VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

Scale-free Geometry in Object-Oriented
Programs

Alex Potanin, James Noble, Marcus Frean, Robert
Biddle

Technical Report CS-TR-02/30
December 2002

School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: +64 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research



VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

Scale-free Geometry in Object-Oriented
Programs

Alex Potanin, James Noble, Marcus Frean, Robert
Biddle

Technical Report CS-TR-02/30
December 2002

Abstract

In this article we examine the graphs formed by object-oriented programs
written in a variety of languages, and show that these turn out to be scale-free
networks without exception. Apart from its considerable intrinsic interest, this
unexpected facet of the geometry of real programs may help us optimize language
runtime systems and improve the design of future object-oriented languages.

Publishing Information

Submitted for publication in the Communications of ACM



Author Information

Alex Potanin, James Noble, Marcus Frean, and Robert Biddle are based at Victoria University
of Wellington



Scale-free Geometry in Object-Oriented Programs

Alex Potanin, James Noble, Marcus Frean, Robert Biddle
School of Mathematical and Computing Sciences
Victoria University of Wellington, New Zealand
{alex, kjx, marcus, robert}@mcs.vuw.ac.nz

Introduction

Object-oriented programs, when executed, produce a complex web of objects
that can be thought of as a network with objects as nodes and references as links.
In recent years interest has grown in the geometry of networks (or graphs), par-
ticularly those of human origin, many of which show a rather striking property:
their structure has a characteristic that is scale-free. In the case of the World
Wide Web, for example, the (vast) number of web pages with 1 incoming link
is about twice the number with 2 incoming links, and that is twice the number
with 4 links, and so on all the way up to Google and other massively referenced
sites [1]. The phrase ‘scale-free’ relates to the fact that if we double the number
of links n, the number of pages is always halved (or other fixed ratio) regardless
of what n is. Compare this to what happens if a graph is constructed by simply
adding links at random. Doing this leads to nearly all nodes having around
the same number of links (i.e. the number of links divided by the number of
nodes), and hence such random graphs have a ‘typical scale’ about them [4]. By
contrast, the web has no typical scale to its connectivity — a remarkable and
somewhat counterintuitive property closely related to that of fractals.

Other notable examples of scale-free graphs are the network formed by co-
authors of papers in medical journals, the physical connections forming the
Internet, the network of airports connected by airline flights, networks of sexual
contacts, and even the patterns of connectivity between neurons in the human
brain [2]. Well before being noticed in real-world graphical structures, scale-free
distributions were found in other contexts, such as the relative frequencies of
English words, the distribution of personal wealth, the sizes of cities, and the
number of earthquakes of given strength [12].

In this article we examine the graphs formed by object-oriented programs
written in a variety of languages, and show that these turn out to be scale-
free networks without exception. Apart from its considerable intrinsic interest,
this unexpected facet of the geometry of real programs may help us optimize
language runtime systems and improve the design of future object-oriented lan-
guages.



Power Laws

The way to detect a scale-free phenomena is to see if it shows up statistically
in the form of a power law. In power law distributions the frequency y, of
some event of size x is proportional to z raised to some fixed exponent. One
drawback of this is that very rare events are by their nature “noisy” (there may
be one node with, say 1000 connections, and another with 1005, but none with
1002), which distorts the estimation of the exponent. For this reason a second
approach is often adopted in which we first rank the event sizes by how often
they occur, and then look for a power law in the relationship between frequency
Yz, and rank r, of the form:

Yz ~ ()" (1)

The easiest way to see this is to take logarithms of both sides, or to plot y versus
r on logarithmic scales — if the distribution follows a power law we expect to
see a straight line whose slope is minus a.

