VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

A
Dt
School of Mathematical and Computing Sciences
Computer Science

XML Database Support for Program
Trace Visualisation

Craig Anslow, Stuart Marshall, Robert Biddle,
James Noble, and Kirk Jackson

Technical Report CS-TR-04/01
January 2004

School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: 464 4 463 5045
PO Box 600, Wellington FEmail: Tech.Reports@mcs.vuw.ac.nz

New Zealand http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

A
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mes.vuw.ac.nz/research

XML Database Support for Program
Trace Visualisation

Craig Anslow, Stuart Marshall, Robert Biddle,
James Noble, and Kirk Jackson

Technical Report CS-TR-04/01
January 2004

Abstract

Program traces can be used to drive visualisations of reusable components,
but such traces can be gigabytes in size, are very expensive to generate, and are
hard to extract information from. We have developed a solution to this problem,
an XML Data Storage Environment (XDSE) for storing XML based program
traces in a native XML database. We use XQuery to extract information from
the program traces and the results are then transformed into understandable
visualisations.

Publishing Information

This paper was presented at The Australasian Symposium on Information Visualisation (IN-
VIS) in Christchurch, New Zealand, 2004.

Author Information

The authors are postgraduate students and lecturers in Computer Science at Victoria Uni-
versity of Wellington, New Zealand.

XML Database Support for Program Trace Visualisation

Craig Anslow, Stuart Marshall, Robert Biddle,
James Noble, and Kirk Jackson

School of Mathematical and Computing Sciences
Victoria University of Wellington
Wellington, New Zealand
Email: Craig.Anslow@ncs.vuw.ac.nz

Abstract

Program traces can be used to drive visualisations
of reusable components, but such traces can be giga-
bytes in size, are very expensive to generate, and are
hard to extract information from. We have developed
a solution to this problem, an XML Data Storage En-
vironment (XDSE) for storing XML based program
traces in a native XML database. We use XQuery
to extract information from the program traces and
the results are then transformed into understandable
visualisations.

Keywords: Program Traces, Component Reuse, Soft-
ware Visualisation, Native XML Databases, XQuery.

1 Introduction

Program traces can be used to drive visualisations
of reusable components, but the program traces re-
quired can be gigabytes in size, are very expensive to
generate, and are hard to extract specific information
from. We need a way to store the program traces so
that we can extract information in order to generate
meaningful visualisations of reusable components.

Our solution to this problem is an XML Data Stor-
age Environment (XDSE) (pronounced “ecstasy”) for
storing and querying XML based program traces of
reusable components in a native XML database. Us-
ing XDSE, program traces can be stored, then queried
using XQuery, and afterwards transformed into ap-
propriate visualisations. These visualisations can
help developers understand how the reusable compo-
nents work, and whether or not they can be reused in
a new software program.

Developers reusing software components need to
understand how the components work and how they
can be reused. However, this is difficult in practice.
Helping developers understand software components
by creating visualisations of them means that they
will potentially be able to use them in their program.

To visualise a design or a software component,
certain information has to be selected. Extracting
the correct information and gathering it in program
traces is a difficult procedure. There are many factors
which can affect this procedure, such as the language
the software component is written in, or the design
complexity.

One method for deriving this information is to ex-
amine applications executing. This can be done in

Copyright (¢)2004, Australian Computer Society, Inc. This paper
appeared at the Australasian Symposium on Information Visual-
isation, Christchurch, 2004. Conferences in Research and Prac-
tice in Information Technology, Vol. 35. Neville Churcher and
Clare Churcher, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

various ways such as using debuggers or modified ex-
ecution environments. This method generates static
and run-time information about a component such
as class descriptions and the methods that have been
invoked on objects.

The benefit of program traces is that multiple vi-
sualisations can be generated from a single program
trace. Program traces are expensive to generate be-
cause they are extremely large and take a long time
to create. We store the program traces, so that
when creating visualisations only subsets of informa-
tion need to be extracted rather than using a whole
program trace. Using a whole program trace takes
more processing time to generate visualisations.

Our approach to encapsulating the information of
a program trace is to encode it using XML. We have
initially used our existing XML based language called
the Process Abstraction Language (PAL). We have
since developed a new and improved version which
has separate parts for static and run-time informa-
tion. The static part is called Reusable Component
Descriptions (RCD) and the run-time part eXtensible
Trace Executions (XTE).

The paper is organised as follows. In section 2,
we describe our motivation for storing and querying
program traces so that we can create useful visual-
isations. Section 3 presents XDSE, for storing and
querying program traces. A summary of related work
appears in section 4, future work in section 5, and our
conclusions in section 6.

