VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

Aspects to Visualising Reusable
Components

Stuart Marshall, Kirk Jackson, Craig Anslow and
Robert Biddle

Technical Report CS-TR-02/29
November 2002

Abstract

We are interested in helping developers reuse software by providing visuali-
sations of reusable code components. These visualisations will help determine if
and how a given code component can be reused in the developer’s new context.
To provide these visualisations, we need both formatted information and tools.
We need a format to describe the visualisations in. We need tools to create the
visualisations. We need a format to describe information about the component
and its runtime usage, and we need a tool to gather this information in the first
place.

In this paper, we discuss our two wish-lists for the required information for-
mats. We set this against the background of software visualisation and code
reuse research. Currently we are working with components from object oriented
languages, specifically Java.

Publishing Information

This paper was presented at the Information Visualisation Conference (INVIS) in Adelaide,
Australia, 2003.



Author Information

The authors are postgraduate students and lecturers in Computer Science at Victoria Uni-
versity of Wellington, New Zealand.



1 Introduction

For all the benefits that reusing code is claimed to be able to deliver, it is perceived that
code reuse is not as widespread or as efficiently implemented as it could be. Certainly, code
reuse does happen on some levels. A common example of this is the increasing range and
availability of libraries and APIs for the Java platform that offer rich opportunities for reuse.
But even where code reuse is possible, often the rewards in time and effort saved are not as
great as they could be due to problems in the process of reuse.

There have been several areas of cost identified in the reuse process, where cost is measured
in time, effort and financial terms. One such area is the time and effort required to understand
if and how a given fragment of old code (referred to as a component) can be reused (Wilde
1994). Components can range in size, from individual code blocks to a suite of applications.

We are researching ways to reduce this cost by creating visualisations of the static and
dynamic information present in a component (Alonso & Frakes 2000), that can then be
presented to developers who are looking for an old solution to a new or old problem. While
other costs of reuse do exist — notably the time to search for potential candidate components
for reuse and the financial cost of purchasing reusable components — we base our discussions
in this paper solely on the cost of understanding.

Our goals are to identify what information is important in deciding if and how a compo-
nent can be reused, and develop tools to allow developers to create and view visualisations of
this information. We also wish to to be able to easily distribute these resulting visualisations,
and allow for sharing of information and easy and safe experimentation with components.
To achieve these goals, we need methods of collecting, storing and transporting component
information, as well as a method of converting the collected information into a visualisation
format. As part of this, we have developed a wish list of what we want to see in software
visualisations of reusable components, as well as a wish list for the characteristics of the
intermediary format that would carry this information.

We have been working with widely-available Java debugger libraries to collect information
gathered from developers’ experiences of using the component. We have also been working
with XML-based technologies for the encoding and transportation of this information.

2 Code Reuse

The principle reasons for wanting to reuse code are to save time and effort in both development
and maintenance of quality software. This, the argument goes, is achieved as a result of the
reuser not having to develop a new solution to an old problem. The reuser may also, depending
on how the act of reuse is implemented, receive the benefit of accessing a common solution,
used in multiple places by possibly more than one person. This benefit is demonstrated when
any improvements or fixes to the algorithm or technology behind the solution are made.
With a common solution, improvements can be more easily propagated to all the places the
problem exists than if developers had each created their own solution that needed individually
updating. This is true regardless of the size of the component being reused.

Research in the field of code reuse has been conducted for decades (Mclllroy 1968),
and ranges from examining how to reuse code, to what makes code reusable (Mili, Mili
& Mili 1995), through to metrics to measure code reuse (Frakes & Terry 1996) (Ferri, Prati-
wadi, Rivera, Shakir, Snyder, Thomas, Chen, Fowler, Krishnamurthy & Vo 1997). Software
developers do reuse code, examples of which are the libraries that come with the Java Devel-
opment Kit, the act of copying and pasting code from one place to another, and interacting
with existing applications (e.g. databases and browsers) to create new functionality. The
very act of writing code by placing algorithms inside methods, and invoking those methods



from more than one place is a simple example of code reuse in action.

