
1

MRC Applied Psychology Unit
15 Chaucer Road, Cambridge CB2 2EF

The British Computer Society • Human-Computer Interaction Group
“Interfaces”, Autumn ’95

 NoddyÕs Guide to ...

Visual Programming
Thomas Green

What is Visual Programming?
According to Myers [1]: “‘Visual Programming’
(VP) refers to any system that allows the user to
specify a program in a two-(or more)-dimensional
fashion. Although this is a very broad definition,
conventional textual languages are not considered
two-dimensional since the compilers or inter-
preters process them as long, one-dimensional
streams.” This computer-centered viewpoint is
fairly standard in the computing science (CS) fra-
ternity. Typographers, on the other hand, might
take a more person-centered stance, arguing that
programming languages lie on a continuum,
depending on how much use can be made of
graphical elements (e.g. blank lines, indenting) to
communicate something to the reader. I shall use
VPL (visual programming language) in Myers’s
sense here.

‘Visual’ is really a misnomer for ‘graphical’, but
unfortunately it caught on. However, the advent of
Visual Basic (which is not a VPL, because the
program code is in text) is changing the accepted
usage – certainly the Internet discussion group (see
Resources) is now swamped by queries about
Visual Basic – and VP may have to rename itself.

Systems for providing visualizations of text
programs are rather different; they either create a
picture of the program structure, or provide a
dynamic illustration of program execution. [4] [10]
[13] give examples. Although a computer-centered
viewpoint construes software visualization as
different from ‘proper’ VPLs, because the com-
puter executes textual code, it raises similar cogni-
tive issues about information presentation and has
similar aims. No space for it here, though.

VP past and present
VP started with attempts to produce executable
flowcharts, partly influenced by the belief that
flowcharts would be good for teaching novices.
Many other possibilities have since opened up (see
Styles) and the claims of flowcharts are now less
well thought of; also people’s ideas about ‘the pro-
gramming situation’ have broadened [11]. For
some reason, there was little idea-exchange
between early HCI and early VP.

Today, lively research has spawned a specialist

journal and a conference series (see Resources).
Research systems are proliferating, although
mostly developed by visionary computer scientists
rather than HCI folk. Object-oriented, concurrent,
and real-time systems have been developed.
Commercial VP languages include Prograph and
LabVIEW, both used as language-of-choice by
small but enthusiastic communities (including
where I work), and others are in preparation or
have been released; most are for specialised use,
but at least some general-purpose commercial
programming has been done in Prograph. Many
technical problems have been solved but some big
ones remain (see Issues). Occasional papers appear
on HCI issues and cognitive issues in VP but the
area is still overwhelmingly technology-led.

Why is VP interesting?
Burnett et al. [2] nimbly describes the goals of
VPL designers as trying to make it easier to
express and/or understand programs, through
simplicity, concreteness, explicitness, and respon-
siveness. Modern VPLs accordingly (i) reduce the
number of concepts needed to program (e.g. no
variables), (ii) allow data objects to be explored
directly, (iii) explicitly depict relationships, and
(iv) give immediate visual feedback of updated
computations during editing. So it is claimed; non-
VP fans might argue that modern textual languages
have similar aims.

The CS community has at least 3 reasons for inter-
est. (i) It finds VP technically challenging, so there
are all the usual reasons for technology-led
research (‘here’s an interesting problem, go off and
do a thesis on it’). (ii) VP supports the data-flow
model of computation (see Styles) much better
than does traditional text. (iii) Although ‘program-
mers are users too,’ conventional HCI has made
little explicit penetration into the design of pro-
gramming environments. The VP movement can
be seen as an ‘alternative HCI’ leading to more
usable programming environments. The CS view
of VP has often been based on naive cognitive
models, but happily, VP-enthusiasts are not too
dogmatic.

The HCI community should be interested because
(i) here is another good way to interact with
computers, this time on a rather harder topic than
text-editing, (ii) there are many unsolved inter-
action problems (see Issues), and (iii) VP may
open computing power to many more people –

2

although whether those people will be end-users,
novices, ‘gardeners’ (see [11] for ideas here) or
everyday programmers is not yet established.
Despite that ‘should’, there are few VP papers in
the CHI and HCI series.