For example, consider how often a particular word appears in any English
novel. Common words like “the”, “of”, or “and” can be found many orders
more times than the majority of other words, while at the other extreme there
are a huge number of words that are used only rarely. In 1925, George Kingsley
Zipf, a Harvard linguistics professor, conducted empirical studies [11] of word
occurrences and made a remarkable observation that if we rank the words by
the number of times they can be found in a text of a particular novel, then
their rank will be inversely proportional to their number of occurrences. Hence,
if you take your favourite novel and draw a logarithmic plot of the number of
times you can find each word against the rank of such a word, then you will
see a line! The slope a of this line is usually close to one, but more generally it
should be some value above zero.

Object Graphs

An object graph — the object instances in the program and the links between
them — is the skeleton of an object-oriented program during its execution.
Because each node in the graph represents an object, the graph grows and
changes as the program runs. It contains just a few objects when the program
is started, gains more objects as they are created, and loses objects when they
are no longer required. The structure of the graph (the links between objects)
changes too, as every assignment statement to an object’s field makes or changes
an edge in the graph.

Figure 1 illustrates the object graph of a simple part of a program — in this
case a doubly-linked list of Student objects. The list itself is represented by a
LinkedList object which has two references to Link objects representing the
head and tail of the list. Each Link object has two references to other Link
objects — the previous and the next links in the list, plus a third reference to
one of the Student objects contained in the list. Although the overall structure



Students
:Linkedlist

Middle:Link

Rilla:Student Sonia:Student

Figure 1: A simple object graph of a linked list. Each link object has two
references to other link objects, except for the head and tail of the list. The
student objects stored inside the list are pointed at by the link objects that
store them.

is clearly a general directed graph with many cycles, rather than a tree or a
directed acyclic graph, some objects (such as the Student “Alice”) are accessed
uniquely by only a single reference.

Object graphs are the most fundamental structure in object-orientation. The
primary aim of object-oriented analysis is to model the real world in terms of
communicating objects (that is, in terms of an object graph), while object-
oriented design produces a description of an object graph that will eventually
be embodied in a program. The artifacts and methods of object-orientation
(classes, associations, interfaces, inheritance, packages, patterns, UML, CRC
Cards, and so on) are ultimately techniques for defining object graphs by de-
scribing the contents of the objects and the structure of the links between them.

Given that object graphs are so basic to object-oriented programs, it is
somewhat surprising that they have been paid little attention in the research
community. Some temporal properties of object graphs have been analysed
to support garbage collection - such as time performance of garbage collection
algorithms and the distributions of object lifetimes [6]. Visualisation of object
graphs has been used to support debugging [10] and programming language
designers have been working on controlling object graph structures using type
systems [7]. However, there has been very little work on the global structure of
object graphs.



Incoming References outgoing References

1000000 10000000

1000000

nnnnnn

of Obi

Number of Objects

10 10 10 10
Rank of Number of Incoming References Rank of Number of Outgoing References

Figure 2: Power laws in object graphs. The upper two plots simply plot the
number of objects with n references versus n, for incoming and outgoing ref-
erences respectively. We can also use the alternative criterion in which the
observed frequencies are rank ordered. The frequency is then plotted against
its rank, as shown in the lower two plots. All the plots exhibit clear linearity
on log-log scales, the characteristic feature of scale-free networks.

Concerning scale-free structure in programs, it has been shown [9] that class
diagrams of the Java Development Kit 1.2 [8] have a scale-free aspect when
classes are considered as nodes (not the actual instantiation of objects of those
classes at run-time). Similar structure has also been observed in the distribution
of pointers to list elements in LISP, allowing better optimisation of memory
usage in long lists [3].

Power Laws in Object Graphs

We have analysed the geometry of object graphs in Java programs. Using the
facilities of the Heap Profiler (HPROF) Library and the Java Virtual Machine
Profiler Interface (JVMPI) [8] we collected a corpus of 60 object graphs from 35
programs, encoded as binary snapshots of the Java heap. These are instanta-
neous static snapshots of the objects in the programs, together with the topology
of the references between them — exactly the kind of information shown in fig-
ure 1. To analyse this corpus, we extended the Java Heap Analysis Tool (HAT)



Program Description Objects Objects
> 1 in-refs | > 1 out-refs

Java ArgoUML | A popular CASE tool. 203,875 153,106

Java Bluel] Visual OO programming and lear- 171,666 123,701
ning environment.