Code reuse can range from using code in a similar context to where it was originally used
(and intended for use by the code’s author), to using code in a way the code’s author would
never have thought of or intended. In the latter case, the code may need to be modified
or extended in some way to fit the requirements of the new context, but the assumption is
maintained that such modification or extension will result in less time and effort being spent
than if a new solution had to be created from scratch.

3 A Brief Review of Software Visualisation

Software visualisation techniques have been developed for a variety of purposes (Ellershaw
& Oudshoorn 1994). These purposes include use as pedagogical tools to teach Computer
Science students how algorithms work (Byrne, Catrambone & Stasko 1999), use in visual
debuggers to help correct bugs in software (Mukherjea & Stasko 1994), through to profiling
large suites of applications to determine efficiency, correctness and help during maintenance.

The field of software visualisation spans research from algorithm animation (such as that
demonstrated in the 1981 video “Sorting Out Sorting” shown at the SIGGRAPH conference
of that year), to ways of “pretty printing” source code to make code blocks or keywords
stand out more, or to make components (typically packages and classes) easier to browse.
This latter approach is most commonly experienced by the majority of developers through
familiarity with any reasonably modern software development environment.

Software visualisations are created from static and dynamic information. Static struc-
tures such as class descriptions, inheritance hierarchies and dependency hierarchies can be
determined from analysis of the source or binary files. Dynamic information, such as method
call sequences, field access/modification and multi-threading can be determined by analysis
of the software’s behaviour during execution (Moe & Carr 2001), (Reiss & Renieris 2001).

Many software visualisation tools have been created both in academic institutions and
commercial enterprises. These tools use a number of different approaches to information
retrieval and visualisation (Price, Small & Baecker 1992), and also offer a number of different
approaches to the problem of allowing developers access to the creation and viewing process.

Some software visualisation tools allow for customisable visualisations, whereas others
will create only one type of visualisation, or work with only one class of application (e.g.
networking, sorting algorithms). Some tools require modification (called instrumentation)
to the source code being visualised to extract dynamic information, whereas other tools
can “spy” on applications executing (such as through debugger tools, or through modified
execution environment) without requiring such instrumentation. Some tools allow developers
to have highly interactive experiences with the visualisations and to manipulate the views
presented (e.g. zoom, replay, focus, contrast two concurrent visualisations), whereas other
tools only allow for straight forward viewing. Furthermore, some tools allow “real-time” live
streaming of visualisations as the code executes, whereas other tools require all information
to be gathered, filtered and parsed before it can be shown to the developer.

A selection of tools that highlight some of these features are Bloom (Reiss n.d.), XTango,
Visor++ (Widjaja & Oudshoorn 1997) and Tarantula (Stasko n.d.).

4 Profiles of a Software Visualiser and a Code Reuser

The reason for using visualisation techniques is to further enhance understanding of software.
In this respect code reusers are no different from anybody else who may have need to use
software visualisations (referred to here as software visualisers). However there are different



requirements for successful understanding depending on your motivation for being interested
in the software.

4.1 Common Uses of Software Visualisation

Pedagogical-focused software visualisations for Computer Science students provide informa-
tion on how the internals of an algorithm work (Byrne et al. 1999) (Naps, Bergin, Jimenez-
Peris, McNally, Patino-Martinez, Proulx & Tarhio 1997) (Wiggins 1998), and may also show
how certain language constructs work together. The aim of this is to teach the software
visualiser how to program, and effectively how to create their own solutions (or versions of
the algorithms).

Software visualisations created from large applications for the purposes of profiling, main-
tenance (Ball & Eick 1996) or determining correctness provide different information. Most
notably, often these profiling tools work with very large data sets of static and dynamic infor-
mation, and must use different graphing or abstracting techniques to show what is important
in a way that won’t overwhelm the software visualiser.

Research into software visualisations for understanding program traces does exist (Renieris
& Reiss n.d.) (Jerding & Stasko 1994), but much of this is not focused specifically on reuse
and the information required in that process, and rather mentions maintenance as the driving
factor.

4.2 Differences for Code Reusers

Code reusers, while also software visualisers themselves as far as our work is concerned, do
differ in some respects from the software visualisers in the first two common uses mentioned
in section 4.1.

