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Outlook

Spacetime geometry and general relativity

A world full of effective spacetimes

Concept of emergence

....

Emergent spacetimes bearing gifts:

From emergent spacetimes to emergent gravity...?



Spacetime geometry and general relativity



space (d) + time (1) ➫ spacetime (d+1)

Geometry of spacetime:

independent components (without dynamical equations)

In general relativity free particles are freely falling particles - no 
external force but remain under the influence of the spacetime 
geometry. The kinematical equations of motion for free test 
particles following geodesics:

Spacetime geometry
Einstein: Gravity a consequence of spacetime geometry! 



General relativity also identifies (in a coordinate covariant 
manner) density and flux of energy and momentum in the n 
dimensional spacetime as the source of the gravitational field    .

Stress-energy tensor:

Einstein tensor:

Einstein field equations



Spacetime and gravity

spacetime



Spacetime and gravity

spacetime⎨
Broad class of
systems with 
completely 
different dynamics:

electromagnetic 
waveguide, fluids,   
ultra-cold gas of 
Bosons and 
Fermions;
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Spacetime and gravity

spacetime
Einstein 
dynamics: ⎨

Broad class of
systems with 
completely 
different dynamics:

electromagnetic 
waveguide, fluids,   
ultra-cold gas of 
Bosons and 
Fermions;

x
Restricted dynamics: Emergent gravity..?



A world full of effective spacetimes





A simple example: Sound waves in a fluid flow

The kinematic equations for small - 
classical or quantum - perturbations 
(i.e., sound waves) in barotropic, 
invicid and irrotational fluid are 
given by

Exact analogy to a 
massless minimally 
coupled scalar field in 
an effective curved spacetime:

The first analogue model: Schwarzschild bh







Task:

Problems:

Results:

Relevance:

Can we use a fluid to mimic a Kerr black hole?

+ Physical acoustics only for wavelength with:

+ Only 1 degrees of freedom for acoustic spacetime
+ Conformal flatness of spatial slice in acoustic metric

Penrose process; Superradiant 
Scattering; Hawking radiation

The equatorial slice through a 
rotating Kerr black hole is formally 
equivalent to geometry felt by phonons
entrained in a rotating fluid vortex.

c k! ||∇̃ × ṽ||

Acoustic Kerr black hole



Natural occurence..?



v ∝ 1/r

v ∝ r

 Sound of superradiance?

A tornado is a violently rotating column of air,
and outside its core it is a perfect example of an
irrotational vortex:

The highest wind speeds recorded do not exceed
150 m/s (about 0.5 Mach), due to different
physics in the core of the vortex: 

Idea:

Problem:

Possibility of supersonic wind flows in tornados..?

Natural occurence of acoustic bh



Propagation of ripples in a basin filled with liquid is governed by

velocity parallel to the basin

Advantage: Extreme ease with which 
one can adjust the velocity of the 
surface waves

Via the depth of the basin!

Gravity wave analogs of black holes
Authors: Ralf Schützhold, William G. Unruh
Journal-ref: Phys.Rev. D66 (2002) 044019

Shallow water waves - theory



Dumb holes: analogues for black holes
Authors: William G. Unruh
Journal-ref: Phil. Trans. R. Soc. A 366 (2008) 2905--2913

anything. The arguments between Edmund and Edgar in King Lear as to
whether it is the stars or our own actions that are responsible for our fate would
swing over to Edgar.)

It is of course possible that the black hole carries its memory outside the
horizon, where the low-frequency radiation would have access to it. This would
mean that the black hole, rather than having no hair, has a large amount of
‘hair’, differences in the exterior structure beyond the mass, angular momentum
and charge.

3. Experiment

One of the most exiting possibilities for dumb holes is the possibility of
experimental observation. Experiments with application to the classical black
hole are easy. Using the observation by Schützhold & Unruh (2002) that black
hole analogues could be formed where the field is the shallow water gravity waves
on water, one can easily create classical analogues to black holes. In figure 1,
there is an example of a white hole horizon in the flow of water in a flume at the
University of British Columbia laboratory of Greg Lawrence that Schützhold,
Lawrence and I set up approximately 5 years ago. The water flows into the flume
at speeds higher than the speed of the shallow water waves (

ffiffiffiffiffi
gh

p
). At the line,

the velocity of the flow decreases to less than the shallow water wave velocity.
The small jump in the water level can be regarded as a wave of infinite
wavenumber impinging on the horizon from the left.

