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Vorticity in the acoustic
analogue of gravity
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And | cherish more than anything else the
Analogies, my most trustworthy masters.

They know all the secrets of Nature, and they
ought least to be neglected in Geometry.
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Sound waves propagating in a flowing fluid can be
described by a wave equation on an “acoustic
geometry’.

This geometry is described by an “effective metric”
that leads to a “curved spacetime” qualitatively similar
to that of general relativity.

In particular, it is relatively easy to set up “dumb holes”
which trap sound in the same way that the black holes
of general relativity trap light.
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Vortex flow creates an “acoustic geometry” that is

qualitatively similar to the equatorial plane of a rotating
Kerr black hole.

There is an acoustic analogy to the general relativity
notion of an “ergosphere” as well as to the general
relativity notion of “horizon”.

| will first qualitatively explain these ideas, and describe
why they are useful, and then make a quantitative
comparison between the analog acoustic and general
relativistic sytems.
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Consider sound waves in a flowing fluid.

If the fluid is moving faster than sound, then the
sound waves are swept along with the flow, and
cannot escape from that region.

This sounds awfully similar to a black hole in general
relativity --- is there any connection?

Yes!
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Acoustic propagation in fluids can be described in terms of
Lorentzian differential geometry.

The acoustic metric depends algebraically on the fluid flow.

Acoustic geometry shares kinematic aspects of general relativity,
but not the dynamics.

Einstein equations versus Euler equation.
Acoustic black holes divorce kinematic aspects of black hole

physics from the specific dynamics due to the Einstein
equations.



Vlctorla

IIIIIIIIIIIIIIIIIIIIIII

Te Whare Wiinan I
o fe n'.IIr oko o te [ka a Mdwi

T

Acoustic black holes have Hawking radiation without
black hole entropy.

You do not need the Einstein equations to get
Hawking radiation.
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Water down the Drain Leads
to Black Holes in the Lab

Archimedes, the famous story goes, cried, "Eureka!" and leapt
from his overflowing bathtub, having discovered the principle of
buoyancy. But the drain has much to offer, too. Physicists Ulf
. Leonhardt and Paul Piwnicki of the Royal Institute of Technology
P ,L] C}fﬂ NICSsS T‘E C h no ’ OO0 suggest in the Jan. 31 issue of Physical Review Letters that
s vOTtices or other rapid flows analogous to the swirl of water down
the drain may enable researchers to model the relativistic effects
. of black holes.
Apl’ll 2000 Leonhardt explained that, as early as 1818, Augustin-Jean

Fresnel predicted from theories of the luminiferous ether that a
flowing medium will drag light with it. "For quite a long time we

Photonics TechnOl()gy were rather puzzled and could not understand what is happening in
N moving media if one takes them seriously," said Leonhardt. "Then,
CWS suddenly, the picture emerged, and we realized the connection to

gravity and curved space-time. This has come as a surprise."
The researchers demonstrated that, if a medium swirls more

. quickly than the speed of light through it, the vortex it forms can
WA, P""I ofonics.com decelerate and trap light in much the same way as a black hole. If
they could be created in the lab, these optical black holes would
enable physicists to test such controversial concepts as Hawking
radiation, the emissions by black holes theorized by Stephen W.
Hawking. The problem is that no known materials display




Week of Feb. 5, 2000; Vol. 157, No. 6
Black hole recipe: Slow light, swirl atoms

By P. Weiss

Physicists may soon create
artificial black holes in the
laboratory, analogous to the ones
expected to lurk in distant space. A
new study by a pair of theorists in e
Sweden describes how swirling
clouds of atoms could slug down
all nearby light, making them as
black as their astronomical
cousins.

Computer-generated plot
shows paths of light rays
sucked into optical black
hole. (Leonhardt and

Called optical black holes, these St s A)

eddies could provide an
extraordinary test-bench for the theory of general relativity,
which gave rise to the concept of gravitational black holes, the
researchers say. Ulf Leonhardt and Paul Piwnicki of the Royal
Institute of Technology in Stockholm find that the same
mathematics describes both the terrible tug of an astronomical
black hole on light and the gentle corralling of rays by an atom
vortex.
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CIENCENEVD:

The Weekly Newsmagazine of Science
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Physicswatch

COURIER Optical black holes could be made in the lab

L Black holes could be created in the laboratory,
Magazines L T claim physicists from Sweden and Scotland.
S Their calculations show that, thanks to some
L recent advances in condensed matter physics, it is
P theoretically possible to create an optical black
g’_“__ hole to attract and trap specific colours of light in
just the same way as an astronomical black hole
Optical black hole attracts and consumes matter.

The researchers unearthed a 1923 paper in
which Walter Gordon, starting from Einstein’s idea of gravity mediated
by changes in the metric of space and time, realized that space-time is
effectively a medium and that consequently, any moving dielectric
medium acts on light as an effective gravitational field. However, to see
effects as dramatic as a black hole, the velocity of light in the medium

must be low compared with the velocity of the medium.
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In a flowing fluid, if sound moves a distance dx
In time dt then

|dZ — ¥ dt|| = cs dt.
Write this as

(dZ — 7 dt) - (dZ — T dt) = c2dt?.