While code reusers are interested in what a component does, it will be of equal importance
to understand how to use that component. Algorithm animations, while often showing the
details of the algorithm, do not show which methods to invoke in the component to store
information, or to start execution, or to extract key results. Code reusers can reasonably be
expected to know the language they are developing in. Unlike students, they do not need
to be shown how the component was written, but instead how the component is used. It
may be more useful to a code reuser to see the order in which to invoke public methods in
a Networking component’s interface so as to set up a server socket, than to see the specific
white box details as to how that server socket was set up.

Code reusers may also not have access to the underlying source code to a reusable com-
ponent. While this can be a significant problem to a software visualiser doing profiling or
maintenance (given the needs for possible corrections), a code reuser can still reuse the com-
ponent as long as they have access to a compiled version for the architecture they are on.

A code reuser is also approaching the reusable component from the perspective of having
it collaborate with other components that it was possibly not intended to be used with
originally. This means that the component’s external influences are important to visualise
as well, something that is often not mentioned directly in other research projects in software
visualisation.

4.3 Similarities for Code Reusers

Code reusers also share some common characteristics with other software visualisers. For
example code reusers are, like software visualisers trying to understand whether a component
matches its specification, interested in the side-effects and results of a component. Visualisa-
tions for this purpose describe what the component’s specification is. While other software



Information Visualisation

Test Driver —— Transformer I Viewer/Renderer

SpyApp

Infor mation

Figure 1: An architecture for visualising reusable components. The data outputted by the
Test Driver and the SpyApp is the subject of this paper. We are interested in the information
present in the data, and also how the data is handled.

visualisers may be comparing these visualisation to a more thoroughly understood and con-
crete original specification (as laid down during an analysis/design phase), the code reuser
will be comparing it against the requirements of their new context, and their own prepared
specifications of the solution they need. While the material being compared with is different,
a lot of the information and ways it can be displayed may be the same.

Likewise, code reusers may also be interested in class/package hierarchies and the methods
invoked as a consequence of accessing the component’s public interface. While other software
visualisers profiling software for efficiencies and correctness are interested in seeing that the
right method gets invoked, and that the correct number of invocations occur, code reusers
are also interested in this information for the purpose of code reuse. One approach to code
reuse mentioned in section 2 is to extend an existing solution through inheritance and/or
overloading methods. Knowledge of when methods get called will enable a code reuser to
better understand if a solution can be extended, and if so, which classes or methods need to
be derived.

As well as this, the question of efficiency and resource usage may figure strongly in a
component’s suitability for reuse in the new context. These issues are also of importance to
software visualisers doing profiling, although for slightly different reasons (i.e. correctness
versus suitability).

4.4 Three Considerations for Code Reusers

Outside of the considerations of cost and of finding candidate components for reuse in the
first place, we believe the main areas that a code reuser would be interested in — from a
perspective of requiring understanding — are what the component does, how the component
works and, if it does match the new requirements, then how the component can be reused
and whether it needs to be modified.

5 An Architecture for Visualising Reusable Components

We are developing tools for creating and interacting with visualisations of reusable compo-
nents. To create a context for our later discussions on what information we’d like to see in
our visualisations, and how we’d like it to be organised, we will briefly discuss some of the
key features of our visualisation tools. A simple overview of the architecture can be seen in
figure 1.



5.1 Test Driver

As touched upon earlier at the end of our introduction to this paper, we are creating visu-
alisations of developers’ experiences with using a reusable component. Part of this requires
that we provide a platform on which developers can gain that first-hand experience of using
a component.

A component is often not an entire application in its own right. In our research, we
are working with Java components at the class level. As many components cannot be ex-
ecuted in isolation (such as for the lack of a public static void main method in the case of
Java components), we have developed a tool called Test Driver using the Java Reflection
API. The test driver allows developers to specify a sequence of method invocation and field
access/modifications, and to then execute this sequence on the component. This approach
does not work for all components, with some graphical components requiring a more com-
plicated setup before they can be used to interface with the developer. However for many
non-graphical components this can be a useful method in its own right of gaining a prelimi-
nary understanding of using a component, and in what the results and side-effects of certain
actions are.

5.2 SpyApp

The SpyApp tool is responsible for gathering much of the information required for the vi-
sualisations. While the test driver can gather some information, such as the sequence of
instructions given to it by the developer and static class information, the SpyApp is respon-
sible for gathering information such as method call traces within the component, resource
usage, and most of the dynamic runtime information sought.

