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And I cherish more than anything else the 
Analogies, my most trustworthy masters. 

They know all the secrets of Nature, and they 
ought least to be neglected in Geometry.

--- Johannes Kepler
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Sound waves propagating in a flowing fluid can be 
described by a wave equation on an “acoustic 
geometry”. 

This geometry is described by an “effective metric” 
that leads to a “curved spacetime” qualitatively similar 
to that of general relativity. 

In particular, it is relatively easy to set up “dumb holes” 
which trap sound in the same way that the black holes 
of general relativity trap light.

Abstract:    

Text



Vortex flow creates an “acoustic geometry” that is 
qualitatively similar to the equatorial plane of a rotating 
Kerr black hole. 

There is an acoustic analogy to the general relativity 
notion of an “ergosphere” as well as to the general 
relativity notion of “horizon”.

I will first qualitatively explain these ideas, and describe 
why they are useful, and then make a quantitative 
comparison between the analog acoustic and general 
relativistic sytems.

Abstract:    



Key idea:

Consider sound waves in a flowing fluid.

If the fluid is moving faster than sound, then the 
sound waves are swept along with the flow, and 
cannot escape from that region.

This sounds awfully similar to a black hole in general 
relativity --- is there any connection?

Yes!

(Of course the devil is in the details...)





Acoustic propagation in fluids can be described in terms of 
Lorentzian differential geometry.

The acoustic metric depends algebraically on the fluid flow.

Acoustic geometry shares kinematic aspects of general relativity, 
but not the dynamics.

Einstein equations versus Euler equation.

In particular: 
Acoustic black holes divorce kinematic aspects of black hole 
physics from the specific dynamics due to the Einstein 
equations.

Key results:



Advanced features:

There are also other “analogue models” of general 
relativity, apart from the acoustic models. 

Acoustic black holes have Hawking radiation without 
black hole entropy.

Hawking radiation is a purely kinematic effect that 
exists independent of whether or not the Lorentzian 
geometry obeys any particular geometrodynamics.

You do not need the Einstein equations to get 
Hawking radiation.
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Water down the Drain Leads

to Black Holes in the Lab 

Archimedes, the famous story goes, cried, "Eureka!" and leapt
from his overflowing bathtub, having discovered the principle of
buoyancy. But the drain has much to offer, too. Physicists Ulf
Leonhardt and Paul Piwnicki of the Royal Institute of Technology
suggest in the Jan. 31 issue of Physical Review Letters that
vortices or other rapid flows analogous to the swirl of water down
the drain may enable researchers to model the relativistic effects
of black holes. 
    Leonhardt explained that, as early as 1818, Augustin-Jean
Fresnel predicted from theories of the luminiferous ether that a
flowing medium will drag light with it. "For quite a long time we
were rather puzzled and could not understand what is happening in
moving media if one takes them seriously," said Leonhardt. "Then,
suddenly, the picture emerged, and we realized the connection to
gravity and curved space-time. This has come as a surprise." 
    The researchers demonstrated that, if a medium swirls more
quickly than the speed of light through it, the vortex it forms can
decelerate and trap light in much the same way as a black hole. If
they could be created in the lab, these optical black holes would
enable physicists to test such controversial concepts as Hawking
radiation, the emissions by black holes theorized by Stephen W.
Hawking. The problem is that no known materials display
superluminal rotation without also forming a hollow core that is
larger than the critical optical event horizon. 
    But recent efforts by Lene Vestergaard Hau of Harvard
University in Cambridge, Mass., have dramatically slowed light
with Bose-Einstein condensates (see Photonics Spectra, April
1999, pages 26-27), and they could produce the 1-cm/s speed limit
required by Leonhardt and Piwnicki’s model. Leonhardt also
suggested that rotating alkali vapor could create a "weak" black
hole that only traps light moving against its current, as may other
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Black hole recipe: Slow light, swirl atoms

By P. Weiss

Physicists may soon create
artificial black holes in the
laboratory, analogous to the ones
expected to lurk in distant space. A
new study by a pair of theorists in
Sweden describes how swirling
clouds of atoms could slug down
all nearby light, making them as
black as their astronomical
cousins.

Called optical black holes, these
eddies could provide an
extraordinary test-bench for the theory of general relativity,
which gave rise to the concept of gravitational black holes, the
researchers say. Ulf Leonhardt and Paul Piwnicki of the Royal
Institute of Technology in Stockholm find that the same
mathematics describes both the terrible tug of an astronomical
black hole on light and the gentle corralling of rays by an atom
vortex.

