
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematics, Statistics and Computer Science

Computer Science

A Study of Good Predecessor Programs

for Reducing Fitness Evaluation Cost in

Genetic Programming

Huayang Xie, Mengjie Zhang, Peter Andreae

Technical Report CS-TR-06/3
January 2006

School of Mathematics, Statistics and Computer Science
Victoria University
PO Box 600, Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematics, Statistics and Computer Science

Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341, Fax: +64 4 463 5045
Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

A Study of Good Predecessor Programs

for Reducing Fitness Evaluation Cost in

Genetic Programming

Huayang Xie, Mengjie Zhang, Peter Andreae

Technical Report CS-TR-06/3
January 2006

Abstract

Good Predecessor Programs (GPPs) are the ancestors of the best program
found in a Genetic Programming (GP) evolution. This paper reports on an in-
vestigation into GPPs with the ultimate goal of reducing fitness evaluation cost
in tree-based GP systems. A framework is developed for gathering information
about GPPs and a series of experiments is conducted on a symbolic regression
problem, a binary classification problem, and a multi-class classification program
with increasing levels of difficulty in different domains. The analysis of the data
shows that during evolution, GPPs typically constitute between less than 33%
of the total programs evaluated, and may constitute less than 5%. The analysis
results further shows that in all evaluated programs, the proportion of GPPs is
reduced by increasing tournament size and to a less extent, affected by popula-
tion size. Problem difficulty seems to have no clear influence on the proportion
of GPPs.

Keywords Fitness evaluation, good predecessor programs, population cluster-
ing

Author Information

All authors are academic staff members and postgraduate students in computer science in the
School of Mathematics, Statistics and Computer Science, Victoria University of Wellington,
New Zealand.

1 Introduction

Fitness evaluation is the most time consuming operation in Evolutionary Computation (EC)
[1, 2]. Therefore, reducing the fitness evaluation cost is a key to improving the efficiency
of EC. It has attracted increasing interest in both Genetic Algorithms (GAs) and Genetic
Programming (GP), including fitness inheritance [3], fitness estimation [4, 5, 6], fitness case
selection based fitness approximation [1, 7, 8], fitness evaluation avoidance [9], population
shrinking [10] and dynamic population [11, 12, 13, 14].

We are primarily interested in manipulating the population to minimise the number of
programs to be evaluated in the conventional tree-based GP system [15]. Our goal is to de-
velop a new approach to improve both the efficiency and the effectiveness of the conventional
GP system. Contrary to the common notion that almost all programs possibly contribute
to the success of finding the best program, we hypothesis that in a GP run, there is only
a small fraction of programs that are ancestors of the best program found. We define such
programs as Good Predecessor Programs (GPPs). If this hypothesis is true, we will move on
to develop an approach using GPPs for reducing the cost of fitness evaluation. More precisely,
our whole research project consists of three stages. The first stage is to investigate GPPs
to determine whether the fraction of GPPs during evolution is sufficiently small to be worth
trying to identify them. The second stage will consist of looking for ways of identifying GPPs
(or non-GPPs) at each generation along the evolutionary process. The final stage is to use
these identifying features during evolution in order to reduce the fitness evaluation cost as
much as possible while improving, or at least preserving, the effectiveness of the conventional
GP system.

1.1 Goals

This paper focuses on the first stage of the research project, and involves first developing a
framework to locate GPPs and gathering sufficient information of GPPs from the evolutionary
process, then analysing the output of the framework to test our hypothesis. In particular, we
address the following research questions:

• Whether there is only a small fraction of all programs during evolution that contribute
to finding the best program; in other words, whether the number of GPPs is significantly
less than the total number of programs evaluated during evolution;

• What influence, if any, genetic parameters and problem difficulty have on the size of
the fraction.

The remainder of the paper is organised as follows: section 2 presents some related work;
section 3 describes the framework; section 4 describes the experimental design and configura-
tion; section 5 presents the experiment results and analyses; and section 6 gives conclusions
and future work.

2 Related Work

There have been a number of approaches to reducing the cost of fitness evaluation in both
GAs and GP by identifying individuals whose fitness does not need to be evaluated directly.