The SpyApp can do this while avoiding the need to instrument the reusable component
source code, removing the need for the source code to be available. The static information
gathered by the Test Driver can be done so from .class files, and by being able to gather dy-
namic information purely from executing .class files as well, we allow visualisation of reusable
components where the source code has not been distributed.

SpyApp uses Java debugging libraries such as the Java Debugger Interface (JDI) to watch
for events in the Java Virtual Machine. When these events occur, SpyApp then collects event
information through calls to the JDI, and sends the collected information to the filesystem or
a database as output. A similar approach using the native Java Virtual Machine Debugger
Interface JVMDI library for Java has been used by (Reiss & Renieris 2000).

This output can then be filtered for relevancy, and the format of the information is the
subject of our first wish-list mentioned at the beginning of this paper.

5.3 Transformer

The Transformer tool is responsible for converting the information gathered by SpyApp and
Test Driver into a format that can be easily rendered by animation display tools.

We are interested in developing tools that allow for a customisable and extendible set of
different visualisations, so the Transformer tool can have its conversion process configured to
create these different visualisations. This configuration and conversion process does require
some prior knowledge of the component, and its important features and uses (i.e. knowing
what to focus on in the visualisation). This means that currently any configuration is bet-
ter left to experienced users of that component who wish to create visualisations for other
developers.

Transformer outputs the resulting information and stores it either in a database or directly
in the filesystem. The format of the output is the subject of one of our wish lists and is now



discussed in more depth.

6 The Wish list for Information To Be Visualised

We are interested in using visualisations to guide a developer’s decision as to whether a
component is reusable in the developer’s current context. To create visualisations that are
useful to developers, we must give some thought as to what should be shown. We have
briefly outlined some of the intentions and characteristics of a code reuser in section 4. We
will now discuss our wish list for what information we would like to see shown in software
visualisations of reusable components. Not all the information would necessarily be presented
in any one specific visualisation, however as we are looking at tools for creating customisable
and extendible visualisations, this information should be available if required.

We have split this list into three sections, mirroring the different criteria that a code
reuser may go through when deciding if a given component is appropriate for reuse, and if
so, how it can be reused. These sections list the information we would like to see visualised
to determine what a component does, how a component works, and how a component can be
reused.

All of these categories could benefit from both static and dynamic visualisations. In
many cases, animated visualisations could track the change in the various characteristics and
performance measures during the course of execution. As some reusable components are
accessed through a sequence of calls to the public interface rather than just a single call,
animations could show how the different events and states evolve at key moments in the
sequence.

6.1 What Does The Component Do?

To decide whether a potentially reusable component is useful in the new context, a developer
must know what it is that the component does. We treat the component in this section as
a black box, and are interested in the external side-effects and the results that occur as a
consequence of interacting with the component’s public interface.

We consider the following elements important in understanding what the component does:

e Author and/or user descriptions.
e Actual results and side-effects of a sequence of accesses to the public interface.
e Data sent or requested, external to the component.

e User input/output required during execution.

We shall now expand on these points in more depth.

6.1.1 Author/User Description

A component’s author should know the specific details of what the component does. Any
information they can provide, such as through traditional text-based documentation, will be
of use in understanding what the component does. Similarly, regular users of the component
will also have an understanding of the component’s capabilities, and any advice or feedback
they can give on the component can be useful when determining its appropriateness in the
code reuser’s new context.

Text based is the most common form of documentation currently available, and it should
be complemented by visualisations, rather than be replaced entirely. Some visual techniques



could be applied to the descriptions, to aid readability and understanding, but peoples’
reports on their experiences of components remains a powerful way of sharing knowledge.

6.1.2 Results & Side-Effects

The results of executing certain sequences of method calls on a component’s public interface,
or the side-effects of these sequences on other components’ data or the component’s own
state, will affect its applicability for reuse in a new context.

The results in some cases will determine whether the functionality provided by the com-
ponent matches what is needed by the code reuser. The side-effects may help to show whether
the component can work together with other components without compromising their func-
tionality. They may also show whether a particular sequence of interactions leaves the com-
ponent in a correct state for any future required sequences to also work. This latter point
may be especially important if the component to be reused will be used multiple times. If
this is the case, each interaction with the component would need to leave it in a usable state
for the next interaction.