2 Motivation

The main reasons for wanting to reuse components
are to save on time, effort, and costs in both devel-
opment and maintenance of quality software. This
will mean the developer will not have to imple-
ment a new solution to an old problem. Instead
they can recycle existing components to solve their
problem. Research into component reuse has been
happening for a long time (McIllroy 1968) and in-
cludes many areas of focus; several overviews are
available (Mili, Mili & Mili 1995, Jacobson, Griss &
Jonsson 1997, McClure 1997, Poulin 1997).

There are many ways component reuse can be ap-
plied. For example, copying and pasting code into
a new program, inheritance of classes, instantiation
of common methods within programs, using a frame-
work, and using an application programming inter-
face (API). When reusing a component it may need
to be modified or extended in some way so that it will
meet the requirements of the new program. The as-
sumption is that even modifying or extending a com-
ponent will result in the reduction of time, cost and
effort compared with designing the component from
scratch.

F’ Test Drive |4 »| Visualisation
Interface Interface
Test Drive
Program
Interface Component | .| Transformer
i Repository | | Repository
] Interface Interface
] (eraet | (merere |
|
' A 4
Network ! 4
i
| v
I
I
1 Session Manager (*----1
I
I
I
I
I
I
‘ f :
] I
I I
I I
I I
I I
I I
| |
Component | Engine Transformer |
Repository | Repository Repository)
I I
I I
i I
I I
I I
I I
< I
= I
|
Component |
Set i
|

XDSE

Test Drive Visualisation

Repository

Report
Repository

Figure 1: The VARE architecture is based on a client /server model, with the server being split into repositories
and processes. Dashed lines represent test drive or visualisation input/output, while solid lines represent
control, queries or responses. XDSE implements the test drive traces/report and visualisation repositories at

the bottom of this figure.

A key benefit from reusing components is that
when modifications, bug fixes or updates occur, the
developer can save time by incorporating them into
their program. Problems then don’t have to be solved
for every instance. This can happen on a global scale
and examples include online updates of both propri-
etary and open source software.

We are interested in understanding reusable com-
ponents so that developers can reuse them in their
new programs. Currently several techniques exist to
help understand how software works and these in-
clude documentation, experimenting, and visualisa-
tions. Documentation is sometimes provided with
software either in online or in written form, but is
often difficult to use, read and understand. Exper-
imenting with reusable components means that de-
velopers will gain practical experience and learn how
components work. Visualising components either as
static or run-time images can show developers how
components have been designed, and how they work
when executed.

2.1 Software Visualisation

We are interested in visualising reusable components
for the purposes of understanding and we separate
software visualisations into two sets:

1. Static visualisations: can be created from inves-
tigating the source or binary files, which can con-
tain class descriptions along with their methods
and variables, inheritance hierarchies between
classes, and dependency hierarchies amongst
classes.

2. Run-time visualisations: can be composed by ex-

amining or spying on programs during execution
and gathering events in a program trace. The
types of information that can be gathered include
object creation and deletion, method calls and
returns, field accesses and modifications, excep-
tions, and multi-threading issues.

When visualising reusable components we have fo-
cused on three different types of information. These
include understanding what a component does, how
a component works, and how a component can be
reused. For what a component does, it is important
to look at the external side-effects and the results that
occur as a consequence of interacting with the compo-
nent’s public interface. For how a component works,
it is important to look at the internals of a component.
This is because it may open up opportunities for mod-
ifying the component’s behaviour to what is required
by replacing sub-components, extending components
or overloading methods. For how a component can
be reused or modified, it is important to look at how
it has previously been used.

2.2 Visualisation Architecture for REuse
(VARE)

Our software visualisations are based on the VARE
architecture (Marshall, Jackson, Biddle, McGavin,
Tempero & Duignan 2001). VARE is used for gen-
erating visualisations in a distributed environment
and is based on the Program Mapping Visualisa-
tion (PMV) conceptual model for describing pro-
gram visualisation systems (Stasko 1990, Roman &
Cox 1993). The design of VARE supports multiple
programming languages and provides user control for
the different parts in the visualisation process.

VARE is a client-server architecture (see figure 1).
The server contains repositories and processes. On
the client side, the user manages the activities asso-
ciated with creating and viewing a visualisation. The
component repository interface lets the user select a
component from the repository to create a compo-
nent set. Once this is created, the user can select an
engine type from the engine repository to control the
test driving of these components. The engine compo-
nent is synonymous to the program component in the
PMV model.

The engine generates a test drive trace as output,
which is stored in the test drive traces/report repos-
itory. A test drive trace contains all the information
required to describe a program execution such as the
order of object creation, method invocations, field ac-
cesses and field modifications. A test drive trace is
then used as input to a transformer, which is syn-
onymous to the mapping component from the PMV
model. The transformer repository interface lets the
user select the transformer to use and the test drive
trace to use with it. The transformer then transforms
the test drive trace into an appropriate visualisation.