The horizon now causes this low-wavenumber wave to ‘blue shift’, to increase
its wavenumber. At shorter wavelengths, when the wavelength approaches
the depth of the fluid, the velocity of the waves goes from the constant

ffiffiffiffiffi
gh

p
to

the deep water wave speed
ffiffiffiffiffiffiffiffi
g=k

p
, i.e. the group and phase velocities fall and those

velocities become less than the velocity of the fluid.

Figure 1. The left-to-right flow is ‘supersonic’ (faster than the velocity of low-wavenumber gravity
waves) to the left of the stanchions and ‘subsonic’ to the right. The jump in average level at the
‘white hole’ horizon (where the decreasing velocity of the fluid just equals the velocity of gravity
waves) can be regarded as a zero-wavenumber wave impinging on the white hole from the right.
The undulating wave (which camps out due to the viscosity of the water) going off to the right has
zero-phase velocity, but a non-zero group velocity, carrying energy away from the white hole
horizon. Quantum mechanically, this would mean that the radiation from a white hole horizon
would not be thermal around zero wavenumber, but rather would be a non-thermal, high-frequency
radiation emitted by the white hole horizon.

2911Dumb holes: analogues for black holes

Phil. Trans. R. Soc. A (2008)

flow direction

Shallow water waves - experiment





Manipulating electromagnetic waves in a wave-guide so that 
they experience an effective curved spacetime in the form of 
a (2+1) dimensional Painleve-Gullstrand-Lemaitre geometry.

Wave-guide consists 
of a ladder circuit with: 
Time-dependent capacitance   
Coil in each loop has constant inductance
Current in each circuit is given by
Effective potential      , such that
For wave-length               the discretness of the x-axis is 
negligibly small, hence                   :
                                                           where 

R. Schuetzhold and W. Unruh. Phys. Rev. Lett., 95:1–4, 2005.

Electromagnetic wave guide - lattice structure



Bose-Einstein condensate - a quantum model



Concept of emergence



The concept of emergence

Emergent spacetimes involve…
 A microscopic system of fundamental objects 
    (e.g. strings, atoms or molecules);
 a dominant mean field regime, where the microscopic   
    degrees of freedom give way to collective variables;

 a geometrical object (e.g. a symmetric tensor
    dominating the evolution of linearized classical and
    quantum excitations around the mean field; 
 An emergent Lorentz symmetry for the long-distance 
    behavior of the geometrical object;

high temperature phase

low temperature phase
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 Example BEC [microscopic degrees of freedom]

 A microscopic system of fundamental objects: 
    ultra-cold !lute gas of weakly interacting Bosons

Microscopic theory well understood:

Emergent spacetimes from Bose-gas

Ĥ =
∫

dx
(
−Ψ̂† !2

2m
∇2Ψ̂ + Ψ̂†VextΨ̂ +

U

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)

Ψ̂→ Ψ̂∗ = Ψ̂ exp(iα)SO(2)− symmetry



 Example BEC [macroscopic variables]

 A dominant mean field regime: 
    Bose-Ein"ein condensate

Spontaneous symmetry breaking:

Emergent spacetimes from Bose-gas

〈Ψ̂(t,x)〉 = ψ(t,x) =
√

n0(t,x) exp(iφ0(t,x)) #= 0



 Example BEC [geometrical object]

Small perturbations - linear in density and phase - in the 
macroscopic mean-field emerging from an ultra-cold 
weakly interacting gas of bosons are inner observers 
experiencing an effective spacetime geometry,

where  

Emergent spacetimes from Bose-gas

gab =
(

c0

U/!

) 2
d−1





−
(
c2
0 − v2

)
−vx −vy −vz

−vx 1 0 0
−vy 0 1 0
−vz 0 0 1



 ;



Emergent spacetimes from Bose-gas
 An emergent Lorentz symmetry: 
    Bogoliubov !#ersion relation for exciations

Macroscopic
variables

Microscopic
variables

 Example BEC [Emergent Lorentz symmetry]



On inner and out observer and absolute 

Inner observer: 
Small excitations in the system
experience an effective spacetime 
geometry represented by the 
macroscopic mean-field variables!

Outer observer: 
Live in the preferred frame - the 
laboratory frame, such that the 
condensate parameters are functions of 
lab-time (absolute time).