6.1.3 Sent/Requested Data

If a component is to be reused, then any information sent or requested by that component to
such entities as a network, filesystem or database, needs to be handled in the new context. It
is important that the code reuser understands the requirements and actions of the component
with regards to the external environment.

This ensures that any components whose needs can not be met (either directly or through
relatively minor modification) by the new context, can be discarded from the selection process.

This represents the results and side-effects external to the immediate application the
component would be reused in, except for direct user input/output which is discussed in
section 6.1.4.

6.1.4 User Input/Output

Should a component require interaction with a user to perform its functionality, then this
needs to be understood by a code reuser if they are to make an informed decision as to
its appropriateness in a new context. Specifically, the code reuser may need to know what
information is required of the user, what information is given to the user, what the method
of interaction is, and what environment (i.e. graphical, command line) is required for the
interaction to take place.

6.2 How Does The Component Work?

We approached the question of what the component does by treating it as a black box. This
may help in deciding whether the functionality available can be made to meet the require-
ments of the new context, but there is also the question of how the component works. This
is important as the resource or permission requirements of operation may be prohibitive
in the new context, and rule the component out as a candidate for reuse. There is also
the possibility of extending or modifying the behaviour of the component to meet any new
requirements. Understanding how the internals of the components work may open up op-
portunities for modifying its behaviour to what is required by replacing sub-components or
overloading methods.

We now treat the component as a white box, and look at what internal information could
be useful to visualise:



Author and/or user descriptions.

System permissions.

Other software applications & libraries.

Hardware resource usage.

Execution traces.

e Multi-threading and synchronisation.
e Timing.

We shall now expand on these points in more depth.

6.2.1 Author/User Descriptions

Similar to the author/user descriptions mentioned in section 6.1.1, authors and users are
well placed to impart valuable knowledge of how a component works. Visualisations aimed
at promoting understanding how a component works should incorporate feedback from the
author and users.

6.2.2 System Permissions

The system permissions required by a component affect its appropriateness for reuse in a
given situation. Some environments may restrict permissions for security reasons, e.g. un-
trusted Java applets in browsers, and deny a component certain permissions. Describing
what permissions a component requires allows the code reuser to make an informed decision
regarding its usefulness. This ties in with section 6.1.3, where the data being sent/requested
was identified as useful to visualise.

This could also identify what files are accessed or modified, or which servers and ports
are accessed on the network. Other possible permissions could include such considerations as
who the component must execute as, an example being a component that needs to execute
as a superuser.

6.2.3 Other Software Applications & Libraries

Should a component require other software to fulfill its functionality, then visualising this
information will enable a code reuser to better understand whether that component is ap-
propriate for reuse. Visualising the information may help to identify the specifics of what
software is required, why, and where. A code reuser can then investigate from a position of
knowledge as to whether this other software is available and usable in the new context.

6.2.4 Hardware Resource Usage

The performance of a component may make it prohibitively expensive to reuse in a new
context. If the new context requires that functionality be achieved within fixed parameters,
such as in a certain time frame, or with less than a certain amount of CPU usage, or within
certain boundaries of filesystem access or network traffic, then candidate reusable components
should be measured against these criteria.

Visualising this information gives the code reuser a better understanding of the appropri-
ateness of a code component within the restrictions placed by the new context.



6.2.5 Execution Traces

One possible approach to reuse is to overload certain methods of a component, or extend
classes within the component, to modify the existing functionality to what is required. Vi-
sualising what methods get called, on what classes, and when, may give the code reuser a
better understanding as to what methods or classes need modifying to change the behaviour.
This relates primarily to the execution hidden by the public interface of the component.

Tracing the execution internal to a component involves capturing such information as
method calls (Renieris & Reiss n.d.), method returns, field accesses, field modifications,
object creation and object deletion. By visualising this information the code reuser can
gain a better understanding of potential consequences and alternative executions that can be
created by overloading or replacing certain parts of the component.

6.2.6 Multi-Threading & Synchronisation

Issues of threading, synchronisation, resource sharing and deadlock avoidance are important
factors in deciding whether a component is reusable in a new context. While a component may
reasonably be expected to work correctly by itself or within its original context, identifying
its use of threads and any requirements or monopolising of resources may highlight problems
in working with other components currently in the new context.