"We were quite surprised that it worked that well," Piwnicki
says. "We’re still working on it to understand it more deeply," he
adds. The researchers report their findings in the Jan. 31 Physical
Review Letters and the December 1999 Physical Review A.

The laboratory analogy goes only so far, however. Black holes
out in space are massive remnants of collapsed stars that pull in
not just light but everything else in their vicinity. By contrast, the
proposed atomic whirlpools would have too little gravity to
swallow any matter. Tiny tornadoes within wispy clouds of gas,
they would snag photons through their remarkable ability to slow
light pulses.

The proposed mechanism by which such a vortex would capture
light rests on principles discovered in the 1800s. Many
substances, such as water or glass, retard light as it passes
through them. Consequently, a fluid flow can drag light along

Computer-generated plot
shows paths of light rays
sucked into optical black
hole. (Leonhardt and
Piwnicki/Physical Review A)
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Physicswatch

Optical black holes could be made in the lab

Black holes could be created in the laboratory,
claim physicists from Sweden and Scotland.
Their calculations show that, thanks to some
recent advances in condensed matter physics, it is
theoretically possible to create an optical black
hole to attract and trap specific colours of light in
just the same way as an astronomical black hole
attracts and consumes matter.
   The researchers unearthed a 1923 paper in

which Walter Gordon, starting from Einstein’s idea of gravity mediated
by changes in the metric of space and time, realized that space-time is
effectively a medium and that consequently, any moving dielectric
medium acts on light as an effective gravitational field. However, to see
effects as dramatic as a black hole, the velocity of light in the medium
must be low compared with the velocity of the medium.
   Recent results from US physicists working with Bose-Einstein
condensates (BEC) suggest that this is feasible: quantized vortices have
been generated in a BEC of rubidium atoms, while light has been
slowed down inside a BEC to a mere 50 cm/s, and even 1 cm/s may
soon be achieved.
   A BEC vortex, swirling faster than the light can move, would drag the
light into its centre, where it would eventually be absorbed by the gas.
An event horizon - a radius of no return - would form about the vortex,
just like the Schwarzschild radius of an astronomical black hole.
   Then, some spectacular effects of general relativity could be seen in a
terrestrial laboratory, perhaps demonstrating an analogue of Hawking
radiation from black holes (obscured by the cosmic background
radiation and so far never observed in astronomy) and even exploring
prototype theories of quantum gravity.
   However, the experimental difficulty in generating sufficiently fast
and durable BEC vortices means that a home-grown black hole is
probably still about five years away. AIP
   

Article 10 of 20. 
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Geometrical acoustics:

In a flowing fluid, if sound moves a distance d!x

in time dt then

||d!x− !v dt|| = cs dt.

Write this as

(d!x− !v dt) · (d!x− !v dt) = c2sdt2.

Now rearrange a little:

−(c2s − v2) dt2 − 2 !v · d!x dt + d!x · d!x = 0.

Notation — four-dimensional coordinates:

xµ = (x0;xi) = (t; !x).

Then you can write this as

gµν dxµ dxν = 0.

With an effective acoustic metric

gµν(t, !x) ∝
 −(c2s − v2) ... −!v

· · · · · · · · · · · · · · · · · · ·
−!v ... I

 .
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Eikonals:

The sound paths of geometrical acoustics are
the null geodesics of this effective metric.

Geometrical acoustics, by itself, does not give
you enough information to fix an overall mul-
tiplicative factor (conformal factor).

Note: This also works for geometrical optics
in a flowing fluid, with cs → c/n; replace the
speed of sound by the speed of light in the
medium (speed of light divided by refractive
index).

This is already enough to give you some very
powerful results:

Fermat’s principle is now a special case of
geodesic propagation.

Sound focussing can be described by the
Riemann tensor of this effective metric.

But there is a lot more hiding in the woodwork.
6
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The Acoustic metric:

Suppose you have a non-relativistic flowing fluid,
governed by the Euler equation plus the con-
tinuity equation.

Suppose the fluid flow is barotropic,
irrotational, and inviscid.

Suppose we look at linearized fluctuations.

Then the linearized fluctuations (aka sound
waves, aka phonons) are described by a mass-
less minimally coupled scalar field propagating
in a (3+1)-dimensional acoustic metric

gµν(t, "x) ≡ ρ

c

 −(c2 − v2) ... −"v

· · · · · · · · · · · · · · · · · · ·
−"v ... I

 .