Cosmological particle production in emergent rainbow spacetimes 10

or a commutator relationship for the phase perturbation θ̂ and its conjugate momentum Π̂θ̂ on

the emergent spacetime.

Condensed matter point of view: First we face the problem of how to deal with

the differential operator D̃2, which involves studying two interesting limits where the

commutation relation takes a simpler form.

In the hydrodynamic approximation we get
[

Dθ̂(t,x)

Dt
, θ̂(t,x′)

]

=
U(t)

i!
δ(x − x

′), (36)

which is now a time-dependent commutation relation.

For U(t) → 0 the hydrodynamic commutator vanishes completely and we are left with
purely classical statements for θ̂. This situation changes significantly if one instead considers

the eikonal approximation.

In the eikonal approximation we get (in momentum space)
[

Dθ̂(t,k)

Dt
, θ̂(t,k′)

]

=
U(t) + !2k2

4mn0

i!
δkk′ , (37)

and the commutator does not vanish for U(t) → 0, though it can vanish if U(t) becomes

negative.

This suggests that the presence of D̃2 cannot in general be neglected for a time-dependent

atomic interaction U(t).

Emergent spacetime point of view: An alternative insight can be gained if we define an

emergent Lagrange density,

L = −
1

2
fab ∂aθ̂ ∂bθ̂ , (38)

in correspondence with Eq. (2). The momentum conjugate to θ̂ is given by

Π̂θ̂ :=
∂L

∂(∂tθ̂)
= −f tb ∂bθ̂, (39)

and hence we evaluate the conjugate momentum to θ̂ as,

Π̂θ̂ =
!

Ũ

Dθ̂

Dt
. (40)

With this new insight we are able to add another set of commutation relations, one that makes

only sense after having introduced the emergent spacetime:

(v) The phase and density operators are a canonical set of quantum field operators and

conjugate field operators,
[
θ̂(t,x), θ̂(t,x′)

]
= 0, and

[
Π̂θ̂(t,x), Π̂θ̂(t,x

′)
]

= 0, and (41)
[
θ̂(t,x), Π̂θ̂(t,x

′)
]

= iδ(x − x
′); (42)

in an effective curved spacetime represented by Eq. (20), for a massless spin-zero scalar

field.

Cosmological particle production in emergent rainbow spacetimes 9

Our numerical simulations carried out in [1] do not require these assumptions; there all

modes of the system are included and these modes are able to interact — albeit weakly — via

the nonlinear interaction term. Thus we were able to explore the validity of the assumptions

of the free-field theory [25].

We further note that while the present form of the analogy only holds for massless

scalar (spin zero) particles, in general it is possible to modify the formalism to include

massive minimally coupled scalar fields at the expense of dealing with more complex BEC

configurations, e.g., a two-component BEC [19, 18, 20, 21, 18, 22, 26, 27]. In BEC language

one would explain this situation in terms of a dispersion relation with a gap.

2.1.2. Commutation relations To derive the analogy presented above, we approximated

and transformed our field operators several times, see [9] and [1]. These are canonical

transformations preserving commutation relations:

(i) ψ̂(t,x) and ψ̂†(t,x): The single Boson annihilation and creation operators; where

[ψ̂(t,x), ψ̂(t,x′)] = 0, [ψ̂†(t,x), ψ̂†(t,x′)] = 0, and (28)

[ψ̂†(t,x), ψ̂†(t,x′)] = δ(x − x
′); (29)

(ii) δψ̂(t,x) and δψ̂†(t,x): Decomposition into a single coherent mode ψ(t,x) = 〈ψ̂(t,x)〉,
and the quantum excitations δψ̂(t,x) around it. Altogether, ψ̂(t,x) = ψ(t,x) + δψ̂(t,x)

and ψ̂†(t,x) = ψ∗(t,x) + δψ̂†(t,x), where

[δψ̂(t,x), δψ̂(t,x′)] = 0, [δψ̂†(t,x), δψ̂†(t,x′)] = 0, and (30)

[δψ̂†(t,x), δψ̂†(t,x′)] = δ(x − x
′); (31)

(iii) n̂ and θ̂: Mapping onto Hermitian phase and density fluctuation operators, as studied

(for example) in [2, 3]. Here we made use of the fact that the macroscopic field ψ(x)

is complex and so for topologically trivial regions — without zeros or singularities —

one can always express it as ψ(t,x) =
√

n(t,x) exp(iθ(t,x)). Linearizing around the

two parameters of the complex-valued field, θ → θ0 + θ̂ and n → n0 + n̂, we can write