Now rearrange a little:

—(c2 —v?) dt? —27-d¥ dt+ dZ-dZ = 0.
S
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Notation — four-dimensional coordinates:
o = (29 %) = (¢; D).

hen you can write this as

guv dzt dz¥ = 0.

With an effective acoustic metric

gMV(t7f) ol e e e e
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Eikonals:

T he sound paths of geometrical acoustics are
the null geodesics of this effective metric.

Geometrical acoustics, by itself, does not give
you enough information to fix an overall mul-
tiplicative factor (conformal factor).

Note: This also works for geometrical optics
in a flowing fluid, with c¢s — c¢/n; replace the
speed of sound by the speed of light in the
medium (speed of light divided by refractive
index).
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his is already enough to give you some very
powerful results:

Fermat's principle is now a special case of
geodesic propagation.

Sound focussing can be described by the
Riemann tensor of this effective metric.

But there is a lot more hiding in the woodwork.
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T he Acoustic metric:

Suppose you have a non-relativistic flowing fluid,
governed by the Euler equation plus the con-
tinuity equation.

Suppose the fluid flow is barotropic,
irrotational, and inviscid.

Suppose we look at linearized fluctuations.

This then leads to a wave equation...
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Then the linearized fluctuations (aka sound
waves, aka phonons) are described by a mass-
less minimally coupled scalar field propagating
in a (3+1)-dimensional acoustic metric

NP
guy(t’ fL') —  — | e e e e e e e e e e 5 ocoo oo o
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Fundamental fluid dynamics:

Continuity —

Otp + V - (pv) = 0.

Euler (inviscid) —

p 07+ (T-V)T] = —Vp — pVe.

Barotropic —

p=p(p); ((p)= /Op pc(ii,); V(= ;Vp.
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Standard Manipulations:

Euler 4+ Barotropic —
O = x (V x ) = V(2v° + ¢ + ¢).
Irrotational —
V Xv=0:; v = —V4.
Euler 4+ Barotropic + Irrotational —

—9p + ¢+ :(VY)? + ¢ = 0.
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L inearize:

p=po+ep;, pP=po+epi; Y=vo+ev1; = do;

(=Co+ €1 =C +elpi/po); p1= g—gpl-

e Sound = linearized fluctuations.

e Substitute the linearized Euler equation into
the linearized continuity equation. This gives
a wave equation for the scalar potential.



, Vlctorla
Physical e O ELING

tﬂpim te Tha a M

acoustics: ips

Linearized equations:

Continuity —

Orp1 + V- (p190 + povi1) = O.

Euler —

— O -I-—O — v - Vi1 = 0.

Rearrange:

p1 = po(OtY1 + g - Vh1).
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Wave equation:

— O [8 po (Owp1 + vo - le)]
Op

o
+ V- [Povwl — a—gpoﬁo (Op1 + vo - V%)] =

Coefficients pg, ¥y, and 1/¢? = (9p/dp) can
have arbitrary time and space dependencies.
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Define:
-1 _,Uj 7
f,ul/ — @ ............. O c e
c2 ; 250f _ o]
L - (c — V4VY)
T hen:

8,LL(f'LW81/¢1) = 0.

That’s really it!
Everything else is minor technical fiddling.
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is independent of the number of space dimensions.

depends on the number of space dimensions.



Victoria

UNIVERSITY OFF WELLINGTON

Te Whare Winanga
o fe Upoko o te [k a Mewi

T

In (d+1) dimensions:
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To be specific:

There is a formal difficulty in (1+1) dimensions.

The conformal factor is raised to an infinite power.
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There are two distinct metrics.

Call it a bi-metric theory.

The physical metric is the flat Minkowski metric.
Fluid particles couple only to the physical metric.

Acoustic perturbations do not “see’ the physical
metric --- they couple only to the acoustic metric.

The acoustic metric inherits several nice
properties from the underlying physical metric.



I V!

(with maybe a few excised regions due to boundaries.)

Q“V(Vﬂt)(vut) = _1/(:006) < 0.

(means we need to worry about )
Space (not space-time) is . 95 = (p/c) hy;

Here h;; is the metric of flat space (possibly in
curvilinear coordinates)

¢¢ 9 ¢ I

Notation: <——>
(¥ 99 g ; (¥ ”.
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Use: constant density, constant sound speed, zero
torque. (You will need an external force.)
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the “acoustic metric” is governed by the
continuity, Euler, and barotropic equations:

Engineering perspective:
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The acoustic horizon forms once the radial velocity

exceeds the speed of sound.

An ergo-surface forms once the speec
speed of sound.

exceeds the
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Event horlzons and ergo reglons

Event horizon: the boundary of the region
from which null geodesics (phonons; sound rays)
cannot escape.

At the event horizon, the inward normal com-
ponent of fluid velocity equals the speed of
sound.

