VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

A Technology for Lightweight
Web-Based Visual Applications

Donald Gordon, Robert Biddle, James Noble,
Ewan Tempero

Technical Report CS-TR-03/4

March 2003
School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: +64 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@mcs.vuw.ac.nz

New Zealand http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

A Technology for Lightweight
Web-Based Visual Applications

Donald Gordon, Robert Biddle, James Noble,
Ewan Tempero

Technical Report CS-TR-03/4
March 2003

Abstract

Providing useful and usable visua interaction for web-based applications is a chal-
lenge without requiring client-side support such as Java applets. We describe Cliki, which
provides web-based lightweight support for visual systems. Cliki makes minimal as-
sumptions about the client used to view the web pages, meaning applications that use it
are highly accessible.

Author Information

Robert Biddle and James Nable are members of the academic staff in the School of Mathematical and
Computing Sciences and the School of Information Management at Victoria University of Wellington.
Donald Gordon is a Bachelor of Honours student in Computer Science at Victoria University of
Wellington. Ewan Tempero isamember of the academic staff of the Department of Computer Science
a the University of Auckland.

A Technology for Lightweight Web-Based
Visual Applications

Donald Gordon, Robert Biddle, James Noble
School of Mathematical and Computing Sciences

Victoria University of Wellington
New Zealand
{donald,robert,kjx} @mecs.vuw.ac.nz

Abstract

Providing useful and usable visual interaction for web-
based applications is a challenge without requiring client-
side support such as Java applets. We describe Cliki, which
provides web-based lightweight support for visual systems.
Cliki makes minimal assumptions about the client used to
view the web pages, meaning applications that use it are
highly accessible.

1 Introduction

The web browser is an ubiquitous user interface
paradigm that provides a well-understood interaction model
for a shared, distributed environment. This makes it a good
candidate for collaboration tools, but providing useful and
usable visual interaction is a challenge. In this paper, we
describe Cliki, a Java framework that provides lightweight
graphical interaction for web-based applications.

We have been exploring web applications for supporting
various parts of the software development process. While it
has been very successful for text-based applications [1, 3],
it has been unclear how to support visual tools. One so-
lution is to use technologies such as Java applets, how-
ever this allows arbitrary and complex interaction models
that are not compatible with the basic web browser. There
are also issues with download speeds and browser and Java
library compatibilities that can make applets problematic.
Our preference is to keep the client side as lightweight as
possible, which means making minimal assumptions about
the browser, and doing as much on the server as possible.

We have been exploring a idea we call Cliki. Cliki is
based on images dynamically generated by the server, and
use of HTML image form fields. Our experience has been
that it has good potential, however, each application has
had to be carefully hand-crafted. To reduce this cost, we

Ewan Tempero
Department of Computer Science
University of Auckland
New Zealand
ewan@cs.auckland.ac.nz

are developing the Cliki framework. The intent is that this
framework will allow Cliki-style interfaces to be provided
for applications at minimal cost.

In this paper, we discuss the general idea of Cliki,
demonstrate several Cliki applications, and discuss the cur-
rent state of the Cliki framework.

2 Web-based tools

With the the rise of the web and scripting languages, it is
now possible to find lightweight web alternatives to many
traditional large applications. For example, there are many
web-based email systems. These applications seldom have
all the features of more traditional applications, yet they
have some distinct advantages. The constraints of the web
interface typically result in lightweight web-based applica-
tions being relatively simple and easy to use. Similarly, con-
straints of the web architecture mean these applications can
be implemented simply, and the infrastructure of the web
facilitate simple network communication.

Lightweight tools have another benefit — often as a side
effect of their implementation technology — in that they
are seldom as stylistically refined as traditional applications.
Lightweight tools tend to be ugly. The benefit is similar to
that in lo-fidelity prototypes, and it is simply that users tend
to focus on the functionality. One of the gifts of the web
is the general acceptance of low complexity interfaces for
simple functionality.

Of course, web applications can also work by using ap-
plets or browser plug-ins, but this in essence bypasses the
browser and the constraints, and these quickly become in-
distinguishable from more traditional applications.

Our initial project was to build lightweight web-based
CASE tools. We began with a text based tool that supported
use case capture. We then began to explore visual interac-
tion. The obstacle was that web browser support for visual
interaction is very poor.

Figure 1. A sequence diagram being modified
with Seek

NutcAsg Classes

Figure 2. NutCASE displaying a class diagram

We first built Seek [2] (figure 1), a tool for building UML
sequence diagrams that used small static images dynami-
cally arranged within an HTML table. We then developed
NutCASE [4] (figure 2), a tool for building UML class di-
agrams by dynamic generation of the whole image. This
approach proved sufficiently versatile that we sought to gen-
eralise the technology.

