
IEEE Symposia on Human-Centric Computing Languages and Environments, Arlington, VA, Sept. 2002 (to appear).

- 1 -

Reasoning about Many-to-Many Requirement Relationships
in Spreadsheets

Laura Beckwith, Margaret Burnett, and Curtis Cook
Oregon State University, Corvallis, Oregon, 97331 USA

{beckwith, burnett, cook}@cs.orst.edu

Abstract
To help improve the reliability of spreadsheets created by

end users, we are working to allow users to communicate
the purpose and other underlying information about their
spreadsheets, using a form of requirement specifications we
call “guards.” For large spreadsheets with repli-
cated/shared formulas across groups of rows or columns,
guards can only be practical if users can enter them across
these groups of rows or columns. The problem is, this
introduces many-to-many relationships, and it is not clear
how the system should reason and communicate about them
in a way that will make sense to end users. In this paper, we
present the human-centric design rationale for our
approach to how the system should reason about such
many-to-many relationships. The design decisions are
presented with their reasons gleaned from two design-time
models—Cognitive Dimensions and Attention Economics—
and from the users themselves in a small think-aloud study.

1. Introduction
Although end-user programming has received a growing

amount of attention, there has been little research into as-
pects of end-user programming beyond the programming
part per se. Programming is only one part of the develop-
ment process, and focusing on other aspects is important for
reliability of the programs end users create. In fact,
reliability is an issue in end-user programming, as shown by
statistics about spreadsheets, a widely used type of end-user
programming language. Panko compiled field audits done
on spreadsheets and found that a disturbing number of
spreadsheets have errors: a very conservative estimate is that
20%-40% of spreadsheets contain errors, and in some
studies, as many as 91% of the studied spreadsheets had
errors [15].

We have been working on how to improve the reliability
of end-user programs in general and spreadsheets in par-
ticular. One of our hypotheses is that spreadsheet reliability
can be improved if the spreadsheet users work collabora-
tively with the system to communicate more information
about known relationships. Spreadsheet users know more
about the purpose and underlying requirements for their
spreadsheets than they are currently able to communicate to
the system, and our goal is to allow end users to communi-
cate this information about requirements. This will allow

checks and balances, so that the system can detect and point
out ways in which the spreadsheet does not conform to the
user’s requirements.

We are pursuing the question of requirement specifica-
tions for end users using the research spreadsheet language
Forms/3 [3]. In our prototype, we refer to requirement speci-
fications asguards. We began this work with an early pro-
totype for individual cells, which afforded empirical
investigations into how users problem solve in the presence
of guards [21].

In our early prototype, guards pertained to only one cell,
although their implications were propagated through for-
mulas to other cells. That is, whenever a user put a guard
into a spreadsheet (auser-entered guard) it was propagated
through formulas downstream generatingcomputer-gener-
ated guardson downstream cells. A cell with both a com-
puter-generated and user-entered guard was in a conflict
state (aguard conflict) if the two guards did not match ex-
actly. As Figure 1 shows, to communicate the fact that there
is a guard conflict, the system circles the conflicting guards.
Since the cell’s value is inconsistent with a guard on that
cell (termed avalue violation), the value is also circled.

In this paper, we focus on a matter necessary for real-
world spreadsheets: how to establish scalable guard mecha-
nisms. By “scalable,” we mean guard mechanisms that are
viable for end users when programming spreadsheets with
grids of many cells with repeated patterns of relationships,
often due to shared or replicated formulas across the rows or
columns. Most large spreadsheets consist of grids with such

Figure 1: A Forms/3 temperature converter. Stick fig-
ure icons identify user-entered guards, and the com-
puter icon identifies a computer-generated guard. The
computer-generated guard’s conclusion that the
Celsius value ranges from 0 to 324 degrees provides
a clue that there is an error in Celsius’s formula.