Ergo surface: the boundary of the region of
supersonic flow.

In general relativity this is important for spin-
ning black holes.
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Surface grawty

For a static geometry, we can apply all of
the standard tricks for calculating the *surface
gravity’ developed in general relativity.

he surface gravity is a useful characterization
of general properties of the event horizon and
IS given in terms of a normal derivative by

10(c? — vi) d(c—wv|)
= c .
2 on on

9H —
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The surface gravity is essentially the acceleration of the
fluid as it crosses the horizon.

The second background metric simplifies some of the
technical complications encountered in general relativity.



Take the short wavelength/high frequency limit.
Sound rays (phonons) follow the null geodesics of the
acoustic metric. Null geodesics are insensitive to any
overall conformal factor in the metric. Simplify life by
considering

hpyp = | --vv--- SEEEIEIEE RS

In the geometric acoustics limit, sound propagation is
insensitive to the density of the fluid. It depends only
on the local speed of sound and the velocity of the
fluid. The density of the medium is important only for
specifically wave related properties.



Sanity check: Parameterize X*(t) = (¢, Z(t)).
— T he null condition implies

dXHdXxv
Sy A
- daxt dxt dx’
2 2 1
= —(c?— 2 | =0
(" = v5) = 2vg dt = dt dt
|df -
< ||— — vo|| = C.
dt

The norm is taken in the flat physical metric.
Interpretation: the ray travels at the local speed of
sound relative to the moving medium.



Stationary geometry:

Let X#(s) = (t(s); Z(s)) be some null path from Z; to
Z> parameterized in terms of physical arc length (i.e.
|dz/ds|| = 1).

The condition for the path to be null (though not yet
necessarily a null geodesic) is

dt ; (dat [dt -
—(c® —v3) <ds) — 2v; <d5> (£> 4+ 1=0.

— Solve the quadratic —

| N2
(dt) —V ‘|‘\/C — 05+ (v6g)

2 _
C UO




The total time taken to traverse the path is

T[] [$2(dt/ds)ds

/{\/(62 — v8)ds® + (vhdx')? — vidz'}/(c® — vd).

e Extremizing the total time taken is Fermat’s principle.
Cf p 262 Landau and Lifshitz.

==> ==>
==> ==> ==>
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If you are a general relativist, this acoustic analogy

gives you simple concrete physical models for curved
spacetime.

If you are a fluid mechanic (or more generally a
condensed matter physicist) the differential geometry

of curved spacetimes gives you a whole new way of
looking at sound.

Of course these analogue models can be greatly generalized:
all you really need are well-defined characteristic speeds.
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Convention:
Opp = (09 ; 0;¢) = (Ord; Vo).
Action:

Slél = [ d™a £(9u0, 9)

Euler-Lagrange:

oL oL
- (6’(%)) “op




Linearize the field around a solution:

2
bt 7) = po(t, ¥) +ed1(t, &) + - 62(t, ) +O(e?),

L inearized action

Slo] = 32[¢o]
. € d+1
"D / o

2L
. (acb ¥
+ 0O(d).

|

02 L

’ au§b1 OvP1

0(Oue) 0(0ve)

on

02 L

O(Oup) 09

) oo




Linear pieces [O(e)] vanish by equations of

motion.

Quadratic in 91 = field-theory normal modes.

Linearized equations of motion:

5 (<’ 02 L \
"\ 10(0ue) 0(09)
[ 0°L o

Op Op

>8V§bl)
( 82£ A

Formally self-adjoint.

\ a(aﬂ¢) 8¢ J

>) 91 = 0.



Geometrical interpretation:

Metric:
V—g g = f* =«
Potential:
1 2L ,
V(do) = ( 9,
V=g \opop "

‘ 2L \

[A(g(p0)) — V(¢0)] 1 = 0.

02L

| 0(Oud) 09,

9(0u) 00ud) |,




linearization = metric;
hyperbolic = pseudo-Riemannian;
parabolic = degenerate;

elliptic = Riemannian.



1 p
L=—pdb— EP(VQ)Q — /O dp’ h(p").

(e) = o)) = [

Vary p = Bernoulli equation (Euler equation).
1 y
00 + E(VQ) + h(p) = 0.

Vary 6 = continuity equation.

Orp + V(p VO) = 0.



Use the Bernoulli equation to algebraically
eliminate p:

p=h"1(z)=hr"1 (—ate = %(V@)2> .

(2)
L) =z2p(z)— [ d h(e).

O

p(p) = p h(p) — /Op do' h(o").
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Finally:

This reduces everything to a Lagrangian depending
on only a single scalar field.
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Some boring manipulations:

Therefore:



Victoria

UNIVERSITY OFF WELLINGTON

Te Whare Winanga
o fe Upoko o te [k a Mewi

T

Continued boring manipulations:

Collecting terms:

This should by now be a familiar result...



Four routes to better physics:

Adding vorticity
Multiple fields

More physics examples
Acoustic horizons
BECs
Laval nozzles
Kerr geometry

Quantum physics
Hawking radiation
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