Proof: Unruh81, Visser93, Unruh94, Visser97.
7

Physical 
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This then leads to a wave equation...
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Q: How do acoustic disturbances propagate
in a non–homogeneous flowing fluid?

A: If the fluid is barotropic and inviscid, and
the flow is irrotational, the equation of motion
for the velocity potential can be put in the
(3 + 1)–dimensional form

∆ψ ≡ 1√−g
∂µ

(√−g gµν ∂νψ
)
= 0.

• The acoustic metric is:

gµν(t, $x) ≡ ρ

c

 −(c2 − v2) ... −$v

· · · · · · · · · · · · · · · · · · ·
−$v ... I


.

• The underlying fluid dynamics is Newtonian,
non–relativistic, in flat space + time.

• The fluctuations (sound waves) are gov-
erned by a Lorentzian spacetime geometry!

Physical 
acoustics:



Fundamental fluid dynamics:

Continuity —

∂tρ +∇ · (ρ#v) = 0.

Euler (inviscid) —

ρ [∂t#v + (#v ·∇)#v] = −∇p− ρ∇φ.

Barotropic —

ρ = ρ(p); ζ(p) =
∫ p

0

dp′
ρ(p′)

; ∇ζ =
1

ρ
∇p.

Standard Manipulations:

Euler + Barotropic —

∂t#v = #v × (∇× #v)−∇(1
2
v2 + ζ + φ).

Irrotational —

∇× #v = 0; #v = −∇ψ.

Euler + Barotropic + Irrotational —

−∂tψ + ζ + 1
2
(∇ψ)2 + φ = 0.
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Linearize:

ρ ≡ ρ0 + ερ1; p ≡ p0 + εp1; ψ ≡ ψ0 + εψ1; φ ≡ φ0;

ζ ≡ ζ0 + εζ1 = ζ0 + ε(p1/ρ0); ρ1 =
∂ρ

∂p
p1.

• Sound ≡ linearized fluctuations.

Continuity —

∂tρ1 +∇ · (ρ1'v0 + ρ0'v1) = 0.

Euler —

−∂tψ1 +
p1

ρ0
− 'v0 ·∇ψ1 = 0.

p1 = ρ0(∂tψ1 + 'v0 ·∇ψ1).

• Substitute the linearized Euler equation into
the linearized continuity equation. This gives
a wave equation for the scalar potential.
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−∂tψ1 +
p1

ρ0
− 'v0 ·∇ψ1 = 0.

p1 = ρ0(∂tψ1 + 'v0 ·∇ψ1).

• Substitute the linearized Euler equation into
the linearized continuity equation. This gives
a wave equation for the scalar potential.

Physical 
acoustics:
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Wave equation:

− ∂t

[
∂ρ

∂p
ρ0 (∂tψ1 + $v0 ·∇ψ1)

]
+ ∇ ·

[
ρ0∇ψ1 − ∂ρ

∂p
ρ0$v0 (∂tψ1 + $v0 ·∇ψ1)

]
= 0.

Coefficients ρ0, $v0, and 1/c2 ≡ (∂ρ/∂p) can
have arbitrary time and space dependencies.

Define:

fµν ≡ ρ0

c2

 −1 ... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0
... (c2δij − vi

0vj
0)


.

Then:

∂µ(fµν∂νψ1) = 0.

That’s it! Everything else is now technical
fiddling.

Physical 
acoustics:
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ρ0 (∂tψ1 + $v0 ·∇ψ1)

]
+ ∇ ·

[
ρ0∇ψ1 − ∂ρ

∂p
ρ0$v0 (∂tψ1 + $v0 ·∇ψ1)

]
= 0.

Coefficients ρ0, $v0, and 1/c2 ≡ (∂ρ/∂p) can
have arbitrary time and space dependencies.

Define:

fµν ≡ ρ0

c2

 −1 ... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0
... (c2δij − vi

0vj
0)


.

Then:

∂µ(fµν∂νψ1) = 0.

That’s it! Everything else is now technical
fiddling.

That’s really it!
Everything else is minor technical fiddling.

Physical 
acoustics:



Physical acoustics:

Rewrite the wave equation as:

∆ψ ≡ 1√−g
∂µ

(√−g gµν ∂νψ
)
= 0.

— Then

g = det(fµν) = −ρ4
0/c2.

— And

gµν ≡ 1

ρ0c

 −1 ... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0
... (c2δij − vi

0vj
0)


.