2.1 Studies in GAs

Sastry et al [3] introduced the notion of fitness inheritance and showed some very promising
results in reducing the number of evaluations for OneMax problems when the population size

1

is fixed. Ziegler and Banzhaf [2] used a meta-model of the fitness function to replace the time
consuming evaluations during tournament selection in analysing evolving walking patterns
for quadruped robots.

Kim and Cho [5] used k-means to cluster the whole population and used Euclidean dis-
tance to estimate the fitness values of other cluster members from the fitness value based
on the cluster representative to save the fitness evaluation cost. Their method was tested
on the Griewangk function, the De Jong functions, the Rastrigin function and the Schwefel
function. Jin and Sendhoff [4] also used k-means to cluster the whole population. Only the
chromosome closest to the cluster centre was evaluated. Fitness values of other chromosomes
were estimated by a neural network ensemble. Their approach was tested on the Ackley
function, the Rosenbrock function, and the Sphere function.

2.2 Studies in GP

Altenberg and Tackett [7, 8] used a small fraction of training fitness cases to evaluate a large
number of offspring produced by their brood recombination crossover operator. Giacobini et
al [1] used a statistical method to select a fraction of all fitness cases to evaluate programs in
order to reduce the computational cost. They introduced a measure they called entropy in
their study and concluded that once the number of fitness cases is greater than the entropy,
a normal convergence behaviour can be observed in their boolean function and discrete step
function problems.

Jackson [9] introduced a fitness evaluation avoidance method to avoid evaluating offspring
generated by so-called fitness-preserving crossover. In his method, all nodes in a program
are initially marked as not-visited. When a fitness case is fed to a fitness function and causes
a node of the program to be evaluated, the node is then marked as visited. If a program
P1 is selected for crossover and the root of a sub-tree from another program P2 replaces a
not-visited node of P1, then the generated child could not act differently from its parent P1,
as the inserted sub-tree will never be executed. Therefore, there is no need to re-evaluate the
fitness of the offspring. The method’s effectiveness depends on the fraction of nodes in the
programs that are not evaluated for any of the fitness cases. For the boolean function set
that Jackson used, this fraction is high; for function sets without if or short-circuited boolean
operators, the fraction would be low, and other techniques for saving fitness evaluation would
be needed.

In previous work [6], we clustered the whole population by a heuristic called fitness-
case-equivalence, and selected a cluster representative for each cluster. The fitness value of
the representative was calculated on all training cases and then directly assigned to other
members in the same cluster in order to save the fitness evaluation cost.

Luke et al [10] proposed a shrinking strategy using a diagonal layout to gradually decrease
the population size towards zero during a GP run. The method employs a large population
at the beginning, then reduces the size linearly at each generation. They concluded that
“Decreasing the population size is always as good as, and frequently better than, various
fixed-sized population strategies” [10]. Fernandez et al [12] developed a method for solv-
ing the code bloat problem by taking advantage of the dynamic population. The method
removes some individuals at every generation and compensates for the increase in the size
of other individuals. They claimed that the method can save computing time while looking
for solutions. Recently, Rochat et al [13] introduced a combination of two techniques, island
model [16] and plague [17], to dynamically change the population size at run time in order
to improve the quality of programs.

While almost all research in manipulating the population suggested that changing popu-
lation could improve or at least preserve the effectiveness of GP, there was little explanation

2

on why this works. In addition, the changing ratios in almost all related studies were selected
without sufficient justification. Therefore, instead of just conducting many experiments on
different problem domains to show that the method that we are developing works, we start
with a study to test the hypothesis upon which our whole research project is based.

3 The Framework

The GPP set of a single GP run is the collection of all GPPs of the best program generated
in a GP run. It consists of all programs in each generation that are ancestors (according
to the genetic operators of crossover, mutation, and reproduction) of the program with the
highest fitness value.

Our framework constructs the GPP set by recording program ancestry during evolution,
and then tracing the best program found in a GP run all the way back to the initial population.
The resulting GPP set is then analysed to extract high level important information in order to
answer research questions. Figure 1 illustrates the relationships among the three components
of the framework.