- 2 -

repeated patterns of relationships.
Scaling up guards to support such grids presents a

difficult challenge regarding finding a reasoning mechanism
that will be understandable and sensible to end users. Until
now, our system allowed only one user-entered guard per
cell, and communicating with the user about the one-to-one
relationship between a user-entered guard and its cell was
relatively straightforward. However, multiple user-entered
guards per cell seem necessary in grids. For example, a user
may need to specify a guard on a row and another on a
group of columns, and these guards would overlap on at
least one cell. The issue is how to reasonably handle
multiple relevant guards—many entered directly by the user
on a row and a column—that pertain to the same cell where
the row and column intersect. The reason allowing the user
to enter guards for entire rows and columns at a time makes
choosing an understandable reasoning mechanism difficult
is that the new feature introduces not only one-to-many (one
guard for several cells) but also many-to-one (several guards
applicable to one cell) relationships—and hence, many-to-
many relationships.

For example, suppose the user specified that the
Homework, Midterm, Final, and Course columns of Figure
2 all must be between 0 and 100, that the Average grid
(row) must be between 0 and 100, and that the last column
of Average should be the average of the previous columns.
(Not all of these specifications are depicted in the figure.)
This last specification would crosscheck Average’s formula,
which instead computes the last column as the average of
the Course column. Such multiple guards give users more
ways to enter checks and balances.

One problem is how to define the notion of these multi-
ple guards being in conflict. In our early prototype, we used
a “must exactly match” rule, but this rule may not suffice in
the presence of many-to-many relationships. For example in
Figure 2, we can imagine the user of the spreadsheet want-
ing to know when Sam’s grades fall below a 70, because
Sam requires special monitoring. To do this the user would
put a guard of 70-100 on Sam’s row. If there were already
guards on the columns that all grades are between 0-100,
this student would have multiple user-entered guards on all
cells in this student’s row that do not match exactly. Should
this be considered to be a conflict among guards?

In this paper, we consider from a human-centric
perspective, issues such as the one above, that
fundamentally affect how the system should reason about
these many-to-many relationships.

2. Background and related work

2.1 Background

Our design was guided in part by our use of the Cogni-
tive Dimensions framework (CDs) [9] during the design
process. CDs are a set of factors that help designers to assess
usability at design time. The CDs are not rules, but instead
provide vocabulary with which to talk about design. One
example is consistency: “When some of the language has
been learnt, how much of the rest can be inferred?” [9]. In
addition to the consistency CD, other CDs that impacted our
design include visibility, progressive evaluation, abstraction
gradient, and premature commitment, as will be seen.

Another influence on our design was Attention Econom-
ics [2]. Attention Economics is an analytic model of user
problem-solving behavior that allows a designer to consider
the costs, benefits, and risks users weigh in deciding how to
complete a task. For example, consider a programmable
phone. If the ultimate goal is to make a phone call, then pro-
gramming the number into the phone has a cost, benefit, and
risk. The cost is figuring out how to program the phone. A
benefit is the freedom to forget the phone number. The risk
is that the “program” might not work as the user intended. In
our research, we use Attention Economics to guide our de-
sign decisions toward providing users with a low cost and
low-risk mechanism whose benefit will be a higher prob-
ability that their programs’ (spreadsheets’) errors will be
automatically detected and brought to their attention.

2.2 Related work: correctness in end-user
programming

Guards are the same idea as assertions, which are found
in some programming languages for professional program-
mers (e.g., [7, 20]). Assertions are used to help keep errors
out of programs, and there is research indicating their
effectiveness at detecting runtime errors [17]. However,
assertions have not previously been aimed at end-user
programmers.

Research indicates that end users can potentially work
with some forms of requirement specifications. Nardi sum-
marized work by several researchers indicating that, al-
though end users are not particularly good at working with
abstract requirements, end users work much better with a
concrete program they are able to criticize [14].

A need for some form of explicit requirement specifica-
tions present in the spreadsheet seems indicated by one
study that found that if people have a vague recollection of
requirements, they will not take the time to look them up in
another document [8]. For example, in the task of program-
ming a VCR to record a television show, those who had
memorized the times to program made significantly fewer
mistakes than those who had seen the information and had
access to it, but had not actually memorized it. Instead,
those who had not memorized the information relied on

Figure 2: A Forms/3 grades spreadsheet, hand-
annotated to illustrate issues arising from many-to-
many relationships.