Finally the finished visualisation is stored in the
visualisation repository. The visualisations contain
information such as a description of the components
they are associated with, who created them, and notes
that help the understanding of the visualisation. The
visualisation interface lets a user choose a particular
visualisation and control its presentation.

3 XDSE: An XML Data Storage Environ-
ment

The test drive traces/report and visualisation repos-
itories are key components of the VARE architec-
ture. In this section we present XDSE, which pro-
vides an implementation of these repositories. The
main feature of XDSE is to store and query program
traces from a native XML database (Anslow 2003).
The native XML database that we used was Ipedo
(Tpedo 2003), because it supported our required func-
tionality and included a Java and Simple Object Ac-
cess Protocol (SOAP) API. The following sections
describe XML program trace languages (3.1), some
XML technologies (3.2), the architecture of XDSE
(3.3), a demonstration of XDSE in action (3.4), and
((iiSCl)JSS VARE based program trace visualisation tools
3.5).

3.1 XML Program Trace Languages

It is important for the format of a program trace to
support many requirements for the creation of visual-
isations (Marshall, Jackson, Anslow & Biddle 2003).
We have decided that XML is a good medium for
formatting our program traces because it is an open
standard and there are many technologies built on
top of XML (see 3.2).

We have created two different XML based program
trace languages of reusable components that can be
used to generate software visualisations. They each
have features for representing both static and run-
time information, and are defined by Document Type
Definitions (DTD).

The Process Abstraction Language (PAL)
(McGavin 2001, Marshall et al. 2001) defines an
XML specification for object models designed to help
visualisation tools get the information they need to
generate useful visualisations. PAL describes object-
oriented programs. It has elements for describing
classes, super-classes, methods, and fields. PAL can
also describe the run-time behaviour of programs,

including objects, run-time representations of classes,
method calls with their arguments and return values,
and different threads of control.

More recent experiments with VARE identified
weaknesses in PAL because it combined static and
run-time information. XDSE splits this functionality
into two separate languages, RCD and XTE. Reusable
Component Descriptions (RCD) store static informa-
tion of reusable components, where a component is
defined as consisting of one or more packages, and
each package having one or more classes. eXtensible
Trace Executions (XTE) stores execution trace infor-
mation derived dynamically from test driven reusable
components. XTE stores the run-time information of
RCD components.

3.2 XML Technologies

Native XML databases store XML documents be-
cause when XML documents are stored in relational
databases information can be lost, such as element or-
dering and the distinction between attributes and el-
ements. Native XML databases can store either doc-
ument or data centric XML documents which contain
elements, attributes, and parsed character data.

The benefit of native XML databases is that they
preserve physical document structure, keep all in-
formation that non XML databases drop, use XML
query languages, speed up retrieving whole docu-
ments, and can store XML documents without a DTD
or an XML Schema. Native XML databases are not
required to have any particular underlying physical
storage model and can be built on relational, hierar-
chical, or object-oriented databases. The key point of
native XML databases is that their internal models
are based on XML (Bourret 2003).

Common features among native XML databases
include document collections which contain docu-
ments of the same type (see figure 2), XML query
languages such as XQuery and XPath, updating &
deleting of documents, transactions, locking, concur-
rency, APIs, indexing and round tripping (the ability
to store a document and get the same document back
again). Round tripping is important for document
centric XML applications because it relies on the ex-
act ordering of elements in a document.

Native XML Database Server

v v v

Collection 1 Collection2 | **°

Collection N

Documents Documents

Documents

Figure 2: Native XML Databases store XML docu-
ments of the same type in document collections, simi-
lar to relational databases that store tuples in tables.

XQuery (Boag, Chamberlin, Fernandez, Florescu,
Robie & Simeon 2002) is the de facto standard XML
query language. XPath (Clark & DeRose 1999)
is a subset of XQuery and consists of path ex-
pressions. XQueries contain FLWR, (pronounced

1

\

HTTP Messages

JSP Pages

]
—

workstation

Y =

workstation N

—

L

3

HTTP Messages

<=

Ipedo Native

XML Database
Serve

SOAP Messages
(XML file fragments)

JSP

Web Server <:>

Figure 3: The XDSE architecture is based on the client/server model. The web interface communicates with
a JSP web-server which sends and receives SOAP messages from the Ipedo Native XML Database. The Ipedo
Native XML Database stores program trace documents in program trace collections.