3 Cliki Overview

Cliki is based on HTML image form fields. An image
field is a input type for HTML forms. It consists of a graphic
that is displayed on the web page, and, when clicked on, will
send the coordinate of the click with respect to the image
back to the server. Image fields are typically used to provide
a user-choice mechanism that is more flexible and visually-
appealing than HTML buttons or links. As a consequence,
the images are static or pre-computed.

What Cliki does is to generate the images dynamically in
response to the user clicks. This behaviour allows the image

Servlet |__| Session |__| Controller |__ | ToolRoot

"

Diagram
Viewport|__| [Componet
Component
Compon

Figure 3. The major elements of the Cliki Ar-
chitecture. The arrows indicate the usual flow
of communication.

Figure 4. A Cliki diagram editor for drawing
and image composition.

generated to provide direct feedback to the user’s actions.
For example, the image may show a set of icons. When the
user clicks on one of them, the image that is generated may
show that icon highlighted in some way. The user may then
click in a different location on the image, and then the image
that is generated shows the highlighted icon has moved to
that location.

This simple idea is very flexible. It allows many of the
kinds of things we want to allow in graphical user inter-
faces to be done, such as drawing packages or games. The
limitation is that the user interaction is restricted to just the
mouse click. One of our goals is to explore just how much
of a limitation this is.

4 Cliki in Action

As mentioned previously, we have several applications
built with the Cliki framework. There is a diagram editor
(figure 4), a UML class diagram editor (figure 5), and the

Figure 5. A Cliki tool for drawing and working
with UML class diagrams.

Sokoban game (figure 6).

The diagram editor offers the usual functionality of such
applications. Users can draw different shapes, with different
colours, and so on, on a canvas. Shapes on canvas can then
be selected, have their properties altered, or be moved or
removed.

The UML class diagram editor is effectively an extension
of the diagram editor, with specialised shapes (representing
a class) and restricted connectivity (different kinds of asso-
ciations between classes). The UML diagram shown is in
fact for the Cliki framework.

The Sokoban game is a re-implementation of an existing
Java application. The non-display code is unchanged, with
only the display code modified to fit the Cliki framework, so
that the graphical part of the user interface looks identical
to the original Java application.

5 Architecture

Figure 3 shows the major elements of the architecture,
which are described further below.
Controller The controller handles all input. It is passed
HTTP requests, which it converts to events that are then
processed by the current set of Tools. It is also responsi-
ble for generating the HTML form and diagram image that
comprise the user interface from the Tools.
Viewport The viewport represents the view of the diagram;
it draws the diagram upon request, and translates between
image and diagram co-ordinates (e.g. to decide which Com-
ponent was selected by a click on the image).
Tool Tools, displayed to the right of the Diagram, are used
to allow the user to manipulate the image. They are ar-
ranged in a chain; the most specific tool (with the greatest
relevance to what is currently selected) is at the end. Tools
can draw on the diagram (e.g. to signify that a component is

2 . 5 W e e e |

Sohoban _MWoreh | wask | Eat]
isounh] mennart | Loed] hot|

Figure 6. A Cliki Sokoban game.

selected), process user interface events (to input new points,
handle text input, etc) and attach and detach themselves and
their children from the chain.

ToolRoot The ToolRoot is a special tool in that it starts the
application, and keeps track of the Diagram.

Diagram The Diagram typically stores the set of Compo-
nents that comprise the image being edited. It provides (as
all components do) facilities to render the diagram onto a
Graphics2D, and ascertain which component was selected.
Component Components represent parts of the Diagram;
they can draw themselves, return Tools that allow the user
to manipulate them, and contain other Components.

6 Conclusion

We have outlined the motivation for lightweight web-
based applications, and introduced our Cliki technology.

Cliki makes minimal assumptions about the browser
used to view the web pages, and so supports visual inter-
action without any need for augmentation with applets or
plug-ins. This in turn allows applications built using Cliki
to work on any modern browser anywhere there is web con-
nectivity. We are now evaluating the usability of a range of
visual applications built using Cliki technology.

References

[1] R. Biddle, J. Noble, and E. Tempero. Supporting reusable
use cases. In Seventh International Conference on Software
Reuse, pages 210-226, 2002.

[2] R. Khaled, D. McKay, R. Biddle, J. Noble, and E. Tempero.
A lightweight web-based case tool for sequence diagrams.
In Proceedings of SGCHI-NZ Symposium On Computer-
Human Interaction (CHINZ 2002), 2002.

[3] B. Leufand W. Cunningham. The Wki way: quick collabora-
tion on the Web. Addison-Wesley Longman Publishing Co.,
Inc., 2001.

[4] D. Mackay, R. Biddle, and J. Noble. A lightweight web
based case tool for UML class diagrams. In R. Biddle and
B. Thomas, editors, Proceedings of the 4th Australasian User
Interface Conference, Adelaide, South Australia, 2003. Aus-
tralian Computer Society.

