinguished by the types of their argu-
ments. Since every version of equals will take two parameters of the type being compared,
they will all have arguments of different types. This is referred to as overloading.

Ideally, the user-defined types that will be used with sets should be able to define the
operator ==. The advantage of this is that user-defined types can use a form of notation
(namely operators) that have well-understood semantics. It also means that there is no need
to write functions like equals for built-in types. C++ also provides this ability, referred to
as operator overloading.

Now the template version of Set can be implemented on the assumption that the type
of its items understand ==. This increases the generality of the set implementation, without
compromising safety.
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6.4 Polymorphism

It is not uncommon to have a set of types that are similar, in that they have the same
interface, but different in detail, in that the implementation of some operations is different.
Thus, while they appear to have the same type (because their interfaces are the same) they
behave differently at run-time because the actual code that gets executed is determined
dynamically.

For example, now suppose there are three kinds of customer in the management of cus-
tomer records: mail order, account, and business. The three kinds involve different discounts
— the business customer gets a bulk discount, the account customer gets a frequent customer
discount, and the mail order customer gets a different discount from account customers be-
cause the paperwork is different. This means that the PrintPrice function for the customer
type must behave differently for the different kinds of customers if the following function is
to behave as required.

void PrintReceipt(Customer *c, Article a) {
c->PrintAccountInfo();
a.PrintName();
c—>PrintPrice(a);

}

The typical implementation technique is to include a kind attribute for customers. The
various operations, such as PrintPrice, must then examine this attribute to determine the
appropriate behaviour. The code typically takes on the following structure:

void PrintPrice(Article a) {
switch (a.kind) {
case business:
break;
case account:
break;
case mail_order:

break;

Similar structures might appear in other customer operations. As the management re-
quired for the customer type becomes more sophisticated, these switch structures become
more unwieldy. Techniques such as decomposition into sub-operations (for example, opera-
tions such as ComputeBusinessPrice) improve the situation but do not help with the switch
code itself. The problem becomes most apparent when a new kind of customer gets added
(e.g., employee, which gets staff discounts). Now the implementor must add the employee
case to every place that checks the kind of customer, a process well-known to be error-prone.

This problem can be avoided if the different kinds of customers are implemented as sepa-
rate types, so that all information relating the implementation of one kind of customer is kept
in the same place. This will reduce the problems relating to maintenance but now the ques-
tion is how to avoid writing multiple versions (one for each customer kind) of PrintReceipt.
The problem is that now each kind of customer is a different type, and C++ requires that
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the types of values passed to a function agree with the types of the formal parameters of that
function.

The key observation here is that the three different kinds of customer are all specialised
versions of more general “customer”, one that only supplies simple PrintAccountInfo or
PrintPrice operations. The different kinds of customers are related by the is-a relationship:
a business customer is a customer, an account customer is also a customer, and a mail-order
customer is an account customer.

If a type “B” is a type “A” then values of type B may be supplied wherever values of type
A are expected, and furthermore, if values of type B are supplied then B’s semantics will be
used, not A’s. This property is polymorphism. If a programming language has support for
polymorphism, then functions such as PrintReceipt may be made more general, because
they will now accept values of more types as their arguments. C++ provides polymorphism
through the use of virtual member functions and the inheritance hierarchy.

Notice that polymorphism is only useful if there is some doubt as to the exact type of
the value being manipulated. The only time such doubt can arise is when the value has just
been removed from a container. This indicates a strong relationship between containers and
polymorphism.

To continue the example, both calls to PrintReceipt below are now legal and, in each
case, the appropriate version of PrintReceipt will be called.

AccountCustomer* ac;
BusinessCustomer* bc;
Article purchase;

/...

PrintReceipt(ac, purchase);
PrintReceipt(bc, purchase);

This increase in generality has been achieved without any loss of safety. The compiler
will only allow calls to PrintReceipt if the first argument is-a (either directly or indirectly)
customer, and because it is a customer it must have the operations PrintAccountInfo and
PrintPrice.

7 Conclusion

In this paper, we have been concerned with creating more reusable code. We have explained
known successful techniques and investigated why they are successful. In an attempt to
explain the success, we describe a framework for examining code reusability.

An important factor in increasing code reusability is generalising it, whether by creating
some implicit form of customisation, introducing parameters, or reducing constraints on
the parameters. But just increasing generality does not guarantee greater reusability: the
generality must not be at the expense of safety. The important kinds of safety are integrity,
independence, and preventiveness.

The most common technique for creating reusable code is the function. Functions can
be further generalised by adding more parameters without sacrificing safety. On the other
hand, macros, although providing a flexible form of generalisation, do not necessarily create
reusable code because of their lack of safety.

A widely discussed, but perhaps insufficiently widely used, technique is encapsulation.
Encapsulated types are more reusable due to the safety they provide. Two methods for
creating new types by reusing existing types are composition and differential programming.
The first is widely available although seldom discussed as a way to reuse code. The second
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is wildly popular (indeed, over-sold) as a method to reuse code. However, we believe its
limitations have not been sufficiently investigated.

Container types seem to offer the category most likely to be productive when improving
the reusability of code. Such types are everywhere (particularly collection types) and it
is clear how to make them more general: increase the number of kinds of items they can
hold. We discussed three techniques for generalising container types: parameterised types,
overloading, and polymorphism. None of these techniques compromise safety. We note
that these techniques are considered by some to be different forms of polymorphism [2] and
speculate that a better understanding of polymorphism may prove productive.

The ultimate goal is improving software productivity. The potential of code reuse has been
examined for several decades, but with only small gains. We believe that part of the reason
for this is that code is not being written for reuse. Furthermore, we believe that language
support is a necessary component of successful reusable code. To fully evaluate existing or
proposed language features, a better understanding of the principles of code reusability is
essential.
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