This is a (3+1)–dimensional spacetime metric
in ADM form.

gµν ≡ ρ0

c

 −(c2 − v2
0)

... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0
... δij


.

Introducing the acoustic metric gµν , defined by

fµν =
√−g gµν ; g =

1

det(gµν)
(35)

the wave equation (33) corresponds to the normal d’Alembertian wave equa-
tion in a curved-space:

gµν =
(ρ

c

)−2/(d−1)
[ −1/c2 −"vT /c2

− "v/c2 − (
Id×d − "v "vT /c2

) ]
, (36)

where d is the dimension of space (not spacetime).
The covariant acoustic metric is

gµν =
(ρ

c

)2/(d−1)
[ − (c2 − v2) | "vT

"v | Id×d

]
. (37)

3.1 d = 3

The acoustic line-element for three space and one time dimension reads

gµν =
(ρ

c

) [ − (c2 − v2) | "vT

"v | I3×3

]
. (38)

This is the primary case of interest in this article.

3.2 d = 2

The acoustic line-element for two space and one time dimension reads

gµν =
(ρ

c

)2
[ − (c2 − v2) | "vT

"v | I2×2

]
. (39)

This situation would be appropriate, for instance, when dealing with surface
waves or excitations confined to a particular substrate.

3.3 d = 1

The naive form of the acoustic metric in (1+1) dimensions is ill-defined,
because the conformal factor is raised to a formally infinite power — this
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is independent of the number of space dimensions.
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In (d+1) dimensions:

Metric:

Inverse metric:
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To be specific:

is a side effect of the well-known conformal invariance of the Laplacian in 2
dimensions. The wave equation in terms of fµν continues to make good sense
— it is only the step from fµν to the effective metric that breaks down.

Note that this issue only presents a difficulty for physical systems that
are intrinsically one-dimensional. A three dimensional system with plane
symmetry is perfectly well behaved as in the case d = 3 above.

4 The Kerr equator

To compare the vortex acoustic geometry to the physical Kerr geometry of a
rotating black hole, consider the equatorial slice θ = π/2 in Boyer–Lindquist
coordinates [19, 20]:

(ds2)(2+1) = −dt2+
2m

r
(dt−a dφ)2+

dr2

1− 2m/r + a2/r2
+(r2+a2) dφ2. (40)

We would like to put this into the form of an “acoustic metric”

gµν =
(ρ

c

) [ −{c2 − gmn vn vn} −vj

−vi gij

]
. (41)

If we look at the 2-d r-φ plane, the metric is

(ds2)(2) =
dr2

1− 2m/r + a2/r2
+

(
r2 + a2 +

2ma2

r

)
dφ2. (42)

Now it is well-known that any 2-d geometry is locally conformally flat, though
this fact is certainly not manifest in these particular coordinates. Introduce
a new radial coordinate r̃ such that:

dr2

1− 2m/r + a2/r2
+

(
r2 + a2 +

2ma2

r

)
dφ2 = Ω(r̃)2 [dr̃2 + r̃2 dφ2]. (43)

This implies (
r2 + a2 +

2ma2

r

)
= Ω(r̃)2 r̃2, (44)

and
dr2

1− 2m/r + a2/r2
= Ω(r̃)2 dr̃2, (45)
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There is a formal difficulty in (1+1) dimensions.

The conformal factor is raised to an infinite power.



Physical acoustics:

There are two distinct metrics. 

Call it a bi-metric theory.

The physical metric is the flat Minkowski metric. 

Fluid particles couple only to the physical metric.

Acoustic perturbations do not “see” the physical 
metric --- they couple only to the acoustic metric.

The acoustic metric inherits several nice 
properties from the underlying physical metric.



Physical acoustics:

Simple topology --- 

Comments:

There are two distinct metrics. The physical metric is
the flat Minkowski metric: ηµν ≡ (diag[−c2∞,1,1,1])µν.
(c∞ = speed of light.)

Fluid particles couple only to the physical metric ηµν.
Fluid motion is completely non–relativistic —
||v0||$ c∞.

Acoustic perturbations do not “see” the physical met-
ric. They couple only to the acoustic metric gµν.

The acoustic geometry inherits some key properties
from the underlying flat physical metric.

Topology — %4 with possibly a few regions excised
(due to imposed boundary conditions).

Stable causality —
gµν(∇µt)(∇νt) = −1/(ρ0c) < 0.

Ergo–regions —
gµν(∂/∂t)µ(∂/∂t)ν = gtt = −[c2 − v2

0].
Any region of supersonic flow is an ergo–region.