Java Forte A Java integrated development 358,279 267,755
environment by Sun Microsystems.

Java Jinsight A memory analysis tool by IBM. 76,312 118,272

Java Satin A pen-based user interface research 80,415 53,328
tool from Stanford University.

C++ GCC GCC is a C++ compiler used by 71,990 15,064
developers for UNIX platforms.

Self Self is a prototype-based OO lan- 120,748 1,259,668
guage and environment.

Smalltalk Smalltalk is one of the original OO 375,529 188,031
languages, self-contained in an envi-
ronment developed using Smalltalk.

Table 1: The object graphs presented in the figures. The numbers above corre-
spond to the objects in memory at the time that the snapshots were taken. We
obtained them when the programs were most heavily used. While for C++ and
Java we had to run particular programs, for Self and Smalltalk it was possible
to obtain all objects for all the programs running inside these run-time systems.

[5] that parses these snapshots to determine the properties of the program’s ob-
ject graphs. Five large Java snapshots were taken, and three additional object
graphs from programs in other object-oriented languages were also acquired, as
described in table 1. These were selected for their size, popularity, and diversity.

For each graph, we first count the number of object with n references, for
n from 1 upwards. If the object graph is scale-free we should see a straight
line when this frequency is plotted against n itself (on log scales), or when
frequencies are plotted against their rank ordering. Without exception, all the
object graphs we examined show this phenomenon, as shown in figure 2. The
same general effect applies to both incoming and outgoing references, and to a
variety of smaller heap snapshots at our disposal. It appears that the world of
object graphs is indeed scale-free, just like the World Wide Web, the Internet,
and many other networks around us.

Perhaps the most intriguing aspect of the ranked graphs shown in figure 2 is
that all eight plots have similar slopes. Such universality across samples is sur-
prising given that the different samples were obtained from run-time snapshots
of separate programs written for entirely different ends, and even in different
languages! For incoming references the slope of the line is close to (minus) 2.5
while for outgoing references it is around 3.

The relatively large value of this slope reflects the fact that there are an
exceedingly large number of objects with very few references. We might take



10000 “
8000 «
B n
£ eoooy g
(=] = Hn
2 =]
o 4000 g L
1 L ]
2000 r ]
! e =
) = - a ; . .
a 5000 10000 o | 2 3 4
incaming lesafi oo ming)
(a) (b)

Figure 3: Distribution of Incoming vs Outgoing references in Forte snapshot.
Lighter squares correspond to a greater number of objects having that combina-
tion of references. (a) Data shown on linear scales. (b) The same data shown on
log scales (data with zero incoming or zero outgoing references has been omitted
since the logarithm diverges).

this to imply that programs tend to prefer simple objects to large ones, avoiding
complexity just as software engineering guidelines would suggest. However the
presence of a power law distribution indicates that this adage is not followed
— instead large programs seem destined to contain objects that are much more
highly connected than one might expect. For example, for the unranked power
law the Java programs all have a slope of approximately minus 2, and it follows
that for a given number of objects of size n there are about one quarter that
number of size 2n. Thus a program generating 10000 objects of size 1 will also
involve about 2500 objects of size 2, 625 of size 4, 156 of size 8 and so on, leading
to an expectation of one object of size roughly 100.

A natural question arises as to whether objects with many incoming ref-
erences also have many outgoing ones. Figure 3 shows the number of objects
having a given combination of incoming and outgoing references for the Forte
data — the largest Java heap snapshot at our disposal. Notably there are no
objects with both high in-degree and high out-degree: on the contrary, those
with many incoming references have very few outgoing ones, and vice-versa.