ψ̂ % ψ +
√

n0

(
n̂

2n0
+ i θ̂

)
, and its Hermitian conjugate, such that

[n̂(t,x), n̂(t,x′)] = 0,
[
θ̂(t,x), θ̂(t,x′)

]
= 0, and (32)

[
n̂(t,x), θ̂(t,x′)

]
= i δ(x − x

′). (33)

(iv) Finally, we are able to use the equation of motion (10) to formally express n̂ in terms of
θ̂: [

1

Ũ

Dθ̂(t,x)

Dt
,

1

Ũ

Dθ̂(t,x′)

Dt

]

= 0,
[
θ̂(t,x), θ̂(t,x′)

]
= 0, and (34)

[
1

Ũ

Dθ̂(t,x)

Dt
, θ̂(t,x′)

]

= −
i

!
δ(x − x

′); (35)

There are two different ways to view the resulting commutator relations in the hydrodynamic

and eikonal limit: A condensed matter point of view in terms of time-dependent commutators,



Semi-classical quantum geometry

Small perturbations around some background solution

In a generic Lagrangian             , depdending only a single
Scalar field and its first derivatives yields an effective
Spacetime geometry

For the classical/ quantum fluctuations. The equation of
Motion for small perturbations around the background
Are then given by

C. Barcelo, S. Liberati, and M. Visser. Analog gravity from field theory normal modes?  
Class. Quant. Grav., 18:3595–3610, 2001.

Effective curved-spacetime quantum field theory 
description of the linearization process:

Kinematics versus dynamics!



....

Emergent spacetimes bearing gifts:



Signature of spacetime



Signature of spacetime - why (-,+,+,+)?

 Spacetime foliation into non-intersecting spacelike 
hypersurfacese (Lapse and Shift)

 Signature of spacetime is a certain pattern of 
Eigenvalues of the metric tensor at each point of the 
manifold [Loretzian (-,+++) or Riemannian (+,+++)] 

 There is no driving mechanism within GR that drives 
changes in the signature of the geometry...

 Kinematics of signature change (Lapse is a non-
dynamical variable)



Signature of spacetime - what is it really?

 Spacetime foliation into non-intersecting spacelike 
hypersurfacese (Lapse and Shift)
ds2 = gab dxadxb = (nana) N2 dt2 + hij (dyi + N i dt) (dyj + N j dt)



BEC: Interactions ⇢ spacetime signature

c2
0 → c(t)2

U → U(t) gab =
(

c(t)
U(t)/!

) 2
d−1





−c(t)2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





!v → !0

c2
0 =

n0(t,x)U(t)
m

U > 0 repulsive ;
U < 0 attractive .



BEC: Interactions ⇢ spacetime signature

c2
0 → c(t)2

U → U(t) gab =
(

c(t)
U(t)/!

) 2
d−1





−c(t)2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





!v → !0

c2
0 =

n0(t,x)U(t)
m

U > 0 repulsive ;
U < 0 attractive .

gab ∼





+c(t)2 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1



gab ∼





−c(t)2 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1





Lorentzian signature Riemannian signature

U > 0 repulsive ;
U < 0 attractive .



Daily signature change events...

The bosenova experiment:



Daily signature change events...

The bosenova experiment:

Lorentzian signature
Riemannian signature



Quantum field theory on Riemannian manifolds



Quantum field theory on Riemannian manifolds



Daily signature change events...

Can we understand the bosenova experiment via the emergent
spacetime programme?

Need to understand particle 
production process via 

sudden variations in atomic-
interactions...



Quantum field theory on Riemannian manifolds
Physical grasp on quantum field on Riemannian manifolds – 
super-Hubble horizon modes in cosmology:

Mechanism responsible for enormous particle production works 
analogous to cosmological particle production during inflation:

v̈k(t) + Ω2
eff vk(t) = 0,

Ω2
flat = −

(
k2

A
+ m2

)
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χ̂k(t) = 0

m < d
H

2

k < kHubbleHorizon



Quantum field theory on Riemannian manifolds
Physical grasp on quantum field on Riemannian manifolds – 
super-Hubble horizon modes in cosmology:

Mechanism responsible for enormous particle production works 
analogous to cosmological particle production during inflation:

v̈k(t) + Ω2
eff vk(t) = 0,

Ω2
flat = −

(
k2

A
+ m2

)

¨̂χk(t) +
(

k2

e2Ht
+ m2 − d2H2

4

)
χ̂k(t) = 0

m < d
H

2

k < kHubbleHorizon

frozen modes all modes are *frozen*
Significant particle production on ALL scales!???