 Low Level

Information

GPP Set

Information Extraction Engine

Algorithm

Framework Foundation

 High Level

Information

Figure 1: The structure of the framework.

A comprehensive log system is used as the framework foundation to record all necessary
low level information into a detailed program log file. In order to be able to identify every
program and its ancestors, we add several important properties to a program, including a
globally unique identifier. Each entry in the log file contains the following information which
can be used to provide evidence for answering our research questions:

• program ID,

• the generation in which it was created

• how the program was created/generated (new, crossover, mutation, or reproduction),

• IDs of its parents (if any)

• its size (number of nodes)

• its fitness value

• the program as a LISP expression

Table 1 shows a few example records of a detailed program log file. The following is a brief
interpretation only focusing on how programs are generated. Other information can be easily
understood. Programs with IDs 1 and 2 at the initial generation were randomly created (and
therefore had no parents). Program 105 was generated in the 1st generation by reproducing

3

Table 1: Sample records in a detailed program log file.
ID Gen How Parents Size Fitness Program

1 0 new -1:-1 4 34.75 If(x,3.60,x)
2 0 new -1:-1 7 37.20 If(Sin(x),x,Mul(x,x))
...

...
...

...
...

...
...

105 1 repd 2:-1 7 37.20 If(Sin(x),x,Mul(x,x))
106 1 xovr 1:76 6 28.57 If(x,Add(1.74, x), x)
...

...
...

...
...

...
...

218 2 muta 105:-1 8 39.74 If(Sin(x),Abs(x),Mul(x,x)))

Program 2 from the initial generation (and therefore has only one parent). Program 106 was
generated by applying crossover to Programs 1 and 76 from the initial generation. Program
218 at 2nd generation was generated by mutating Program 105 from the 1st generation.

The log system also keeps track of the ID of the best program found along the evolutionary
process. The best program can appear at any generation from the initial to the last. Where
there is more than one program with the same fitness value, the system records only the first
one found, since this will be in the earliest generation. Note that, to simplify this study so
as to concentrate on what we would like to explore, the best program is elected only on the
basis of its fitness value.

Once a run is completed, the algorithm constructs the GPP set by a depth first search
through the log file, starting at the record of the best program and following links to parent
programs, adding all the programs it finds to the GPP set.

3.1 High Level Information Extraction

While the GPP set supports the extraction of much more high level information, in this study,
we only extracted the numbers of GPPs at each generation in order to identify the fraction
of programs that are directly involved in producing the best program.

Figure 2 shows the number of GPPs across all generations in a sample run in our experi-
ments. The sample run was configured with a maximum generations of 200 and a population
size of 200. The x-axis shows the generation number and the y-axis shows the fraction of
GPPs. In this run, the best program was found in generation 196. (Note that the evolution
process was not terminated until generation 200, but no improvement was found in the last
four generations.)

In the initial generation, the number of GPPs of the best program is roughly a quarter
(26%) of the population. After a little fluctuation, the fraction of GPPs quickly climbed up
to a peak of almost a half (47%) in generation 35. The fraction constantly flucturates during
evolution, but tends to shrink towards the end of the evolution.

In this sample run, over 50% of the programs at each generation did not contribute to the
final best program, and therefore evaluating their fitness was “wasted”. This suggests that
there is considerable opportunity for reducing the cost of fitness evaluation if we could identify
these non GPPs. Of course, a single run is not necessarily indicative of typical behaviour,
and the next section describes further experiments on a range of problems.

4

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

 50

26%

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

47%

200

Figure 2: Fraction of GPPs in a sample run.

4 Experiment Design and Configuration

To obtain a robust measure of the fraction of GPPs in a population, we needed a range of
quite different GP scenarios. We chose a symbolic regression problem, a binary classification
problem, and a multi-class classification problem from different domains and with increasing
levels of difficulty (low, medium and high). We also wanted to identify the effect of the GP
parameters on the fraction of GPPs. There are many possible parameters that could be
investigated, but we focused on two parameters — tournament size and population size —
because we expected them to be more likely to influence the fraction of GPPs. Other genetic
parameters will be examined in the future using the same experimental framework.