“flower”) expressions, which are very similar to the
SELECT-FROM-WHERE clauses in the SQL standard.
FLWR expressions consist of FOR, LET, WHERE and
RETURN clauses:

e FOR: binds one or more variables (e.g $X, $Y) to a
sequence of nodes returned by another expression
(usually a path expression) and iterates over the
nodes. The variable represents an array of bound
nodes.

e LET: binds one or more nodes but without iterat-
ing. A single sequence of nodes is bound to the
variable.

e WHERE: contains one or more predicates that filter
or limit the set of nodes as generated by the FOR
and LET clauses.

e RETURN: generates the output of the FLWR ex-
pression. The RETURN clause usually contains the
references to variables and is executed once for
each bound node-reference that was returned by
the previous clauses.

3.3 Architecture

XDSE is a client/server architecture (see figure 3).
Program traces are stored in the Ipedo Native XML
Database (Ipedo 2003). The web interface accesses
the native XML database which communicates with
a Java Servlet Pages (JSP) web-server (implemented
with Apache’s Tomcat web server version 4.1.12) to
request JSP pages. The web interface has a series
of user options. Upon submission of the user selec-
tion, the JSP page executes a remote method from
the SOAP client. The submission initiates the web-
server to communicate with the SOAP server asso-
ciated with the native XML database to invoke the
remote method. Once the program trace documents
are either stored or queried from the native XML
database, a response is sent back to the client and
displayed in the web interface.

3.4 Demonstration of XDSE in Action

XDSE has the following user options: create, delete,
or list program trace collections; add, remove, query,
or list PAL, RCD or XTE program trace documents.
When creating, deleting, or listing a collection only
the name of the collection needs to be supplied. When
removing or listing program trace documents only the
name of the program trace document has to be spec-
ified. When program traces are added to the native
XML database they are validated against the DTD of

the program trace language. Figure 4 shows querying
the PAL program trace document, test.pal. The
user has two options to enter a query, either:

1. Upload the XQuery file.
2. Type the XQuery query into the text box.

Once the user clicks the submit button the query
is executed and the results are displayed further down
the page. This is so that another query can be gener-
ated without going to another web page. The query
in figure 4 retrieves all the rawvalue elements from
the test.pal program trace document.

There are various types of information that could
be extracted from a program trace document that
has been stored in the native XML database using
XQuery. The advantage of this approach is that only
relevant information is required from the native XML
database to create a visualisation. The whole pro-
gram trace document is not required. This may mean
parsing the results of a query, to create a visualisation
will improve performance, because the XML fragment
is smaller than the entire program trace document.

Figure 5 shows a query of relevant class in-
formation, to create a UML class diagram from
test_classes.rcd, an RCD program trace docu-
ment. The query includes the name of the class, the
inherited super-classes, methods, and fields. Argu-
ments for the methods and the types of the fields
could be retrieved as well.

namespace rcd = "http://www.mcs.vuw.ac.nz/renata/rcd"
for \$t in document ("RCD/test_classes.rcd")//rcd:class
return

<class>

{$t/rcd:classname}

{$t/rcd:superclassname}

{$t//rcd:methodname}

{$t//rcd:fieldname}

</class>

Figure 5: An XQuery query to generate a UML class
digram which extracts the following information the
name of the class, the inherited super classes, meth-
ods, and fields from test_classes.rcd.

results from executing
the query in figure 5. The results show the
following classes: MainClass, TestClass2, and
MyThreadClass. Method names and field names of
each class are also shown. For each query that uses
an RCD or XTE program trace document, the appro-
priate namespace has to be declared.

Figure 6 shows the

r
‘v. [%ML Data Storage: Query Document - Mozilla
Eile Edit Miew Go Bookmarks Tools Window Help

®° Q @ Q [% mtip:rist-james.mes.vuwsac.nz 6888/ query document jsp

7] (G5 search | <§;° ﬂmﬂ
[X]

=) | % ®ML Data Storage: Query Document 1

e

XDS

Query Document

Query an XML document from a collection using XCuery syntax within the NXDB database, by doing either one of the

Home fallowing options:

Support 1. Specifying an XQuery file to load
2. Typing an XQuery inta the text box

User Options: 1. %Query filename: |

Query Document

Add Document

2. X Query: [for 5t in
Remove Document
Be in St/rawvalue
jreturn

List Documents e eerts

i (Se}
Create Collection lé reesutts

Delete Collection

List Collections

>

3. Result of guerying

<result:
<rawvalues
i

< /rawvalue>
</Tesult>
cresults
<rawvalues
Oxffhefddd
</rawvalue>
</result>

eraig@mes . de.nz
Disclaimer

ocmuent ("PAL/test. pal") //event Msthodeall/arqualves /argvalue /valus,

Home | Support | Guery Document | Add Document | Remave Document | List Documents | Create Collection | Delete Collection | List Collections

0= & A & [boe

Figure 4: The XDSE web interface where a user can create, delete, or list program trace collections; add,
remove, query, or list PAL, RCD or XTE program trace documents. This figure shows querying test.pal, a
PAL program trace document. Entering a query can either be accomplished by uploading the XQuery file or
typing the query into the text box provided. The result of the query is displayed at the bottom of the web
page. This query retrieves all the rawvalue elements in the test.pal program trace document.