Trans-Planckian beats signature
Hydrodynamic approximation: Variations in the kinetic energy 
of the condensate are considered to be negligible, compared 
to the internal potential energy of the Bosons.

!2

2m

∇2
√

n0 + n̂√
n0 + n̂

# U

U = U − !2

4mn0

{
(∇n0)2 − (∇2n0)n0

n2
0

− ∇n0

n2
0

∇+∇2

}
Keeping quantum pressure term leads to “effective interaction” seen by inner observer:

condensate in box
[uniform number density]

harmonic trap
[position dependent sound speed]

Ĥ =
∫

dx

(
−Ψ̂† !2

2m
∇2Ψ̂ + Ψ̂†VextΨ̂ +

U

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)



condensate in box
[uniform number density]

Trans-Planckian beats signature
U = U − !2

4mn0

{
(∇n0)2 − (∇2n0)n0

n2
0

− ∇n0

n2
0

∇+∇2

}
U = U − !2

4mn0
∇2 .

healing length:

ωk ≈
!

2m
k2ωk ≈ c(t) k

k

ω2
k = c(t) k2 +

(
!

2m

)2

k4

➟Lorentz
symmetry

ξ2(t) =
(

εqp

c(t)

)2

=
(

!/2m

c(t)

)2

c2(U) =
n0 U

m
→ c2

k(U) = c2(U) +
(

!
2m

)2

k2



Trans-Planckian beats signature

hydrodynamic
approximation

modified hydrodynamics
[including quantum pressure effects]

Number of quasiparticles 
infinite!?



Trans-Planckian beats signature

hydrodynamic
approximation

modified hydrodynamics
[including quantum pressure effects]



Trans-Planckian beats signature

hydrodynamic
approximation

modified hydrodynamics
[including quantum pressure effects]

U|∇→−ik → Uk = U +
!2

4mn0
k2



Trans-Planckian beats signature
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Trans-Planckian beats signature



Let’s do quantum gravity phenomenology, in the sense of an 
ultra-high energy breakdown of Lorentz symmetry

∆d+1φ− F (−∆d)φ = m2φ

where

Trans-Planckian beats signature - but why?
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where
∆d+1 is the spacetime D’Alembertian

∆d+1 φ =
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Let’s do quantum gravity phenomenology, in the sense of an 
ultra-high energy breakdown of Lorentz symmetry

∆d+1φ− F (−∆d)φ = m2φ

where
∆d is a purely spatial D’Alembertian

∆d φ =
1
√

gd
∂i

(√
gd gij ∂jφ

)
∆d+1 is the spacetime D’Alembertian

∆d+1 φ =
1√−gd+1

∂a

(√
−gd+1 gab ∂bφ

)
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Let’s do quantum gravity phenomenology, in the sense of an 
ultra-high energy breakdown of Lorentz symmetry

∆d+1φ− F (−∆d)φ = m2φ

where
∆d is a purely spatial D’Alembertian

∆d φ =
1
√

gd
∂i

(√
gd gij ∂jφ

)
∆d+1 is the spacetime D’Alembertian

∆d+1 φ =
1√−gd+1

∂a

(√
−gd+1 gab ∂bφ

)

ω̄2
effective = εAd

[
m2 + F (k2/A) + k2/A

]

β ≈ i sinh
{∫

E

√
m2 + k2/A + F (k2/A) Ad/2 dt̄

}

Trans-Planckian beats signature - but why?



Trans-Planckian beats signature

β ≈ i sinh
{∫

E

√
m2 + k2/A + F (k2/A) Ad/2 dt̄

}
Particle production in *real* world with naive LIV terms:



Trans-Planckian beats signature

β ≈ i sinh
{∫

E

√
m2 + k2/A + F (k2/A) Ad/2 dt̄

}
Particle production in *real* world with naive LIV terms:

β ≈ i sin
{∫

E

√
B m2 + ε2

qp k4 + B k2/A Ad/2 dt̄

}

Particle production in analogue *world* - a BEC - with 
quantum pressure correction to the mean-field:



Conclusions for signature change events

* quantum modes on a Riemannian manifold have like super-
Hubble horizon modes during inflation 
=> Explains particle production