The study covers four different tournament sizes — 20, 10, 4, and 1, and six different
population sizes — 100, 200, 500, 1000, 2000, 5000. These values were chosen mainly because
they are commonly used. Note that tournament size 1 is equivalent to the random selection,
meaning no selection pressure.

4.1 Data sets

The symbolic regression problem (Regression) is shown in equation (1). We generated 100
fitness cases by assigning equally spaced real numbers in (-10,10] to x.

f(x) =

{

x2 − x , x ≥ 0
sin(x) + 1

x
, x < 0

(1)

The binary classification problem involves determining whether examples represent a nor-
mal liver or a liver disorder. The dataset is BUPA Liver Disorders dataset (BUPA) chosen
from the UCI Machine Learning repository [18]. BUPA consists of 345 data examples, each
described by six numeric features.

The multi-class classification problem involves classifying four types of vehicles: opel,
saab, bus and van. The dataset is called Vehicle Silhouette (Vehicle), which was also chosen
from the UCI Machine Learning repository. Vehicle consists of 846 data examples, each
described by 18 numeric features.

For each classification problem, the data set is evenly and randomly split into the training
and test sets for each individual GP run.

5

4.2 Classification

The programs output real values; for the classification tasks, these values must be converted
into appropriate class labels.

For the liver disorder binary classification problem, the classification of an example is
given by the sign of the program output — if the output of a program on a fitness case is
negative, the program classifies the fitness case as disorder, otherwise, as normal.

For the vehicle multi-class classification problem, we use the following classification rule
[19], where r is the program output. It is highly possible that the rule is not optimal. However,
it is not the focus of this study to properly set the rule in order to find an optimal solution
of the vehicle problem.

class =

opel , r ≥ 10
saab , 0 ≤ r < 10
bus , −10 ≤ r < 0
van , r < −10

(2)

4.3 Function Set

The function set for the three problems is listed below:

Function Set = {+,−, ∗, /, abs, sqrt, if, sin} (3)

The +, −, and ∗ operators have their usual meanings — addition, subtraction, and
multiplication. The / operator represents “protected” division which is the usual division
operator except that a division by zero gives a result of zero. Each of these four functions
takes two arguments. The if function takes three arguments: if the first argument is positive,
the if function returns its second argument; otherwise, it returns its third argument. The
remaining unary functions also have their usual meanings. Note that zero will be returned if
a function encounters an invalid argument.

4.4 Terminal Sets

We have three terminal sets, one for each problem, with a different number of variables or
features in each set. The terminal set for Regression includes a single variable x. The terminal
set used in BUPA includes six numerical features. The terminal set used in Vehicle includes
18 numerical features extracted from images of the types of vehicles. More details about
those features can be found in [18].

Each terminal set also includes real valued random constants in the range [-5.0, 5.0]. Note
that, once random constant numbers are generated for a program, they will remain unchanged
during the evolutionary recombination (crossover and reproduction). However, they may be
replaced by new random constant numbers when the mutation operator is applied.

4.5 Fitness Function

For the symbolic regression problem, the fitness of a program was given by the root mean
square (RMS) of the differences between the outputs of a program and the expected outputs
for each fitness case.

For the classification problems, we used the classification error rate on the training data
set as the fitness function. The classification error rate of a program is the fraction of the
fitness cases in the training set that are incorrectly classified by the program. Therefore, the
best fitness value is zero, meaning that no fitness case has been incorrectly classified.

6

4.6 Other Genetic Parameters and Termination Criteria

The ramped half and half method is used to create new programs. The minimum depth of
creation is three and the maximum is five. The crossover rate, the mutation rate, and the
reproduction rate are 85%, 10%, and 5% respectively. Elitism is also used in our GP system.

The learning/evolutionary process is terminated when either of the two following condi-
tions is met:

• The problem has been solved. This means the RMS of errors of the best program is zero
for the symbolic regression problem, or the classification error rate of the best program
on the training data set becomes zero percent for classification problems.