Cognitive psychologists are interested (well, some
of us are) because (i) CS folk develop wonderful
systems and it’s frustrating that they don’t have
that extra pinch of cognitive thinking, (ii) the
problems of information display and manipulation
are intense, and (iii) earlier hypotheses about
mental representations of programs and about the
cognitive processes of program design can be
tested in new situations which are likely to force
modifications to existing views – possibly with
consequences extending to many other types of
design activity.

Styles
A good classification of VP languages needs more
than one dimension [1], but here are some samples.

(i) The control-flow model: executable flowcharts
have declined in popularity – deservedly so, ac-
cording to Curtis et al's well-controlled study [3] –
but 'R-technology', developed in the former Soviet
Union, offers an intriguing blend of graphical
elements for control with Pascal-like elements for
declarations and formulas, with 500 active users in
1989 [9].

(ii) In the data-flow model, data travels from input
sources to operators and ultimately to output sinks.
Each operator acts as soon as it has data ready. The
model is usually represented as a box-and-line dia-
gram (see Figure 1). Because the data travels
around in packets, it is easy to build primitives
which operate on aggregate data (e.g. a primitive to
sum a whole array). It is also easy for the program-
mer to insert ‘test probes’ at selected spots to get a
picture of the program in operation.

Representing flow of control in data-flow
programs is difficult. Iteration is represented in
Prograph by putting iteration-controls around oper-
ators which may themselves be sub-programs; in
LabVIEW it is represented by a frame enclosing
the operations to be repeated, with various types of
iteration control for while-loops and counted-
loops. LabVIEW has two conditionals: boolean
operators (as in Figure 1), and little flip-boxes
which contain alternative sub-programs, selected
by a boolean input (equivalent to if-then-else or to
case statements, but with only one arm showing at
a time). Neither technique is particularly successful
for complex cases [6]. Prograph, instead of flip-
boxes, puts the alternatives in separate windows,
thereby spawning a deep tree of windows and sub-
windows. Some systems have used a visual repre-
sentation of a nand operator.

(iii) Visual production systems, like textual produc-
tion systems, contain a number of rules with left-
halves and right-halves, together with an internal
‘world’. Any time the situation in the ‘world’
matches rule X’s left half, that rule fires, and the

world is transformed in the way shown in its right
half. (Various methods for resolving contention
have been found.) In visual production systems the
left and right halves are specified as pictures.
ChemTrains [8] is an example of this technique.
KidSim [15] is an Apple project which adds ideas
about agents and programming by demonstration,
creating what they call ‘programming without a
programming language’. Parallel research by
David Gilmore (unpublished) agrees that KidSim
excites and empowers young children but suggests
optimism should be tempered with caution about
how much programming they learn.

(iv) Other declarative VPLs are now being investi-
gated, constraint and logic-based. Figure 2 shows a
declarative program in Forms/3; the key feature of
this, as in a text-based declarative language, is that
the programmer merely states the relations that
must be satisfied. Note the use of fill patterns as
identifiers or ‘names’. Although Forms/3 looks
unfamiliar, it fared well in an empirical program-
writing comparison against Pascal and improved
APL [12]. Other examples include various visual
versions of Prolog. No similar commercial lan-
guages are available, so far as I know, so anecdotal
evidence is scarce.

(v) The humble spreadsheet contains many of the
features of VPLs – dataflow, aggregate operators,
and a visual formalism – so although it contains no
explicit graphical lines showing data-flow between
cells, it bears examination. Nardi [11] praises it as
an easy-to-use vehicle for collaborative working,
for reasons that should apply equally well to full
VPs; Hendry & Green [7] agree with many of
Nardi’s points but describe some worrying user
difficulties.

A few current issues
(i) Is VP any good? Although lab studies have not
produced much evidence in its favour, some people
like and use VPLs. Visual tracers likewise. So the
lab studies have missed something. What? (Maybe
it’s fun, like a video game.)

(ii) Does the visual component really contribute
anything extra? Sometimes ‘visual’ systems do
nothing that can’t be done as well or better with
straight text; perhaps the real issues are how layout
and locality can be used to convey meaning [14].