* Signature change events in the *real* universe show serious 
problems: driving the production of an infinite number of 
particle, with infinite energy, which are not removed by 
dimension, rest mass, or even reasonable sub-class of LIV



Conclusions for signature change events

* quantum modes on a Riemannian manifold have like super-
Hubble horizon modes during inflation 
=> Explains particle production

* Signature change events in the *real* universe show serious 
problems: driving the production of an infinite number of 
particle, with infinite energy, which are not removed by 
dimension, rest mass, or even reasonable sub-class of LIV

If there is a way to drive sig. change events within the 
realm QG, there should be a mechanism to regularize the 

infinities..! (Analogue to the situation in the BEC)



Quantum gravity phenomenology



Quantum gravity phenomenology [LIV]

QGP: Summarizes all possible phenomenological 
consequences from quantum gravity. While different 

quantum gravity candidates may have completely distinct 
physical motivation, they can yield similar observable 

consequences, e.g. Lorentz symmetry breaking at high 
energies.

1) Presense of a preferred frame;
2) All frames equal, but transformation 

laws between frames are modified.

D. Mattingly. Modern tests of Lorentz invariance. 
Living Reviews in Relativity, 8(5), 2005.



Analogue Lorentz symmetry breaking

Bose-Einstein condensate:

Electromagnetic waveguide:

Symmetry breaking mechanism in different analogue models 
lead to model-specific modifications:

Despite all fundamental differences similar modifications:  

Any emergent spacetimes based on analogue models per definition 
have a preferred frame: The external observer.



[*] Back to the equation of motion -
Can we extend the class of fields...

[*] Mass generating mechnism - 
Explicit symmetry breaking...

Generating a mass and Goldstone’s theorm

[*] Goldstone’s theorem - 
Spontaneous symmetry breaking...



Goldstone’s theorem...

“... whenever a continuos symmetry is spontaneously 
broken, massless fields, known as Nambu-Goldstone 

bosons, emerge.” [Quantum Field Theory in a Nutshell, A. Zee] 

Per definition Bose-Einstein condensation always 
(spontaneously) breaks SO(2) symmetry of many-body 

Hamiltonian!!!  

Ĥ =
∫

dx
(
−Ψ̂† !2

2m
∇2Ψ̂ + Ψ̂†VextΨ̂ +

U

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

)

Ψ̂→ Ψ̂∗ = Ψ̂ exp(iα)SO(2)− symmetry



Mass generating mechnism - all about symmetries

Explicit symmetry breaking through 
transitions in a 2-component system

M. Visser and S. W. Phys. Rev., D72:044020, 2005.
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Mono-metricity
More complicated hyperbolic wave equation:



Emergent massive fields

the acoustic metrics are given by

In-phase perturbtion (= mass zero particle):

Anti-phase perturbtion (= mass non-zero particle):



Collective excitations + microscopic fingerprints
Beyond the hydrodynamic approximation...

[1]
 S. Liberati, M. Visser, and S. W.. Class. Quant. Grav., 23:3129–3154, 2006.
[2]
 S. Liberati, M. Visser, and S. W.. Phys. Rev. Lett., 96:151301, 2006.



Bogoliubov dispersion realtion for 2-comp. sys.



Naturalness problem in emergent spacetime

Dispersion relation obtained from our CMS has the form: 

* CPT invariant (LIV in the boost subgroup)
* has the form as suggested in many (non-renormalizable) effective field theory approaches
* natural suppression of low-order modifications in our model!

* analogue LIV scale is given by the microscopic variables: 
* not a tree-level result. results directly computed from fundamental Hamiltonian
*    -coefficients are different for 



Cosmolgoy



Robustness (against microscopic modifications) of quantum field 
theory in emergent spacetimes? 

Emergent FRW universe emerging from Bose gas:
 Microscopic substructure induces Lorentz symmetry breaking 
as suggested by many Effective field theories, i.e., preferred 
frame induces non-linear dispersion in the boost-subgroup.

 Particle production in general is not robust and significant
modification may appear.

S. Liberati, M. Visser, and S. W.. Naturalness in emergent spacetime. Phys. 
Rev. Lett., 96:151301, 2006.

P. Jain, S. W., M. Visser, and C. Gardiner. Analogue model of an expanding FRW 
universe in Bose–Einstein condensates: Application of the classical field method. 
arXiv:0705.2077, 2006. Accepted for publication in Phys. Rev. A.

On robustness...