General Lorentzian geometry — 6 degrees of freedom.
Acoustic geometry — 3 degrees of freedom per point.
[ψ0(t, &x), ρ0(t, &x), and c(t, &x).]

Notation: “stationary” ⇐⇒ “steady flow”.
“static” ⇐⇒ “fluid at rest”.

(with maybe a few excised regions due to boundaries.)

Stable causality:

Comments:

There are two distinct metrics. The physical metric is
the flat Minkowski metric: ηµν ≡ (diag[−c2∞,1,1,1])µν.
(c∞ = speed of light.)

Fluid particles couple only to the physical metric ηµν.
Fluid motion is completely non–relativistic —
||v0||$ c∞.

Acoustic perturbations do not “see” the physical met-
ric. They couple only to the acoustic metric gµν.

The acoustic geometry inherits some key properties
from the underlying flat physical metric.

Topology — %4 with possibly a few regions excised
(due to imposed boundary conditions).

Stable causality —
gµν(∇µt)(∇νt) = −1/(ρ0c) < 0.

Ergo–regions —
gµν(∂/∂t)µ(∂/∂t)ν = gtt = −[c2 − v2

0].
Any region of supersonic flow is an ergo–region.

General Lorentzian geometry — 6 degrees of freedom.
Acoustic geometry — 3 degrees of freedom per point.
[ψ0(t, &x), ρ0(t, &x), and c(t, &x).]

Notation: “stationary” ⇐⇒ “steady flow”.
“static” ⇐⇒ “fluid at rest”.

(means we don’t need to worry about time travel.)

Space (not space-time) is conformally flat: 

1 Introduction

It is by now well-known that the propagation of sound in a moving fluid
can be described in terms of an effective spacetime geometry. (See, for in-
stance, [1, 2, 3, 4, 5], and references therein).

• In the geometrical acoustics approximation, this emerges in a straight-
forward manner by considering the way the “sound cones” are dragged
along by the fluid flow, thereby obtaining the conformal class of metrics
(see, for instance, [5]):

gµν ∝
[ −{c2 − hmn vn vn} −vj

−vi hij

]
. (1)

Here c is the velocity of sound, v is the velocity of the fluid, and hij is
the 3-metric of the ordinary Euclidean space of Newtonian mechanics
(possibly in curvilinear coordinates).

• In the physical acoustics approximation we can go somewhat further:
A wave-equation for sound can be derived by linearizing and combining
the Euler equation, the continuity equation, and a barotropic equation
of state [1, 2, 3, 4]. This process now specifies the overall conformal
factor and the resulting acoustic metric in (3+1) dimensions is (see, for
instance, [5]):

gµν =
(ρ

c

) [ −{c2 − hmn vn vn} −vj

−vi hij

]
. (2)

Here ρ is the density of the fluid. Sound is then described by a massless
minimally coupled scalar field propagating in this acoustic geometry.
(A technical complication arises in that deriving such a simple wave
equation requires the velocity flow "v to be irrotational — no such re-
striction applies in the geometrical acoustics limit [6].)

Now because the ordinary Euclidean space (hij) appearing in these acous-
tic geometries is Riemann flat, 3-dimensional space (given by the constant-
time slices) in any acoustic geometry are forced to be conformally flat, with
3-metric gij = (ρ/c) hij. This constraint places strong restrictions on the
class of (3+1)-dimensional geometries that can be cast into acoustic form.
While many of the spacetime geometries of interest in general relativity can
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Notation:   “stationary”              “steady flow”
                 “static”                    “fluid at rest”.

Comments:

There are two distinct metrics. The physical metric is
the flat Minkowski metric: ηµν ≡ (diag[−c2∞,1,1,1])µν.
(c∞ = speed of light.)

Fluid particles couple only to the physical metric ηµν.
Fluid motion is completely non–relativistic —
||v0||$ c∞.

Acoustic perturbations do not “see” the physical met-
ric. They couple only to the acoustic metric gµν.

The acoustic geometry inherits some key properties
from the underlying flat physical metric.

Topology — %4 with possibly a few regions excised
(due to imposed boundary conditions).

Stable causality —
gµν(∇µt)(∇νt) = −1/(ρ0c) < 0.

Ergo–regions —
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Example: Draining bathtub geometry

A (2 + 1) dimensional flow with a sink.

Use constant density, continuity, conservation
of angular momentum:

Implies pressure p and speed of sound cs are
also constant throughout the fluid flow.