As well as this, a component’s reliance on threads may make it unsuitable for a particular
architecture because the architecture may either not support multi-threading or supports it
in a fashion inconsistent with the model the component uses.

Information regarding this can be derived from analysing static source code, however
dynamic information gained at runtime from viewing the threads and synchronisation can
also be useful as it can show the sequencing of events and the amount of time spent holding
or waiting on a resource.

Threading and synchronisation data may comprise a large amount of information. Using
visualisation techniques to highlight the important parts of this information can help the
code reuser make a more informed decision about the reusable component’s ability to work
in collaboration with other components.

6.2.7 Timing

While hardware usage may measure the component’s performance with respect to its use of
computer resources, the new context may also place other restrictions on what components
may fit in it. One such restriction may be time, with the component needing to complete
some operation within a certain time frame for the result to be useful. An example of this
would be a component to be used in a real-time application.

Visualising the time line of execution can help a code reuser measure the component’s
performance against what is required, and against other potentially reusable components
fulfilling the same functionality.

6.3 How Can The Component Be Reused?

When a developer has decided that what a component does (or can be easily modified to
do) is what they need, and that how it does it is acceptable to them, they will still need to
understand how to reuse it.

A simple example of this would be that we may know that a network component allows
us to create network connections to servers, and that it does it through using the underlying
native socket libraries, but we still need to know in which order to execute the various methods
in the public interface to get the job done.



This touches on several of the wishes in section 6.2. However whereas that list stated
what we wanted to know about the originally intended operation of the component, here we
are more interested in how it can be used (or modified) in a new context that it may not
specifically have been designed for.

The three categories of information we see as being important in understanding how to
reuse a component are:

o Example uses of the component through it’s public interface.
e Example extensions of the component through inheritance and overriding methods.

o Details of how to install any other software required by the component.

We shall now expand on these points in more depth.

6.3.1 Example Uses

Examples showing previous uses of the public interface of a component can show us how to
link in the component to other code in the new context. This can also involve showing how
to set up the state of objects that are required to be passed to the reusable code before it’s
functionality can be invoked.

6.3.2 Example Extensions

While reusing code may consist of simply plugging in the old code into a new project and
interacting with it through the public interface, it may also involve extending the currently
available functionality to match the new requirements. This approach could use a mechanism
such as inheritance to extend certain classes or methods within the reusable component, to
borrow what is already there and add on the extra capabilities that are needed. Example
extensions could show which classes/methods can be extended, and the potential side effects of
doing this. They could also show how extending classes whose objects are used as parameters
or global variables by the component can modify the behaviour of the component, with the
intention of meeting the required new functionality.

6.3.3 Installation Details

Another barrier to successful reuse is the time and effort involved in installing the component
for use in the new project. For some components, it may be a comparatively easy task of
downloading the component and including the file or files in the search path for the compiler
or runtime environment (such as the class path/source path variables in Java). However
other components may need more complex installation procedures. These could include
recompilation for the local architecture, and downloading of other ancillary components that
the reused component needs to work. Clearly available information on how to go about doing
this would help to reduce the time and effort required in the reuse process. This is again
an example where already available (and predominately text-based) documentation such as
README files can be complimented and incorporated by visualisation techniques.

7 The Wish list for Transporting Information for Visualisa-
tion

Having decided what we want to see, we need to first gather the information from SpyApp
and transfer it to the Transformer, so that it can be converted into a visualisation.

10



Some software visualisation researchers have designed their visualisation architectures so
that the visualisation tool is built directly into the information gathering tool. In other cases,
the visualised code is instrumented to include calls to the visualisation library. We wish to
remove the tight coupling between the source and destination, by transferring the information
in an independent, consistent format - so that SpyApp and the Transformer can be replaced
and reused in different circumstances.

This will solve a common problem, where the captured information is abstracted too soon.
The exercise of executing and exploring a component involves the expense of time and effort.
If a particular visualisation (e.g. a sequence diagram) was created directly from this initial
exploration, then if someone decided that they wanted another view on the component (e.g.
an annotated description of the public interface, using colour and numbering to highlight
important methods and access sequences), the second visualisation would either need a new
exploration (and hence more time and effort), or be created from the first visualisation.
Because a specific visualisation abstracts away information unnecessary in that visualisation,
information relevant to other types of visualisation may be difficult to extract, or not even
present.