• The number of generations reaches the pre-defined value. In this experiment, the max-
imum limit of generation is 200. This means if a certain run fails to reach an optimal
solution on or before the last generation, the program will be terminated automatically.

4.7 Experiment Configuration

We tested six population sizes and four tournament sizes on each of the three problems, giving
72 experiments in total. In each experiment, we repeated the evolutionary process 100 times
randomly and independently. Since precise CPU time measurement is not important for the
study, the experiments were run on a Sun Grid Engine (http://gridengine.sunsource.
net) involving tens of workstations with identical hardware and software.

5 Results and Analysis

This section presents the experimental results. We analysed the ratio of GPPs to the total
evaluated programs in a GP run to investigate whether there is only a small fraction of
programs relating to the success of finding the best program during evolution. We also
analysed the relationships between the GPP ratio and the three factors — tournament size,
population size, and problem difficulty — to investigate whether the GPP ratio is influenced
by any of these factors. Note that the Bivariate Correlation Analysis [20] is used to provide
empirical evidences for supporting or rejecting those relationships. The test calculates a
correlation coefficient (r ∈ [−1, 1]) between two variables. r = −1 suggests two variables
have a perfect negative correlation, r = 1 suggests a perfect positive correlation, and r = 0
suggests no correlation at all. The confidence level is calculated from the probability value
(p). In this study, the commonly used 95% confidence level is used, meaning that p does not
exceed 0.05.

5.1 The Average GPP Ratio

The results of the experiments are presented in Table 2 and Figure 3. The table presents
the mean and standard deviation of the GPP ratio for the 100 runs of each experiment; the
figure presents the dynamic behaviour of the GPP ratio for several particular experiments.

Table 2 gives detailed figures summarising the mean and standard deviation (shown after
the ± sign) of the GPP ratio over 100 runs of each of the 72 experiments. The table is
organised into four parts according to the four tournament sizes. Within each part, population
sizes are shown as rows and problems are shown as columns. For example, the first cell of
the top-left part of the table shows that, for the symbolic regression problem, and in a run
with a tournament size of 20 and a population size of 100, on average, only 15.13% programs
are GPPs amongst the total evaluated programs.

7

Table 2: Average ratio of GPPs to all programs evaluated during evolution (%).

Pop Regression BUPA Vehicle Regression BUPA Vehicle

Size tournament size 20 tournament size 10

100 15.13 ± 7.89 10.70 ± 6.99 12.52 ± 6.95 16.95 ± 7.69 13.25 ± 8.04 15.64 ± 7.28

200 13.62 ± 7.06 10.33 ± 6.03 11.55 ± 6.38 15.09 ± 7.02 12.47 ± 6.04 13.09 ± 6.14

500 9.25 ± 4.71 7.72 ± 4.14 8.91 ± 4.77 12.50 ± 5.19 9.78 ± 3.98 11.11 ± 4.28

1000 8.90 ± 4.18 6.86 ± 3.44 6.68 ± 2.98 11.95 ± 4.46 8.14 ± 3.47 10.35 ± 3.67

2000 6.85 ± 3.55 5.48 ± 3.17 4.92 ± 2.37 9.40 ± 4.01 7.99 ± 2.62 9.25 ± 2.47

5000 3.89 ± 3.22 3.99 ± 2.14 4.35 ± 1.77 6.46 ± 3.88 7.42 ± 2.53 8.86 ± 2.11

tournament size 4 tournament size 1

100 23.30 ± 7.41 18.69 ± 7.60 22.53 ± 7.65 30.78 ± 14.20 30.97 ± 14.81 33.30 ± 13.09

200 23.40 ± 5.68 19.82 ± 6.71 22.41 ± 5.44 29.41 ± 15.62 29.29 ± 13.17 32.67 ± 12.91

500 23.20 ± 4.97 19.11 ± 5.17 21.31 ± 4.50 26.49 ± 15.55 28.74 ± 14.91 27.86 ± 15.92

1000 22.90 ± 4.15 18.81 ± 4.94 21.01 ± 4.56 23.76 ± 16.64 24.04 ± 15.45 31.56 ± 14.05