- 3 -

their recollections rather than doing the extra work to access
the information. Gray and Fu refer to this as “perfect
knowledge in-the-world” versus “imperfect knowledge in-
the-head.” We propose an explanation for this behavior
from an Attention Economics perspective: Users simply
want to be efficient. That is, even when the information was
accessible, users would still lose time retrieving the values,
such as by context switching from working with the spread-
sheet system to finding the right document and looking
things up in it. Our approach attempts to eliminate some use
of imperfect knowledge in-the-head by making perfect
knowledge in-the-world time-efficient to access in the same
context as the spreadsheet.

Our group has worked in another way to help end users
with the correctness of their programming, with a visual
methodology for testing that allows users to incrementally
edit, test, and debug their spreadsheets as their spreadsheets
evolve [4, 16, 18, 19]. This approach, known as WYSIWYT
(“What You See Is What You Test”), provides visual feed-
back in several ways about how much of a spreadsheet has
been tested. Some of WYSIWYT’s features have recently
also been adapted for the visual dataflow paradigm of Pro-
graph [10]. In studies we have conducted, subjects
performed significantly better in testing, debugging, and
maintenance tasks with the help of WYSIWYT (e.g., [11]).
WYSIWYT is seamlessly integrated into the Forms/3
environment, and our approach to guards is integrated with
WYSIWYT.

There is also research regarding helping end-user pro-
grammers find errors through outlier analysis [13]. This
work focuses on common maintenance tasks within text
documents that can often lead to errors. For example, a “re-
place all” within a text document might change much more
than was intended, or might not replace everything intended
if there were slight spelling differences in the document, and
the attention cost required for a user to check each change is
often too much. Their approach detects probable errors by a
method analogous to statistical outlier detection. An empiri-
cal study showed that the approach did aid the subjects in
completing their assigned tasks with fewer errors.

3. Design constraints for many-to-many
guards and cells

To guide our investigation into how to handle multiple
guards on one cell, we have developed five design con-
straints, which draw from several researchers’ work relevant
to end-user programming.

Design Constraint 1 is that the system must immediately
display the presence of inconsistencies and conflicts in-
volving guards. From literature on on-line trust and its im-
pact on the usefulness of on-line systems [5], it is clear that
if users can trust our system to notify them when there is a
logic error, they will be more likely to provide the system
with the information it needs to provide these notifications.
Immediate display also relates somewhat to the visibility
CD.

Design Constraint 2 is to handle all similar situations
consistently. This design constraint is drawn from the con-
sistency CD. Treating similar situations consistently also

helps with predictability, which helps to build trust.
Design Constraint 3 is that users should feel they under-

stand the system’s reasoning. This design constraint is im-
portant for trust, which in turn promotes effective use [1, 5].

Design Constraint 4 is to not demand unwarranted
attention from the user. Drawn from Attention Economics,
this constraint means that the system will leave control of a
user’s problem-solving agenda up to the user. For example,
the system will not pop up dialog boxes demanding
immediate answers, will not trap users in modes, and will
not require actions to be performed in a particular sequence
(which also relates to the premature commitment CD).

Design Constraint 5 is that all algorithms must be fast
enough to maintain immediate visual feedback. This is a
corollary to Design Constraint 1. It is also tied to the
progressive evaluation CD, which is about the concept of
obtainable visual feedback after an edit.

The design constraints were used to help shape the ap-
proach, as will be seen throughout this paper, but they did
not provide answers to the following issues, which are
fundamental to how the system should reason in the
presence of many-to-many relationships:

• Do users regard having many-to-many relationships
among guards and cells as being valid and useful?

• How should many-to-many user guards propagate?
• What constitutes a conflict?
To investigate these issues, we turned to the users

themselves.

4. How do users expect to reason about the
many-to-many relationships?

To investigate these issues, we conducted a small think-
aloud study [6] with five end-user subjects. Think-aloud
studies are particularly well suited to learning qualitative
information about behaviors, such as strategies employed,
and reasons for those behaviors. Controlled experiments
provide only indirect evidence of the cognitive processes
involved in these activities. In contrast, verbal protocols
provide direct clues about behaviors and activities. We were
interested inhow end users reasoned about information
provided by guards, and a think-aloud study can provide this
kind of information.

A previous experiment conducted by our collaborators
had already shown that users understand guards when grid-
oriented issues are not present [21]. Thus, it was not
necessary for us to explore whether users could understand
the basic ideas of guards in this study.