We have the need for an intermediary format for the information gathered from a com-
ponent, that can be used to generate a visualisation. Our wish list for this format is:

e Storable, and re-playable.

e Support live streaming to visualisation tools.

Easily transportable over the Internet, using widely accepted protocols and standards.

Filterable, so that relevant information can be extracted.

Query-able for specific details within the overall information store.

e Programming-language independent.

Platform-independent.

Scalable to large components and long visualisations.

We shall now expand on these points in more depth.

7.1 Storable and Re-playable

Generating a program trace is costly, as it requires the software visualiser to spend time
executing and exploring software components. At the time of exploration the software vi-
sualiser may not know what kinds of visualisations to view, or the need to view a different
visualisation may become apparent at a point in the future.

It should be possible to store the SpyApp trace output on a filesystem or database, so
that it can be replayed in the future to produce a different visualisation.

7.2 Live Streaming

Often, understanding software through visualisation is an explorative process, where a soft-
ware visualiser will tinker with a component and view the changes that the tinkering makes to
the visualisation. Therefore, the changes detected by the SpyApp may need to be transferred
directly to the Transformer as they occur, rather than being sent at the close of execution.

Supporting live streaming may impose certain restrictions upon the representation of the
data, forward references should be avoided, so that the Transformer always has a complete
snapshot at any point in time.

11



7.3 Easily Transportable

As discussed in section 2, current visualisation research is trending towards the delivery of
visualisations over the internet. This imposes certain restrictions on the format of the data,
so a file format should be able to be transferred in a culture neutral representation, preferably
text, and preferably be able to be fetched via a single HTTP request.

7.4 TFilterable

Due to the potential volume of data that a program execution can produce, the data format
should support an easy method of filtering, so that only relevant information need be passed
to the transformer. As each transformer will have different criteria for relevance, the filtration
must be sufficiently flexible to narrow the data to a sensible subset.

7.5 Query-able

The program trace information should be easily queried, so that a transformer can efficiently
request subsets of information (e.g. “All types in this program”, “All methods that call
method X”). It is not practical for a transformer to parse the trace each time such a request
occurs, nor is it sensible for each transformer to convert the trace information into it’s own
database format.

7.6 Language Independence

As researchers, we work with a variety of programming languages. This research began
using C++, and now uses Java. However there is sufficient similarity between many object-
oriented languages (C++, Java, C#, VB.NET, Jade) that it makes sense for the trace format
to represent the execution of any of these languages. Indeed, in an environment such as
Microsoft’s CLR, program development doesn’t necessarily involve just one programming
language.

Supporting multiple languages will also allow the Transformers and subsequent Visuali-
sations to be reused as well, there is little difference between a C++ UML Sequence diagram
and a Java one.

7.7 Platform Independence

Any architecture involving the internet, and platform independent languages such as Java,
should transfer information in a platform-neutral manner. The trace information viewed on
a Unix machine should be identical to that on an Apple Macintosh.

7.8 Scalable

Execution traces can get large very quickly, if there are a lot of method calls, object creation,
or data changes. The format chosen will need to be easily used, filtered and queried, even
when it scales up to hundreds of megabytes.

8 Summary

We wish to create visualisations specific to three aspects of reusable code components. These
aspects are what does the component do, how does the component do it, and how can the
component be reused. These visualisations would then be used to help foster understanding

12



in developers as to how they could save time and effort through the process of reusing old
code in new contexts.

To create visualisations we need to think about what information should be visualised. We
also need to consider the details of extracting, storing and transporting this information. In
this paper we have listed what we believe to be key categories for what information should be
available to visualisations, and have discussed some of the characteristics of a data transport
format.

While significant research has been conducted into creating software visualisations for
understanding software, especially for pedagogical or profiling purposes, we believe the in-
tentions of code reusers requires extra information for a complete understanding, and to aid
in successful reuse.

Our aim is to further develop tools for gathering, storing, transporting and converting
static and dynamic component information into useful visualisations.