Are there any general lessons to be learnt from emergent FRW 
spacetimes - incorporating model-specific modifications - for 

cosmology?  

“Planck”-modifications

Rainbow geometry k-dependent commutator
relation for matter fields

Group and phase 
velocity

Dispersion 
relation

Cosmological
horizons

Modifications in:

Application for “real” cosmology?



Emergent spacetime exhibits explicit momentum-dependence:

Macroscopic variables determine metric components:

Speed of sound for perturbations in the condensate:

Background velocity as gradient of the phase of the condensate:

Where                   represents the UV correction!

Rainbow geometries



In (2+1) dimensions - for time-dependent atomic interactions - we get: 

Where the time- and momentum dependence enter as follows:

The closest to a de Sitter like expansion (exact de Sitter in
on infrared scales) is given by:

Rainbow FRW geometries



ak(t) != exp(2H t) + (k/K)2

In (2+1) dimensions - for time-dependent atomic interactions - we get: 

Where the time- and momentum dependence enter as follows:

The closest to a de Sitter like expansion (exact de Sitter in
on infrared scales) is given by:

Rainbow FRW geometries
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Figure 1. (Colors online only.) In this figure we plot the logarithm of the scale function

ak(t) for each k-value — for k ∈ [9, 191]— in a different color. The different colors encode

the energy of the modes: Gradually changing from low-energy / infrared (dark red) to high-

energy / ultraviolet (dark blue). The upper row shows the behavior of the scale function in

the hydrodynamic limit. While the rainbow-scale function — shown in the lower row —

approaches the hydrodynamic limit for low-energy modes, the ultraviolet modes show strong

deviations. Note, that in the infinite past all modes are phononic, and therefore ak(t) → a(t).
The black dots indicate the time-dependent crossover (phononic to trans-phononic) in every

quantum mode. Parameters are CNL(t̄ = 0) = 2 × 105, N0 = 107 andX = 4 × 106.

down to this cosmological constant, the universe will expand forever — and further dilute

the matter and radiation distribution in our universe — until it approaches the de Sitter

spacetime [56, 57].

What is the situation in our emergent de Sitter universe? The rate of size change in the

emergent de Sitter universe using 111 is given by,

Hk = H
exp(−2H t)

exp(−2H t) + (k/K)2
, (118)

Emergent scale factor during inflation
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Phase velocity:

Group velocity:

Beyond the hydrodynamic limit: phase velocity ≠ group velocity

space
Maximum distance a signal sent at t0 can travel:

→ within the hydrodynamic limit

No cosmological horizon..

How far can a signal travel in a real  BEC..?

No cosmological horizon..

Cosmological horizons



Modified Hubble parameter:

Early times…

Late times…

Hubble frequency?

time

Hubble parameter?



Characteristic value of particle production in the 
hydrodynamic limit:

Equation of quantum modes in the hydrodynamic limit:

Sign determines nature of quantum modes!

Frequency ratio



Modified frequency ratio:

Turning point:

Modified frequency ratio



“Hubble horizon”

        Crossing and 
re-entering of 
“Hubble horizon” 
during inflationary 
epoch! Inflation 
comes naturally to 
an end.

Can one always
understand the
particle production
in terms of the
frequency ratios?

Freezing and melting of quantum modes
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Figure 2: (Colors online only.) In this figure we compare the quasiparticle production per quantum mode

(left column) with its frequency ratioRk(t) (right column), for ts = 1×10−5. Parameters areCNL(t̄ = 0) =
2× 105, N0 = 107 and X = 4× 106. (See [23, 47] for details of the simulations.) The bold plotted dots on
the left hand side indicate that the frequency ratio is below one, hence the quantum mode corresponds to a

super-Hubble horizon mode. On the right hand side we have indicated with the bold dots when a change

in the mode occupation number is above a certain threshold — here !Nk ! 0.004 — roughly to filter out

quantum noise fluctuations.

occurs in the time period tcrossing < t < tturn, whereas “melting of the mode k” occurs during

tturn < t < tre−entering.