<class xmlns:rcd="http://www.mcs.vuw.ac.nz/renata/rcd">
<rcd:classname>MainClass</rcd:classname>
<rcd:superclassname>java.lang.0Object
</rcd:superclassname>
<rcd:methodname>init</rcd:methodname>
<rcd:methodname)doOperation</rcd:methodname)
<rcd:methodname>close</rcd:methodname>
<rcd:methodname>main</rcd:methodname>
<rcd:fieldname>_field</rcd:fieldname>
<rcd:fieldname>_thread</rcd:fieldname>

</class>

<class xmlns:rcd="http://www.mcs.vuw.ac.nz/renata/rcd">
<rcd:classname>TestClass2</rcd:classname>
<rcd:superclassname>java.lang.0Object</rcd:superclassname>
<rcd:methodname>method1</rcd:methodname>
<rcd:methodname)getSize</rcd :methodname>
<rcd:methodname>myRcd:StaticMethod</rcd:methodname>
<rcd:fieldname>_field1</rcd:fieldname>
<rcd:fieldname>_field2</rcd:fieldname>
<rcd:fieldname>_field3</rcd:fieldname>

</class>

<class xmlns:rcd="http://www.mcs.vuw.ac.nz/renata/rcd">
<rcd:classname>MyThreadClass</rcd:classname>
<rcd:superclassname>java.lang.Thread</rcd:superclassname>
<rcd:methodname>run</rcd:methodname>
<rcd:methodname>stopThread</rcd:methodname>
<rcd:methodname>continueThread</rcd:methodname>
<rcd:methodname>getCount</rcd:methodname>
<rcd:fieldname>_count</rcd:fieldname>

<rcd: fieldname>_message</rcd :fieldname>
<rcd:fieldname>_continue</rcd:fieldname>

</class>

Figure 6: The results of performing the query in
figure 5. The results show the following classes:
MainClass, TestClass2, and MyThreadClass, as well
as the method and field names of each of these classes.

SOAP is used to transport information in VARE
and is used in XDSE for the web-server to commu-
nicate with the native XML database. SOAP is a
lightweight protocol for the exchange of information
in a decentralised, distributed environment. SOAP is
an XML based protocol that consists of three parts:
an envelope that defines a framework for describ-
ing what is in a message and how to process it,
a set of encoding rules for expressing instances of
application-defined datatypes, and a convention for
representing remote procedure calls and responses
(Box, Ehnebuske, Kakivaya, Layman, Mendelsohn,
Nielsen, Thatte & Winer 2000).

Figure 7 shows a SOAP request message, to query
test.pal by invoking the remote executeXQuery
method. Lines 1-5 show the HTTP header, lines 8-28
the SOAP envelope, and lines 12-27 the SOAP body.
The results of the query are the same as in the bottom
of figure 4, but are returned to the user wrapped in
return tags. The SOAP message was captured using
netcat, which is a simple Unix utility which reads and
writes data across network connections.

POST /soap HTTP/1.0

Host: wakefield

Content-Type: text/xml; charset=utf-8
Content-Length: 703

SOAPAction: ""

<?xml version=’1.0’ encoding=’UTF-8’7>

<SOAP-ENV:Envelope

9. xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

10. xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

11. =xmlns:xsd="http://www.w3.org/1999/XMLSchema">

12. <SOAP-ENV:Body>

13. <nsil:executeXQuery

14. xmlns:nsl1="urn:IXSOAPServer"

15. SOAP-ENV:
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

16. <XQueryStr xsi:type="xsd:string">

17. for $t in document
("PAL/test.pal")//event/methodcall/argvalues/argvalue/value,

18. $e in $t/rawvalue

19. return

20. <result>

21. {$e}

22. </result>

23. </XQueryStr>

24. <user xsi:type="xsd:string">craig</user>

25. <password xsi:type="xsd:string">craig</password>

26. </nsil:executeXQuery>

27. </SOAP-ENV:Body>

28. </SOAP-ENV:Envelope>

0 ~NO O WN -

Figure 7: A SOAP request to query test.pal. The
request shows the HTTP header, the SOAP envelope,
and the query inside the body of the message.