The velocity of the fluid flow is

!v =
(A r̂ + B θ̂)

r
.

Streamlines are equiangular spirals.

The acoustic metric is

ds2 = −c2sdt2 +
(
dr − A

r
dt

)2
+

(
r dθ − B
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Use: constant density, constant sound speed, zero 
torque. (You will need an external force.)





Most general line vortex:

• What is the most general acoustic metric that can [even in principle] be
constructed for the most general line vortex geometry? This question
should be investigated in both the regimes of geometrical acoustics and
physical acoustics.

• Can the equatorial slice of Kerr then be put into this form? If not, how
close can one get?

We shall now explore these issues in some detail.

2 Vortex flow

2.1 General framework

The background fluid flow [on which the sound waves are imposed] is governed
by three key equations: The continuity equation, the Euler equation, and a
barotropic equation of state:

∂ρ

∂t
+∇ · (ρ #v) = 0. (3)

ρ

[
∂#v

∂t
+ (#v ·∇)#v

]
= −∇p + #f. (4)

p = p(ρ). (5)

Here we have included for generality an arbitrary external force #f , possibly
magneto-hydrodynamic in origin, that we can in principle think of imposing
on the fluid flow to shape it in some desired fashion. From an engineering
perspective the Euler equation is best rearranged as

#f = ρ

[
∂#v

∂t
+ (#v ·∇)#v

]
+∇p, (6)

with the physical interpretation being that #f is now telling you what external
force you would need in order to set up a specified fluid flow.

4
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Physical acoustics: Draining bathtub

The acoustic horizon forms once the radial velocity 
exceeds the speed of sound.

Example: Draining bathtub geometry

Acoustic metric:

ds2 = −c2sdt2 +
(
dr − A

r
dt

)2
+

(
r dθ − B

r
dt

)2
.

The acoustic event horizon forms once the ra-
dial component of the fluid velocity exceeds
the speed of sound, that is at

rhorizon =
|A|
c

.

Supersonic flow sets in outside the event hori-
zon, when the magnitude of the velocity equals
the speed of sound.

rergo−surface =

√
A2 + B2

c
.
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An ergo-surface forms once the speed exceeds the 
speed of sound.



Key points:

— The signature is (−,+,+,+).

— There are two distinct metrics:
the physical spacetime metric, and
the acoustic metric .

Event horizons and ergo-regions:

Event horizon: the boundary of the region
from which null geodesics (phonons; sound rays)
cannot escape.

At the event horizon, the inward normal com-
ponent of fluid velocity equals the speed of
sound.

Ergo surface: the boundary of the region of
supersonic flow.

In general relativity this is important for spin-
ning black holes.

13



Surface gravity:

For a static geometry, we can apply all of
the standard tricks for calculating the “surface
gravity” developed in general relativity.

The surface gravity is a useful characterization
of general properties of the event horizon and
is given in terms of a normal derivative by

gH =
1

2

∂(c2 − v2⊥)

∂n
= c

∂(c− v⊥)

∂n
.

The surface gravity is essentially the accelera-
tion of the fluid as it crosses the horizon.

Non static geometries are not too bad.

(Thanks to the second metric: It gives you an
unambiguous background for making compar-
isons.)

23



The surface gravity is essentially the acceleration of the 
fluid as it crosses the horizon.

Even non-static geometries are not too bad.

The second background metric simplifies some of the 
technical complications encountered in general relativity. 

(The second metric gives you an unambiguous 
background for making comparisons.)

Physical acoustics:  Surface gravity

There is a reason that for the importance of 
surface gravity, patience....



Back to geometric acoustics: 

Geometric Acoustics:

Take the short wavelength/high frequency limit.
Sound rays (phonons) follow the null geodesics of the
acoustic metric. Null geodesics are insensitive to any
overall conformal factor in the metric. Simplify life by
considering

hµν ≡
[ −(c2 − v2

0)
... −vj

0· · · · · · · · · · · · · · · · · · ·
−vi

0
... δij

]
.

In the geometric acoustics limit, sound propagation is
insensitive to the density of the fluid. It depends only
on the local speed of sound and the velocity of the
fluid. The density of the medium is important only for
specifically wave related properties.

Sanity check: Parameterize Xµ(t) ≡ (t, #x(t)).
— The null condition implies

hµν
dXµ

dt

dXν

dt
= 0

⇐⇒ −(c2 − v2
0)− 2vi

0
dxi

dt
+

dxi

dt

dxi

dt
= 0

⇐⇒
∥∥∥∥d#x

dt
− #v0

∥∥∥∥ = c.