2000 19.20 ± 6.05 19.56 ± 4.64 21.71 ± 3.53 25.03 ± 16.36 26.22 ± 14.18 30.95 ± 15.09

5000 16.38 ± 6.77 18.38 ± 4.85 21.44 ± 3.42 21.10 ± 15.94 23.02 ± 15.41 32.51 ± 14.02

Figure 3 illustrates several randomly chosen sample runs from the experiments of the
three problems for each of the six population sizes with the arbitrarily chosen tournament
size of 20. There are six charts in the figure corresponding to the six different population
sizes respectively. Each chart shows a run for each of the three problems, where the dash line
stands for Regression, the thin solid line stands for BUPA, and the thick solid line stands for
Vehicle.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

Population size 100, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

Population size 200, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

Population size 500, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

Population size 1000, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

Population size 2000, Tournament size 20

Regression
BUPA
Vehicle

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Generation

F
ra

ct
io

n
of

 G
P

P
s

(%
)

Population size 5000, Tournament size 20

Regression
BUPA
Vehicle

Figure 3: More sample runs with tournament size 20 for Regression, BUPA, and Vehicle
problems using six different population sizes

From a preliminary consideration of this data, it is clear that many of the evaluated
programs do not contribute to the best program in a run. For random selection (tournament
size of 1) the GPP ratio can frequently rise to about 50%, but with just some fitness-based
selection (tournament size of 4), this drops to below 33%, even with small population sizes.
With large populations and strong fitness-based selection (large tournament sizes), the GPP
ratio dropped below 10% for most runs. Therefore, there are many programs whose fitness
was evaluated “unnecessarily”. Being able to identify these programs before evaluating their
fitness could reduce the total fitness evaluation cost very significantly.

8

It is also clear that the GPP ratio varies with different parameters. We were particularly
interested in the effect of tournament size, population size, and problem difficulty. Figure
4 presents a plot of the GPP ratios against population size for each problem category and
for each tournament size. Further examination of this data led to the relationships discussed
below.

100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

Population size

A
v

er
ag

e
ra

ti
o

 o
f

G
P

P
s

to
 a

ll
 p

ro
g

ra
m

s
ev

al
u

at
ed

Regression

Tournament size 20 Tournament size 10 Tournament size 4 Tournament size 1

100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

Population size

Bupa

100 200 500 1000 2000 5000
0

5

10

15

20

25

30

35

Population size

Vehicle

Figure 4: Average GPP ratio against population size for each problem and tournament size.

5.2 GPP Ratio and Tournament Size

The four lines in each graph of Figure 4 make it clear that the GPP ratio decreases with
increasing tournament size for all problems and all population sizes. Bivariate Correlation
Analysis gives a strong negative correlation (r = −0.852) between tournament size and the
GPP ratio, and the correlation is significant at a 0.01 level. Hence the relationship between
the GPP ratio and tournament size is statistically supported.

A possible explanation is that bigger tournament sizes decrease the chance of any low
fitness program winning a tournament and contributing to the next generation. The ancestors
of the next generation are likely to be confined to a small set of high fitness programs, many of
which will win multiple tournaments and dominate the new population, and hence constrain
the set of GPPs to be small relative to the whole population.

Interestingly, of the four different tournament sizes, the results demonstrate that size 4
has a special characteristic: the GPP ratios across different population sizes in experiments
with the tournament size 4 are more stable than those in experiments with other tournament
sizes on all three problems. It suggests that a tournament size around 4 may be able to
provide a more consistent evolutionary process, regardless of population size, than any of the
other tournament sizes change. We will further investigate this special characteristic in the
future.

5.3 GPP Ratio and Population Size

The relationship between the GPP ratio and population size is not as clear from Figure
4. Bivariate correlation gives a correlation coefficient of −0.219 and the significance level is
0.065, indicating a less robust negative correlation between the GPP ratio and population size.
However, the negative correlation between the GPP ratio and population size is much stronger
for larger tournaments (20 or 10) across all three problems. For the smaller tournaments (4 or
1), the lines are either fluctuating or almost flat. The results suggest that there is a negative

9

correlation between the GPP ratio and population size but the correlation is masked at small
tournament sizes.