3.5 Program Trace Visualisation Tools

Abstraction Tool (AT) (McGavin 2001, Marshall
et al. 2001) is an implementation of an engine from
the VARE architecture. AT is a prototype utility that
has been developed to extract information from ap-
plications and present the information using PAL, so
that visualisations tools can visually display the infor-
mation to a developer. AT examines programs writ-
ten in C++, using the GNU Debugger (GDB). It is
written in the Python scripting language. The main
tasks of AT are to drive GDB, and to output XML
based on what was seen during execution. AT also
uses SOAP for remote method invocation, to allow
AT to be controlled by another application.

AT could be integrated into XDSE by communi-
cating with the native XML database via a SOAP
web-service rather than using the web interface, be-
cause AT also uses SOAP for remote method invoca-
tions.

Blur (Duignan, Biddle & Tempero 2003) is an im-
plementation of a transformer from the VARE ar-
chitecture. Blur takes a PAL program trace docu-
ment and transforms it into Scalable Vector Graphics
(SVG) (Ferraiolo, Jun & Jackson 2003) visualisations
for viewing over the web. Blur is implemented as a
Java Servlet running a version of Apache Tomcat.

Figure 8 shows a SVG UML interactive class dia-
gram from a PAL program trace document generated
by Blur. When the mouse covers a piece of code in
the right hand side frame, the left hand side highlights
the appropriate class or method in the UML class di-
agram. This is a helpful tool for developers, because
it shows where the code is located in a file, and how
it is associated with other classes in a program.

Figure 9 shows a SVG sequence diagram gener-
ated by Blur from run-time information found in the
same PAL program trace document as that of figure
8. The sequence diagram is interactive and allows the
user to navigate, zoom-in-out, and fold and unfold call
sequences to better understand the diagram.

Blur could be integrated into XDSE by having a
SOAP mechanism at the Blur side, to retrieve pro-

gram trace data. Blur gets program trace documents
from a file system and uses all of the program trace
to generate a visualisation. Using all of the program
trace to generate a visualisation is not an efficient
process because if the program trace is very large, it
will take a long time to parse, and send across a net-
work. The better approach is to extract subsets of
the program trace, send them across the network us-
ing SOAP, and then generate visualisations. If XDSE
were integrated with Blur then a class diagram, sim-
ilar to figure 8, could be generated by Blur from the
query in figure 5.

Blur does not store any of its SVG visualisations,
but if Blur could communicate with XDSE then it
could store the SVG visualisations in the native XML
database. These SVG visualisations do not require a
DTD or an XML Schema, which means that when
adding visualisations to the native XML database
they do not need to be validated and can all be stored
in the same visualisation collection.

4 Related Work

Two software visualisation systems that use database
technologies are BLOOM (Reiss 2001) and Jinsight
(Pauw, Kimelman & Vlissides 1994, Pauw, Mitchell,
Robillard, Sevitsky & Srinivasan 2001). Other sys-
tems include ANIM (Bentley & Kernighan 1991),
the Field Programming Environment (Reiss 1995),
the Desert Environment (Reiss 1998), Visor++
(Oudshoorn & Widjaja 1998) and Tarantula (Eagan,
Harrold, Jones & Stasko 2001).

4.1 BLOOM

BLOOM is a system for understanding software by
analysing static and dynamic information through vi-
sualisations. BLOOM stores program traces in two
files. One file contains the trace data in a compressed
binary format. This file consists of a series of records
indicating the following types of events: entry and
exiting a method, the amount of memory allocated
to an object, the amount of time an object takes
to execute, the amount of time an object waits for
a resource, when an object is created and deleted,
and when memory is freed. The second file contains
records describing the classes, methods, and objects
accessed in the trace. The second file can be stored
in a mappable form consisting of hash tables for easy
and quick access. Once mapped into memory the sec-
ond file does not have to be read or processed, but the
file can get rather large, up to 100GB. XML files are
used to store the analyses of the trace data. BLOOM
also has a visual query language for specifying what
information should be visualised.

4.2 Jinsight

Jinsight is a tool for visualising and analysing the exe-
cution of Java programs. It is useful for performance
analysis, memory leak diagnosis, debugging, or any
task in which a user needs to better understand what
a Java program is really doing.

The aim of Jinsight is to help a user better under-
stand, tune, and debug a program. Jinsight provides
instrumentation for making trace data which is cap-
tured in a proprietary format, and then saved to a file
or sent over a socket to a visualiser for live analysis.
The visualiser works with an in-memory model that it
constructs from the trace data using Java collections.
The visualiser does not use any formal relational or
object-oriented database. The visualiser, however has

J File Edit \Wiew Favorites: Tools Help

J & Back - = - @ @ ot | @'Search [l Favarites @Histary | I%- = - @ P

J.qurass |@ htbpf i mes, vuw, ac.nzf~mduignan/project/playaroundfclassDiagramy

ﬂ 6o “L\nks 22

Fooditem

Fooditem)
~Foodltem()

getFoodType(): inf T

i
,—/"
o
-
T
| Acorn | Animal
Acorn) Animal
~Acom(} ~Animal
getFoodType(): int ype(): in
L | eat(Fooditem): in!