The norm is taken in the flat physical metric.
Interpretation: the ray travels at the local speed of
sound relative to the moving medium.

Eikonal limit:
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Stationary geometry:

Let Xµ(s) ≡ (t(s); !x(s)) be some null path from !x1 to
!x2 parameterized in terms of physical arc length (i.e.
||d!x/ds|| ≡ 1).

The condition for the path to be null (though not yet
necessarily a null geodesic) is

−(c2 − v2
0)

(
dt

ds

)2

− 2vi
0

(
dxi

ds

) (
dt

ds

)
+ 1 = 0.

— Solve the quadratic —(
dt

ds

)
=
−vi

0

(
dxi

ds

)
+

√
c2 − v2

0 +
(
vi
0

dxi

ds

)2

c2 − v2
0

.

The total time taken to traverse the path is

T [γ] =
∫ !x2

!x1

(dt/ds)ds

=
∫

γ
{
√

(c2 − v2
0)ds2 + (vi

0dxi)2 − vi
0dxi}/(c2 − v2

0).

• Extremizing the total time taken is Fermat’s principle.
Cf p 262 Landau and Lifshitz.

From geometric acoustics to Fermat: 
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We have now come full circle:

Geometric acoustics ==> physical acoustics ==> wave 
equation ==> eikonal ==> geometric acoustics ==>



Why bother?

If you are a general relativist,  this acoustic analogy 
gives you simple concrete physical models for curved 
spacetime.

If you are a fluid mechanic (or more generally a 
condensed matter physicist) the differential geometry 
of curved spacetimes gives you a whole new way of 
looking at sound.

Of course these analogue models can be greatly generalized: 
all you really need are well-defined characteristic speeds.

Simple example: Linearize any Lagrangian field theory. 



Lagrangian analysis:

Example 1:

Lagrangian:

L(∂µφ, φ).

Convention:

∂µφ = (∂tφ ; ∂iφ) = (∂tφ ; ∇φ).

Action:

S[φ] =
∫

dd+1x L(∂µφ, φ).

Euler–Lagrange equations:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0.

Linearize the field around a solution:

φ(t, #x) = φ0(t, #x)+εφ1(t, #x)+
ε2

2
φ2(t, #x)+O(ε3).
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Example 1:

Linearized action

S[φ] = S[φ0]

+
ε2

2

∫
dd+1x

[{
∂2L

∂(∂µφ) ∂(∂νφ)

}
∂µφ1 ∂νφ1

+

(
∂2L

∂φ ∂φ
− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
φ1 φ1

]
+ O(ε3).

Linear pieces [O(ε)] vanish by equations of
motion.

Quadratic in φ1 ⇒ field-theory normal modes.

Linearized equations of motion:

∂µ

({
∂2L

∂(∂µφ) ∂(∂νφ)

}
∂νφ1

)

−
(

∂2L
∂φ ∂φ

− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
φ1 = 0.

Formally self-adjoint.
5
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Lagrangian analysis:Example 1:

Geometrical interpretation:

[∆(g(φ0))− V (φ0)]φ1 = 0.

Metric:

√−g gµν ≡ fµν ≡
{

∂2L
∂(∂µφ) ∂(∂νφ)

}∣∣∣∣∣
φ0

.

Potential:

V (φ0) =
1√−g

(
∂2L

∂φ ∂φ
− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
.

And

linearization⇒ metric;

hyperbolic⇒ pseudo-Riemannian;

parabolic⇒ degenerate;

elliptic⇒ Riemannian.

6

Example 1:

Geometrical interpretation:

[∆(g(φ0))− V (φ0)]φ1 = 0.

Metric:

√−g gµν ≡ fµν ≡
{

∂2L
∂(∂µφ) ∂(∂νφ)

}∣∣∣∣∣
φ0

.

Potential:

V (φ0) =
1√−g

(
∂2L

∂φ ∂φ
− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
.

And

linearization⇒ metric;

hyperbolic⇒ pseudo-Riemannian;

parabolic⇒ degenerate;

elliptic⇒ Riemannian.

6

Example 1:

Geometrical interpretation:

[∆(g(φ0))− V (φ0)]φ1 = 0.

Metric:

√−g gµν ≡ fµν ≡
{

∂2L
∂(∂µφ) ∂(∂νφ)

}∣∣∣∣∣
φ0

.

Potential:

V (φ0) =
1√−g

(
∂2L

∂φ ∂φ
− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
.