5.4 GPP Ratio and Problem Difficulty

As stated in section 4, Regression, BUPA and Vehicle represent three levels of difficulties - low,
medium and high. Figure 4 shows no clear relationship between the GPP ratio and problem
difficulty. Furthermore, Bivariate Correlation Analysis yields a correlation coefficient of 0.044
(where that 0 means no correlation at all) and insignificant at the 0.717 level (where the
significance level should be less than 0.05). Therefore no correlation was suggested between
the GPP ratio and problem difficulty in our experiments.

However, we are not confident that there is no correlation with problem difficulty. The
three problems represent only a small sample of coarse levels of problem difficulties, and may
not be sufficient to yield a sound correlation. Also, the correlation with problem difficulty
may be masked by other factors, including other un-investigated genetic parameters. It will
require further experiments to determine whether there is or is not any correlation with
problem difficulty.

6 Conclusions and Future Work

The goal of this paper was to study the feasibility of using GPPs for reducing fitness evalu-
ation cost in the conventional tree-based GP system. A framework was developed to gather
information about GPPs. A series of experiments was conducted on a symbolic regression
problem, a binary classification problem, and a multi-class classification program with in-
creasing levels of difficulty in different domains. The resulting data was analysed.

The analysis of the ratio of the GPPs shows that with strong fitness-based selection and
large population sizes, only a small fraction of programs amongst the total evaluated programs
in a run are ancestors of the best program — less than 5% of total programs in some cases.

The analysis of the relationships between the GPP ratio and three factors — tournament
size, population size, and problem difficulty — show that the GPP ratio is strongly negatively
influenced by tournament size, and also negatively influenced by population size, but less
strongly.

We were surprised that there is no evidence for a correlation between the GPP ratio
and problem difficulty in our experiments. We will choose more problems representing finer
difficulty levels in order to further investigate the relationship between the GPP ratio and
problem difficulty. We will also study other genetic parameters and use multivariate statistical
methods to further examine the relationship between the GPP ratio and problem difficulty.

We will also extend our experiments to cover other benchmarks commonly used in GP
studies, including artificial ant and even parity problems, to provide more general conclusions.

As our ultimate project goal is to develop a new approach that uses the analysis of GPPs
to reduce the fitness evaluation cost as much as possible without affecting the effectiveness
of the conventional GP system, we will further investigate the GPP ratio at each generation,
especially at the initial generation, explore ways to identify GPPs and/or the correlates, and
develop mechanisms to use GPPs and/or the correlates during the evolutionary process.

Acknowledgment

We would like to thank Neale Ranns for his wonderful GP package (Gouda), his endless
technical support and useful discussions.

10

References

[1] M. Giacobini, M. Tomassini, and L. Vanneschi, “Limiting the number of fitness cases in
genetic programming using statistics,” in PPSN VII: Proceedings of the 7th International
Conference on Parallel Problem Solving from Nature. London, UK: Springer-Verlag,
2002, pp. 371–380.

[2] J. Ziegler and W. Banzhaf, “Decreasing the number of evaluations in evolutionary algo-
rithms by using a meta-model of the fitness function,” in Genetic Programming, Proceed-
ings of EuroGP’2003, ser. LNCS, C. Ryan and et al, Eds., vol. 2610. Springer-Verlag,
2003, pp. 264–275.

[3] K. Sastry, D. E. Goldberg, and M. Pelikan, “Don’t evaluate, inherit,” in Proceedings of
the Genetic and Evolutionary Computation Conference, L. Spector and et al, Eds. San
Francisco, California, USA: Morgan Kaufmann, 2001, pp. 551–558. [Online]. Available:
citeseer.ist.psu.edu/article/sastry01dont.html

[4] Y. Jin and B. Sendhoff, “Reducing fitness evaluations using clustering techniques and
neural networks ensembles,” in Genetic and Evolutionary Computation Conference, ser.
LNCS, vol. 3102. Springer, 2004, pp. 688–699.