Squirrel

Squirrel()
~Squirrel{}

getFoodType(}). int

eat{Focditem): in

~Fox()
getFoodType(): int

t eal(Foodltem): int,

MainPregram

MainProgram()
~MainProgram{)
run(int char). int

|»

mit virtual getFoodType(),
int virtual eat(Foodltem *ood),

I8

Animal: Animal() : Foodltemd) |
)

Animali~Animal() {
}

int Animal petFoodTyped) {
return FT ANTIWAT,
3

it Animal eatFoodltem *food) {
mt ft = food->getFoodTypel);
gweitchift) {
case FT ACORM:
retumn 1;
breal;
default:
retumn 0
break,
1

class Squurel : public Anmnal {
public:

Sequirrel();
wvirtual ~3quirrel();

int virtual getFoodTypel);
int virtual eat(Foodltem *food),

1

Ll

=

& Done

iﬁstart”j [i] & &3 ||[1Food Chain Class Diagr...

’_ ’_ Local intranet

Figure 8 A SVG interactive class diagram generated by Blur (a visualisation tool) from a PAL program trace
document. When the user places the mouse over a piece of code in the right hand side frame, the left hand
side highlights the appropriate class or method in the UML class diagram.

System Malnﬁwun
lMainProgrami...) &l
run(...) &l
Acorn(...) &)
Fooditem{...)
<4
Squirrel{...} -
Animal(...)
<4
Fooditem{_..)
<4
Fox(...}
Animal{...)
<+
Fooditem(...)
<+
aat{..) -
aat(...)
<4
, petFoodType(..}
aatf...) -
eatf...)
<4
getFoodTypey(...) =
eat(...)
eat(...)
<+

b getFoodTypey...)

b getFoodTypey(...)

Figure 9: A SVG interactive sequence diagram generated by Blur from a PAL program trace document of run-
time information. The diagram allows the user to navigate, zoom-in-out, and fold and unfold call sequences to

better understand the diagram.

mechanisms that give it some database-like function-
ality. For example, the ability to formally access at-
tributes of each Java object representing a trace ele-
ment, and a query mechanism backing the “execution
slices”. Jinsight uses the Java AWT and Swing pack-
ages for rendering visualisations (Sevitsky, Pauw &
Konuru 2001).

5 Future Work

In the future, we plan to make XDSE integrated and
linked to engines and transformers from VARE, as it
would provide an overall system for a user.

We plan to add extra functionality to XDSE so
that it can validate PAL, RCD, and XTE program
traces against generated XML schemas. Using in-
dexes on commonly used program trace documents
in the native XML database would improve the per-
formance of querying these program traces, hence the
transformation process of generating a visualisation
could be completed faster. Having built in queries
or a visual query language for class diagrams and se-
quence diagrams, would also help performance.

One other key feature that will be implemented in
XDSE is the ability to update program traces, so that
they can be changed and modified in the future. In
principle there should be no need to change a program
trace once it has been created, but it may be useful
to improve a visualisation. This can either be done
by using the proprietary API for updates that Ipedo
provides, or by waiting until the update functionality
is added to XQuery.

6 Conclusion

In this paper we have demonstrated that XDSE, an
XML Data Storage Environment, can be used to store
program traces. Program traces can be gigabytes in
size, are very expensive to generate, and are hard
to extract information from. We address these is-
sues by storing the program traces in a native XML
database, Ipedo. Our program traces, Process Ab-
straction Language (PAL), Reusable Component De-
scriptions (RCD), and eXtensible Trace Executions
(XTE) can then be queried using XQuery to extract
necessary information. This information can then be
transformed into either static or run-time visualisa-
tions.

XDSE is a useful tool for storing and querying
program traces so that useful information can be
extracted from the program traces and then trans-
formed into meaningful visualisations. The purpose
of this technique is so that a developer can under-
stand how a component works, and whether or not it
can be reused in their new program.

References

Anslow, C. (2003), XML database support for pro-
gram trace visualisation. = Honours Report,
School of Mathematical and Computing Sci-
ences, Victoria University of Wellington.

Bentley, J. L. & Kernighan, B. W. (1991), ‘A sys-
tem for algorithm animation’, Computing Sys-

tems 4(1).
Boag, S., Chamberlin, D., Fernandez, M. F.,
Florescu, D., Robie, J. & Simeon, J.

(2002), ‘XQuery 1.0: An XML query lan-
guage’. World Wide Web Consortium (W3C)
http://www.w3.org/TR/xquery/.