And

linearization⇒ metric;

hyperbolic⇒ pseudo-Riemannian;

parabolic⇒ degenerate;

elliptic⇒ Riemannian.

6



Lagrangian analysis:

Example 1:

Geometrical interpretation:

[∆(g(φ0))− V (φ0)]φ1 = 0.

Metric:

√−g gµν ≡ fµν ≡
{

∂2L
∂(∂µφ) ∂(∂νφ)

}∣∣∣∣∣
φ0

.

Potential:

V (φ0) =
1√−g

(
∂2L

∂φ ∂φ
− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
.

And

linearization⇒ metric;

hyperbolic⇒ pseudo-Riemannian;

parabolic⇒ degenerate;

elliptic⇒ Riemannian.

6

Key results:

This strongly suggests that the “analogue gravity” 
phenomena is generic to almost any linearization.



Lagrangian analysis: barotropic, irrotational, 
inviscid fluid:

Example 2:

Barotropic irrotational inviscid fluid dynamics

Lagrangian (two fields):

L = −ρ ∂tθ − 1

2
ρ(∇θ)2 −

∫ ρ

0
dρ′ h(ρ′).

h(ρ) = h[p(ρ)] =
∫ p(ρ)

0

dp′
ρ(p′)

.

Vary ρ ⇒ Bernoulli equation (Euler equation).

∂tθ +
1

2
(∇θ)2 + h(ρ) = 0.

Vary θ ⇒ continuity equation.

∂tρ +∇(ρ ∇θ) = 0.

Use the Bernoulli equation to algebraically
eliminate ρ:

ρ = h−1(z) = h−1
(
−∂tθ − 1

2
(∇θ)2

)
.
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Lagrangian analysis: barotropic, irrotational, 
inviscid fluid:

Example 2:
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Example 2:

Reduced Lagrangian:

L(z) = z ρ(z)−
∫ ρ(z)

0
dρ′ h(ρ′).

But:

p(ρ) = ρ h(ρ)−
∫ ρ

0
dρ′ h(ρ′).

Proof: Differentiate

d[RHS]

dρ
= ρ

dh

dρ
+ h(ρ)− h(ρ) = ρ(z)

dh

dρ
=

dp

dρ
.

Finally:

L = p(ρ(z)) = p
(
h−1

(
−∂tθ − 1

2
(∇θ)2

))
.

This reduces the Lagrangian to the form of
Example 1.

There is a metric hiding here waiting to be
found...

8
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Example 1.

There is a metric hiding here waiting to be
found...
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Finally:

This reduces everything to a Lagrangian depending 
on only a single scalar field.

Use the preceding single-field Lagrangian analysis.

There is a metric hiding here waiting to be found...



Lagrangian analysis: barotropic, irrotational, 
inviscid fluid:

Some boring manipulations:

Example 2:

Apply the result of Example 1:

√−g gµν ≡ fµν ≡
{

∂2L
∂(∂µφ) ∂(∂νφ)

}∣∣∣∣∣
φ0

.

Use:

∂z

∂(∂µφ)
= −(1;∇θ)µ = −(1;∇iθ).

And:

∂2z

∂(∂µφ) ∂(∂νφ)
= −δij.

Therefore:

fµν =
d2p

dz2 (1;∇θ)µ (1;∇θ)ν − dp

dz
δij.
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Therefore:



Lagrangian analysis: barotropic, irrotational, 
inviscid fluid:

Continued boring manipulations:

Example 2:

But
dp

dz
= ρ;

while

d2p

dz2 =
dρ

dz
=

dρ

dp

dp

dz
= ρ c−2

s .

Collecting terms:

fµν = −ρ c−2
s

 −1 ... −∇iθ
. . . . · . . . . . . . . . . . . . .
−∇jθ ... c2s δij −∇iθ ∇jθ

 .

This is equivalent to the standard (d+1)
dimensional “acoustic metric”. Use

gµν = |detf |−1/(d−1) fµν.

And note an overall minus sign is irrelevant.
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This should by now be a familiar result...



Where do we go from here?

Four routes to better physics:

1.  Adding vorticity (rather non-trivial).

2. Multiple fields (generalized Fresnel equation).

3. More physics examples:
      --- Acoustic horizons (experimental/observational);
      --- BECs (a special type of fluid);
      --- Laval nozzles;
      --- Kerr geometry (a special type of vortex?).

4. Quantum physics in curved spacetimes:
       --- Hawking radiation.