Discussion

If object-oriented programs were constructed out of completely independent
components, like Lego bricks, then we would expect the distribution of the size
and popularity of objects to stay the same, no matter how large the program:
the fixed-size Lego bricks can form buildings of any size. The rhetoric of object-
oriented design is that large programs should be able to be constructed in just



the same way as small programs, by encapsulating complexity within objects
at one level of abstraction, and then composing those objects together at the
next. Thus all objects should appear to be the same size and complexity: larger
programs merely use more objects and more levels of abstraction. This is not
what we have found in our corpus of object-oriented snapshots however. In fact
the presence of a power law indicates the reverse: there is no evidence of typical
sizes (a Lego brick) to objects at all.

One aspect of scale-free networks is their robustness to damage. Because the
vast majority of objects are poorly connected to the rest of the graph, deleting
them has a negligible effect on the connectivity of those remaining [1]. On the
other hand, a small number of “hub” objects are very highly connected, and
deleting them is far more destructive. An implication of this is that by con-
centrating our debugging methodologies on such well-connected objects, rather
than the small ones, we may be able to improve the reliability of code more
efficiently: first eliminate bugs from the hubs, then deal with other objects.

Scale-free graphs can be generated by twin processes of growth and “pref-
erential attachment”, namely a tendency for new nodes to be linked to or from
existing nodes that are themselves well connected [1]. In object-oriented pro-
grams objects are not independent of one another and may well show a form
of preferential attachment to widely shared objects. This may also result in a
small world effect whereby any two objects in the graph will be connected via
a sequence of references going through one of the hubs.

Aside from their scale-free character, power laws are notable in that they
have much longer “tails” than, say, exponential distributions. Thus larger pro-
grams will contain considerably larger and more popular objects than simpler
models would predict. This may have consequences for both the design and im-
plementation of object-oriented programming languages. Additionally garbage
collectors can improve their performance in search and traversal of object graphs
by assuming that in all probability objects will have only one or two outgoing
references.

To summarise, we have found that distributions of incoming and outgoing
references follow power laws. This unexpected result raises theoretical questions
and has implications for debugging costs, program understanding, and garbage
collection. More generally, it challenges the received view of OO design: unlike
Lego bricks, objects within large programs have no characteristic scale.

References

[1] ALBERT, R., JEONG, H., AND BARABASI, A.-L. The diameter of the
world wide web. Nature 401, 130 (2000).

[2] BARABASI, A.-L. Linked: The New Science of Networks. New York:
Perseus Press, 2002.

[3] CLARK, D. W., AND GREEN, C. C. An empirical study of list structures
in lisp. Communications of the ACM 20, 2 (February 1977), 78-87.



[4]

[5]

[6]
[7]

(8]

[10]

[11]
[12]

ErRDOS, P., AND RENYI, A. On the strength of connectedness of random
graphs. Acta Math. Acad. Sci. Hungary 12, 35 (1961), 261-267.

FooTE, B. Heap analysis tool. http://java.sun.com/people/billf/
heap/.

JoNEs, R., AND LiNs, R. Garbage Collection. Wiley, 1996.

NOBLE, J., VITEK, J., AND POTTER, J. Flexible alias protection. In Pro-
ceedings of European Conference for Object-Oriented Programming (1998).

SUN-MICROSYSTEMS. Java development kit. http://java.sun.com/
j2se/.

VALVERDE, S., CANCHO, R. F.; AND SoOLE, R. V. Scale-free networks
from optimal design. http://www.santafe.edu/sfi/publications/
wpabstract/200204019.

ZIMMERMANN, T., AND ZELLER, A. Visualizing memory graphs. Software
Visualization 2269 (May 2001), 191-204.

Z1ipr, G. K. Psycho-Biology of Languages. Houghton-Mifflin, 1935.

Zipr, G. K. Human behavior and the principle of least effort : an intro-
duction to human ecology. New York : Hafner, 1965. Facsimile of 1949
edition.