Bourret, R. (2003), ‘XML and databases’, Website.
http://www.rpbourret.com.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H. F., Thatte, S. &
Winer, D. (2000), ‘Simple object access proto-
col (SOAP) 1.1°. World Wide Web Consortium
(W3C) http://wuw.w3.org/TR/SOAP/.

Clark, J. & DeRose, S. (1999), ‘XML path language
(XPath) version 1.0°. World Wide Web Consor-
tium (W3C) http://www.w3.org/TR/xpath.

Duignan, M., Biddle, R. & Tempero, E. (2003), Eval-
uating scalable vector graphics for use in soft-
ware visualisation, in ‘Proceedings of the Aus-
tralian symposium on Information visualisation’,
Australian Computer Society, Inc., pp. 127-136.

Eagan, J., Harrold, M. J., Jones, J. A. & Stasko, J. T.
(2001), Technical note: Visually encoding pro-
gram test information to find faults in software,
in ‘INFOVIS’, pp. 33-36.

Ferraiolo, J., Jun, F. & Jackson, D. (2003),
‘Scalable vector graphics (SVG) 1.1 specifica-
tion’. World Wide Web Consortium (W3C)
http://www.w3.org/TR/SVG11/.

Ipedo (2003), ‘Ipedo XML database website’, Web-
site. http://www.ipedo.com.

Jacobson, I., Griss, M. & Jonsson, P. (1997), Software
Reuse: Architecture, Process and Organization
for Business Success, Addison-Wesley.

Marshall, S., Jackson, K., Anslow, C. & Biddle, R.
(2003), Aspects to visualising reusable compo-
nents, in ‘Proceedings of the Australian sym-
posium on Information visualisation’, Australian
Computer Society, Inc., pp. 81-88.

Marshall, S., Jackson, K., Biddle, R., McGavin, M.,
Tempero, E. & Duignan, M. (2001), Visualising
reusable software over the web, in ‘Proceedings
of the Australian symposium on Information vi-

sualisation’, Australian Computer Society, Inc.,
pp. 103-111.

McClure, C. (1997), Software Reuse Techniques:
Adding Reuse to the System Development Pro-
cess, Prenctice-Hall Inc.

McGavin, M. (2001), Extracting software reuse in-
formation for visualisation tools. Honours Re-
port, School of Mathematical and Computing
Sciences, Victoria University of Wellington.

Mclllroy, M. D. (1968), Mass produced software com-
ponents, in P. Naur & B. Randell, eds, ‘Report
on a Conference of the NATO Science Commit-
tee’, pp. 138—-150.

Mili, H., Mili, F. & Mili, A. (1995), ‘Reusing soft-
ware: Issues and research directions’, Software
Engineering 21(6), 528-562.

Oudshoorn, M. & Widjaja, H. (1998), Visor++: A
visualisation tool for concurrent object-oriented
programs, in ‘In Proceedings of the 8th Inter-
national Conference on Computer Graphics and
Visualization’, Moscow, pp. 287-294.

Pauw, W. D., Kimelman, D. & Vlissides, J. (1994),
Modeling object-oriented program execution,
in ‘Lecture Notes in Computer Science’, Vol.
821, European Conference for Object Oriented
Programming, Springer Verlag, Bologna, Italy,
pp. 163-182.

Pauw, W. D., Mitchell, N., Robillard, M., Sevitsky,
G. & Srinivasan, H. (2001), Drive-by analysis of
running programs, in ‘Proceedings for Workshop
on Software Visualization’, International Confer-
ence on Software Engineering, Toronto, Canada.

Poulin, J. S. (1997), Measuring Software Reuse: prin-
ciples, practices, and economic models, Addison-
Wesley Longman Inc.

Reiss, S. P. (1995), The Field Programming Environ-
ment: A Friendly Integrated Environment for

Learning and Development, Kluwer Academic
Publishers.

Reiss, S. P. (1998), Software visualization in the
Desert environment, in ‘Proceedings of the 1998
ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineer-
ing’, ACM Press, pp. 59-66.

Reiss, S. P. (2001), An overview of BLOOM, in ‘Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software
Tools and Engineering’, ACM Press, pp. 2-5.

Roman, G.-C. & Cox, K. C. (1993), ‘A taxonomy of
program visualization systems’, IEEE Computer
26(12).

Sevitsky, G., Pauw, W. D. & Konuru, R. (2001),
An information exploration tool for performance
analysis of Java programs, in ‘Proceedings for
TOOLS Europe 2001’, Technology of Object-
Oriented Languages and Systems (TOOLS)
Conference Series, Zurich, Switzerland.

Stasko, J. T. (1990), ‘Tango: A framework and
system for algorithm animation’, Computer
23(9), 27 39.