References

Alonso, O. & Frakes, W. (2000), Visualization of reusable software assets, in ‘Sixth Interna-
tional Conference on Software Reuse’.

Ball, T. & Eick, S. G. (1996), ‘Software visualization in the large’, IEEE Computer 29(4), 33—
43.
*citeseer.nj.nec.com/ball

Byrne, M., Catrambone, R. & Stasko, J. (1999), ‘Evaluating animations as student aids in
learning computer algorithms’.
*citeseer.nj.nec.com/byrne99evaluating.html

Ellershaw, S. & Oudshoorn, M. (1994), ‘Program visualization - the state of the art’.
*citeseer.nj.nec.com/ellershaw94program.html

Ferri, R., Pratiwadi, R., Rivera, L., Shakir, M., Snyder, J., Thomas, D., Chen, Y., Fowler, G.,
Krishnamurthy, B. & Vo, K. (1997), ‘Software reuse metrics for an industrial project’.
*citeseer.nj.nec.com/ferri97software.html

Frakes, W. & Terry, C. (1996), ‘Software reuse: Metrics and models’, ACM Computing
Surveys 28(2), 415-435.
*citeseer.nj.nec.com/frakes96software.html

Jerding, D. F. & Stasko, J. T. (1994), Using visualization to foster object-oriented program
understanding, Technical Report GIT-GVU-94-33, Atlanta, GA, USA.
*citeseer.nj.nec.com/jerding94using.html

MclIllroy, M. D. (1968), Mass produced software components, in P. Naur & B. Randell, eds,
‘Report on a Conference of the NATO Science Committee’, pp. 138-150.

Mili, H., Mili, F. & Mili, A. (1995), ‘Reusing software: Issues and research directions’, Soft-
ware Engineering 21(6), 528-562.
*citeseer.nj.nec.com/mili95reusing.html

Moe, J. & Carr, D. A. (2001), Understanding distributed systems via execution trace data, in
‘Proceedings of the Ninth International Workshop on Program Comprehension’. ”cite-
seer.nj.nec.com/moe0lunderstanding.html”.

13



Mukherjea, S. & Stasko, J. T. (1994), ‘Toward visual debugging: Integrating algorithm an-
imation capabilities within a source level debugger’, ACM Transactions on Computer-
Human Interaction 1(3), 215-244.

Naps, T., Bergin, J., Jimenez-Peris, R., McNally, M., Patino-Martinez, M., Proulx, V. &
Tarhio, J. (1997), Using the www as the delivery mechanism for interactive, visualization-
based instructional modules, in ‘Proc. of ACM ITiCSE’97.
*citeseer.nj.nec.com/naps97using.html

Price, B. A., Small, I. S. & Baecker, R. M. (1992), A taxonomy of software visualization, in
‘Proc. 25th Hawaii Int. Conf. System Sciences’.
*citeseer.nj.nec.com/price92taxonomy.html

Reiss, S. P. (n.d.), ‘Website - bloom’, http://www.cs.brown.edu/ spr/.

Reiss, S. P. & Renieris, M. (2000), Generating java trace data, in ‘Java Grande’, pp. 71-77.
*citeseer.nj.nec.com/reiss00generating.html

Reiss, S. P. & Renieris, M. (2001), Encoding program executions, in ‘International Conference
on Software Engineering’, pp. 221-230.
*citeseer.nj.nec.com/reiss0lencoding.html

Renieris, M. & Reiss, S. P. (n.d.), ALMOST: Exploring program traces, pp. 70-77.
*citeseer.nj.nec.com/renieris99almost.html

Stasko, J. T. (n.d.), ‘Website - tarantula: Fault localization via visualization’,
http://www.cc.gatech.edu/aristotle/Tools/tarantula/.

Widjaja, H. & Oudshoorn, M. (1997), ‘Concurrent object oriented programming — a visual-
isation challenge’.
*citeseer.nj.nec.com/widjaja97concurrent.html

Wiggins, M. (1998), An overview of program visualization tools and systems, in ‘ACM South-
east Regional Conference’, ACM Press, pp. 194-200.

Wilde, N. (1994), ‘Faster reuse and maintenance using software reconnaissance’.
*citeseer.nj.nec.com/wilde94faster.html

14