[5] H.-S. Kim and S.-B. Cho, “An efficient genetic algorithms with less fitness evaluation
by clustering,” in Proceedings of IEEE Congress on Evolutionary Computation. IEEE,
2001, pp. 887–894.

[6] H. Xie, M. Zhang, and P. Andreae, “Population clustering in genetic programming,” in
Proceedings of the 9th European Conference, EuroGP 2006, ser. LNCS, P. Collet and
et al, Eds., vol. 3905. Springer-Verlag, 2006, pp. 190–121.

[7] L. Altenberg, “Emergent phenomena in genetic programming,” in Proceedings of the
Third Annual Conference on Evolutionary Programming, A. V. Sebald and L. J. Fogel,
Eds. World Scientific, 1994, pp. 233–241.

[8] W. A. Tackett, “Recombination, selection, and the genetic construction of computer
programs,” Ph.D. dissertation, University of Southern California, Los Angeles, CA, USA,
1994.

[9] D. Jackson, “Fitness evaluation avoidance in boolean GP problems,” in Proceedings of
the 2005 IEEE Congress on Evolutionary Computation, D. Corne and et al, Eds., vol. 3.
Edinburgh, UK: IEEE Press, 2-5 Sept. 2005, pp. 2530–2536.

[10] S. Luke, G. C. Balan, and L. Panait, “Population implosion in genetic programming.” in
Genetic and Evolutionary Computation – GECCO-2003, ser. LNCS, E. Cantú-Paz and
et al, Eds., vol. 2724. Chicago: Springer-Verlag, 12-16 July 2003, pp. 1729–1739.

[11] M. E. Balazs and D. L. Richter, “A genetic algorithm with dynamic population: Exper-
imental results,” in Late Breaking Papers at the 1999 Genetic and Evolutionary Compu-
tation Conference, S. Brave and A. S. Wu, Eds., Orlando, Florida, USA, 13 July 1999,
pp. 25–30.

[12] F. Fernandez, M. Tomassini, and L. Vanneschi, “Saving computational effort in genetic
programming by means of plagues,” in Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003, R. Sarker and et al, Eds. Canberra: IEEE Press, 8-12 Dec.
2003, pp. 2042–2049.

11

[13] D. Rochat, M. Tomassini, and L. Vanneschi, “Dynamic size populations in distributed
genetic programming,” in Proceedings of the 8th European Conference on Genetic Pro-
gramming, ser. Lecture Notes in Computer Science, M. Keijzer and et al, Eds., vol. 3447.
Lausanne, Switzerland: Springer, 2005, pp. 50–61.

[14] M. Tomassini, L. Vanneschi, J. Cuendet, and F. Fernandez, “A new technique for
dynamic size populations in genetic programming,” in Proceedings of the 2004 IEEE
Congress on Evolutionary Computation. Portland, Oregon: IEEE Press, 20-23 June
2004, pp. 486–493.

[15] J. R. Koza, Genetic Programming — On the Programming of Computers by Means of
Natural Selection. Cambridge: MIT Press, 1992.

[16] R. Tanese, “Distributed genetic algorithms,” in Proceedings of the Third International
Conference on Genetic Algorithms, J. D. Schaffer, Ed. Morgan Kaufmann Publishers,
1989, pp. 434–440.

[17] L. Vanneschi, “Theory and practice for efficient genetic programming,” Ph.D. disserta-
tion, Faculty of Sciences, University of Lausanne, Switzerland, 2004.

[18] C. B. D.J. Newman, S. Hettich and C. Merz, “UCI repository of machine
learning databases,” 1998. [Online]. Available: http://www.ics.uci.edu/\simmlearn/
MLRepository.html

[19] W. Smart and M. Zhang, “Applying online gradient descent search to genetic program-
ming for object recognition,” Australian Computer Science Communications (Data Min-
ing, CRPIT 32), vol. 26, pp. 133–138, January 2004.

[20] R. H. Lindeman, P. F. Merenda, and R. Z. Gold, Introduction to Bivariate and Multi-
variate Analysis. Scott, Foresman and Company, 1980.

[21] M. Fuchs, “Large populations are not always the best choice in genetic programming,”
in GECCO, 1999, pp. 1033–1038.

12