Another novelty in our qualitative understanding of the particle production process in our FRW

rainbow-spacetime, is the connection with the condensed matter point of view: The minimum of

the ratio Rk(tturn) for a mode k occurs at

exp(−2Ht)−2(k/K)2 = 0 → k =
1√

2!Planck(t)
. (2.7)

This quantity also appears in the context of conventional condensed matter physics, where it is

defined as the crossover between the phonon and free-particle region. This borderline, the inverse

14

Simulations versus quantitative predictions



In some sense we are dealing with a “relative scale-shift” 
between the two frames, a time-dependent “Planck-scale”,

that enters the scale factor                                                  
of the universe and the “effective” Hubble parameter

                                            in an unexpected way. (The 
non-perturbative corrections have to be included at the 
level of the hydrodynamic fluid equations.

Lorentz symmetry breaking due to a preferred frame (in our 
specific spacetime) has non-negligible effects on the particle 
production process as the preferred frame is static!

Planck-length during inflation

Emergent spacetimes and experimental cosmology Silke Weinfurtner

1.2 FRW-type spacetime geometries and degrees of freedom

In the hydrodynamic limit the speed of sound in a condensate with an explicit time-dependence,

but still “at rest” — zero background velocity, v= 0 — can be expressed by

c(t,x)2 =
4!h̄2

m2
n(t,x)a(t,x) → c0(x)2bn(t)ba(t). (1.21)

Both the scattering length a(t) = a0ba(t) and the condensate density n(t,x) = n0(x)bn(t) are al-
lowed to vary with respect to laboratory time t. The initial condensate parameters, at the beginning

of the experiment t = t0, are given by a0 and n0, such that ba(t0) = 1 and bn(t0) = 1. Without

any loss of generality we can set t0 = 0. (Notice, that for the cases where n0 exhibits a spatial

dependence, one has to give up on a uniform sound-cone structure throughout the condensate. In

these scenarios the notion of FRW spacetime has to be restricted to an area where n0(x) ≈ n0 is

approximately constant.) Implementing this parameterization into the line-element (based on the

metric given in equation (1.8)) we have

ds2 =
(
n0

c0

) 2
d−1

[

−c20 bn(t)
d

d−1 ba(t)
d−2
d−1 dt2+

(
bn(t)
ba(t)

) 1
d−1
dx2

]

. (1.22)

Let us implement a change of coordinates d"2 = bn(t)
d

d−1ba(t)
d−2
d−1 dt2, such that

ds2 =
(
n0

c0

) 2
d−1

[

−c20 d"2+
(
bn(")
ba(")

) 1
d−1
dx2

]

, (1.23)

where it is obvious that effectively — in this parameterization for zero background velocity — we

are left with one degree of freedom, g(") = bn(")/ba("). By inspection this metric represents a
spatially flat (k = 0) FRW cosmological spacetime with scale factor

aFRW(t) = aFRW,0

(
bn(")
ba(")

) 1
2(d−1)

. (1.24)

However, in the specific analogue spacetime under current investigation the situation is a more

elaborate one as the applicability of this interpretation hinges on the validity of the hydrodynamic

limit, or in the language of effective field theories on the (in this particular case time-dependent)

effective Planck-length, given (in units of laboratory distance) by

!Planck(t) =
#qp

c(t)
=

#qp

c0
√
bn(t)ba(t)

=
!Planck,0√
bn(t)ba(t)

. (1.25)

In addition, up to the present time we are lacking a thorough treatment of the possible modifications

to the particle production process arising from, strictly speaking, non-linear dispersion relations for

spin-zero massless scalar fields in time-dependent parametrically excited analogue models. (This

is in contrast to several analyses of dumb hole evaporation [20, 21, ?, 44, 45] focusing on this

issue.) This raises the question of the “robustness” of particle production in effective spacetimes

with time-dependent preferred-frame effects.

7
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However it is possible to mimic an expanding universe and keep the
effective Planck length constant:

















From emergent spacetimes to emergent gravity...?



Emergent gravity

spacetime
Einstein 
dynamics: x ⎨

Broad class of
systems with 
completely 
different dynamics:

electromagnetic 
waveguide, fluids,   
ultra-cold gas of 
Bosons and 
Fermions;

(1+4) dimensional 
quantum Hall 
effect, quantum 
rotor model;

spin-2 
particle ⎨?

Restricted dynamics: Emergent gravity..?



Emergent gravity

spacetime
Einstein 
dynamics: x ⎨

Broad class of
systems with 
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different dynamics:

electromagnetic 
waveguide, fluids,   
ultra-cold gas of 
Bosons and 
Fermions;

(1+4) dimensional 
quantum Hall 
effect, quantum 
rotor model;

spin-2 
particle ⎨?

Restricted dynamics: Emergent gravity..?
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