(iii) Scaling-up – the bogey of VPL buffs, and a
key problem for real acceptance. Although
certainly not limited to toy problems, VP-in-the-
large is still to come. Perhaps it won’t. Is there a
real-life domain for VPLs? See [2] for discussion
of many sides to this question (efficiency, screen
real estate, abstraction, persistence, etc.)

(iv) Supporting the programming process: it is
easier to design an elegant data representation than
one that is easy to use. In this as in many other
fields, there are designers who only think about
adding information, not about other programming
tasks. (a) Building a VPL program may be easy (if
you know what you want), but modifying it may

3

run into difficulties. Informally, times for an equiv-
alent change to a Basic program and its LabVIEW
counterpart (performed by experienced users) were
10 times faster for the Basic. (b) Comprehending a
VPL may be difficult, too, partly because the
facilities are usually poor. (c) ‘Power tools’ for
global editing, project development, and version
control need to be developed.

(v) We need alternative representations, especially
ascii for integrating with e-mail.

(vi) What about audio, 3D graphics and virtual
reality?

Will VPLs go anywhere?
Although some general-purpose commercial
programs have been written in VPLs, they will
never oust C++, let alone Cobol. If VP is to get
established, it must be in new user communities,
where older technologies have not already got
established. End-user programming may be one
such, especially using a visual macro language
embedded in an application, or for handling novel
tasks such as video- or music-editing, or (like
LabView) in specialist areas; another market may
be the control of domestic and workplace gadgetry,
such as speech-driven dialogues, intelligent heating
and control systems, agents for data-collection, etc.
These new markets will be much more demanding
of good HCI than the traditional Cobol and C++
communities; fortunately the VP community is
now becoming aware of that.

Resources
Videos would be good but I don’t know of any
comprehensive archive (any of my readers know of
one?). There are probably some scattered through
the SIGGRAPH archives.

Books/journals: The most comprehensive book-
length overview is [5]. The Journal of Visual
Languages and Computing, published by
Academic Press, mostly technical but with special
issues on cognitive aspects of VP (1993) and HCI
issues (call for papers now out, guest editor Wayne
Citrin, citrin@cs.colorado.edu). Special
issues: IEEE Computer (in preparation); Dr Dobbs
Jnl (Dec., 1995).

Internet: comp.lang.visual is intended for
discussion of VP, but at the time of writing it is
swamped by queries about Visual Basic and Visual
C++. An excellent Frequently-Asked-Questions
message, by David McIntyre, gives definitions,
issues, references, pointers to active sites, ftp-able
information, and a few WWW addresses for infor-
mation from individual labs, some of which offer
ftp-able documents.

Some info aboutWWW is collected at:
http://www.cogs.susx.ac.uk/use
rs/ianr/vpl.html

Meetings: Since 1984 there have been annual IEEE
meetings on VP. The most recent was Visual
Languages ’93 (IEEE Computer Society Press

#3970-02); at the time of writing Visual Languages
’94 was just about to start. The Empirical Studies
of Programmers meetings (published by Ablex)
have recently included a few VP papers, as have
CHI, UIST and HCI.

References
[1] Burnett, M. M. and Baker, M. J. (1994) A

classification system for visual programming
languages. Oregon State University Dept of
Computer Science Tech. Rep. 93-60-14. A
proposal for classification, not a survey. Ftp
details from WWW at:
http://www.cs.orst.edu/~burnet
t/vpl.html

[2] Burnett, M. M., Baker, M. J., Bohus, C.,
Carlson, P., van Zee, P. and Yang, S. (1994)
The scaling-up problem for visual program-
ming languages. IEEE Computer, March
1995 (to appear). Wide-ranging discussion
with plentiful examples.

[3] Curtis, B., Sheppard, S., Kruesi-Bailey, E.,
Bailey, J. and Boehm-Davis, D. (1989)
Experimental evaluation of software docu-
mentation formats. J. Systems and Software,
9 (2), 167-207. Excellent paper-based study;
no advantage for graphical formats.

[4] Domingue, J., Price, B. A. and Eisenstadt, M.
(1992) A framework for describing and
implementing software visualization systems.
Proc. Graphics Interface ’92, Vancouver.
Analysis and re-implementation of classic
systems by the most active UK group.

[5] Glinert, E. P. (1990) Visual Programming
Environments: vol. 1. Paradigms and
Systems, vol. 2. Applications and Issues. Los
Alamitos, CA: IEEE Computer Society Press.
The biggest survey. Do a supplement, please.

[6] Green, T. R. G., Petre, M. and Bellamy, R. K.
E. (1991) Comprehensibility of visual and
textual programs: a test of ‘Superlativism’
against the ‘match-mismatch’ conjecture. In
J. Koenemann-Belliveau, T. Moher, and S.
Robertson (Eds.), Empirical Studies of
Programmers: Fourth Workshop. Norwood,
NJ: Ablex. Pp. 121-146. A very specific com-
parison of conditional structures (text was
better). Main point: no single notation is best
for all purposes, whether text or visual.

[7] Hendry , D. G. and Green, T. R. G. (1994)
Creating, comprehending, and explaining
spreadsheets: a cognitive interpretation of
what discretionary users think of the spread-
sheet model. Int. J. Human-Computer
Studies, 40(6), 1033-1065. A distillation of
interviews.

[8] Lewis, C., Rieman, J. and Bell, B. (1991)
Problem-centered design for expressiveness
and facility in a graphical programming
system. Human-Computer Interaction, 6(3-
4), 319-355. ChemTrains - the story of its
making. From a highly inventive HCI group.

[9] McHenry, W. K. (1990). R-Technology: a
Soviet visual programming environment.

4

Journal of Visual Languages and Computing,
1(2), 199-212. The system and its context.

[10] Myers, B. A. (1990) Taxonomies of visual
programming and program visualization. J.
Visual Languages and Computing, 1 (1) 97-
123. A catalogue raisonné.

[11] Nardi, B. (1993) A Small Matter of
Programming: Perspectives on End-User
Computing. MIT Press. Spreadsheets – situ-
ated use – collaboration – a people-centred
view.

[12] Pandey, R. and Burnett, M. M. (1993) Is it
easier to write matrix manipulation programs
visually or textually? An empirical study.
IEEE Symp. Visual Languages, 1993, Bergen,
Norway. The only empirical study of pro-
gramming in a declarative VPL.

[13] Price, B.A., Baecker, R. M. & Small, I. S.
(1993) A principled taxonomy of software
visualization. J. Visual Languages and
Computing, 4 (3) 211-266. Twelve systems
compared in impressive detail under 6 cate-
gories each with subcategories.

[14] Raymond, D. (1991). Characterizing visual
languages. Proc. 1991 IEEE Workshop on
Visual Languages. (Kobe, Japan). A shrewd
sceptic examines the hype, argues that VPs
should be analogue, not notational.

[15] Smith, D. C., Cypher, A. and Spohrer, J.
(1994) KidSim: programming agents without
a programming language. Comm. ACM 37(7)
[July], 55-66. Pretty pictures, interesting
system. Not over-critical but very insightful.

Acknowledgements
Alan Blackwell, Simon Buckingham Shum,
Margaret Burnett, John Domingue, David Gilmore,
and Darrell Raymond (alphabetic order) all deserve
thanks. Prograph is a trademark of TGS Systems
Ltd., LabVIEW of National Instruments Corp.

5

Figure 1: A LabVIEW program for temperature conversion. Data is entered through the panel (left box) by
moving the ‘degrees F’ slider or adjusting the thumbwheel. The program (right box) subtracts 32, divides by
1.8, and sends the result to the thermometer-style output on the panel. Out-of-range temperatures cause a
warning sign to be highlighted. Editing and execution tools not shown.

6

1

1

n

Numbers

Totals

Mean

n

n

Figure 2: Finding the mean in Forms/3 (redrawn from [12]). Numbers is a 1-dimensional data array, divided
into cells numbered 1 to n. The first cell and a 'typical' cell have been shaded for reference purposes in the
program. To compute the overall sum, a second data array has been constructed, called Totals: the first cell
(partitioned from the other cells by a vertical line, to show it has a different formula) has the value of the first
cell of Numbers; all other cells contain the formula "sum of corresponding cell in Numbers plus previous cell
of Totals". (Arrays and cells have thick borders, formulas have thin borders.) The mean is computed by
dividing the overall total, found in the last cell of Totals, by the number of cells, n. All references to cells are
indicated by shading.