4.1 Procedures

The study was conducted one-on-one in small study
rooms. We conducted the study using Excel-like grids with
sketchy icons on paper such as the one shown in Figure 3,
which were then hand-annotated by the examiner (simulat-
ing the computer’s feedback) as the problems progressed.

Our reason for a paper-based study was to avoid re-
stricting the users to only those possibilities we had man-
aged to predict in advance. Our reason for the drawings’
informal appearance and use of hand annotations to develop
the problems was to encourage the subjects to freely criti-

- 4 -

cize and change the system’s reasoning; research has shown
that subjects are less likely to criticize software that has a
“finished” appearance (e.g., [12]). We could have chosen to
use either Excel or Forms/3, since the paper-based study did
not require an implementation; we opted for Excel because
it had the advantage of staying as close to these users’
previous experiences as possible, which helps avoid some
kinds of confounding factors.

The subjects were students from majors that do not entail
computer programming, namely Nutrition, Health Promo-
tion and Education, and Soil Science. All the subjects had
previous spreadsheet experience. The experiment began
with a tutorial on what spreadsheet guards mean and some
practice thinking aloud. The subjects’ understanding was
monitored through questions and a post-tutorial test, and if
necessary sections were repeated until the subjects exhibited
competence in the necessary skills.

Once the subjects began working the problems, we tape-
recorded the sessions, and also kept their paperwork. Pen
color was changed between each task to differentiate the
work done on each different task. If the subjects were quiet
for any length of time the examiner asked “What are you
thinking?” or “Why?” to prompt them to resume speaking.
When subjects asked the examiner for help, they were
simply instructed to make the spreadsheet work as stated in
the problem description. The examiner also interviewed the
subjects after they had completed all the tasks.

4.2 The spreadsheet problems and tasks

The spreadsheet in Figure 3 is representative of the
spreadsheet problems used. This spreadsheet was based on a
real-world spreadsheet, namely the one used by the VL’96
conference organizers. This simplified version listed atten-
dees (with names changed) and their tutorial fees. The pos-
sible prices of tutorials were $0 if not attending, the student
price of $130, or the regular price of $145. The spreadsheet
given to the subjects included these specifications as guards
on each of the tutorial columns. The subjects’ first task was
to place an appropriate guard on Sue’s row reflecting the
fact that Sue was a student.

For the spreadsheet in Figure 3 and for three additional
spreadsheets (Grades, a grades problem similar to Figure 2;
Sales, a sales accounting spreadsheet; and Wait Time, a
customer waiting time projection), the subjects read a prob-
lem description and then performed the following five tasks:

Task 1: Subjects needed to place a guard on a specific row
of the spreadsheet.

Task 2: Subjects were told to make the spreadsheet work as
described in the problem description. This required
making decisions about any guards needed and where
they should go in the spreadsheet, to make sure “bad”
values would not go unnoticed.

Task 3: Subjects played the role of the computer to deter-
mine the correctness of the following values (which were
specified by the examiner interactively).

Task 4: (If any computer guards were missing, due to sub-
jects’ spreadsheet changes): Subjects played the role of
the computer to fill in the missing computer guards.

Task 5: Subjects were given the scenario that someone else
had worked on the spreadsheet and had left a particular
set of (multiple) guards on the cells, and were asked
what, if anything, needed to be changed.

5. Bringing the think-aloud results into the
design

There are important differences between user-entered
guards versus computer-generated guards, and between
guard conflicts and value violations. To keep the discussion
clear, we make precise the vocabulary terms important to
this section:

A user-entered guardon cell X is a guard typed in by the
user on cell X or for a group of cells (e.g., an entire row or
column) containing that cell.

A computer-generated guardis a guard that results from
propagating another guard through a formula.

A guard conflictoccurs if and only if two guards do not
agree. (What constitutes disagreement will be explored later
in this paper.) If the guard conflict involves only user-
entered guards, it is auser-user guard conflict. If the
conflict is between a user-entered guard and a computer-
generated guard, it is auser-system guard conflict.

A value violationoccurs if and only if a value does not
agree with its guards. (Again, disagreement will be explored
later.)

5.1 Issue: Do users regard having many-to-many
relationships among guards and cells as being
valid and useful?

As we have said, given that a cell’s guards can come
from both its row and its column, there can be multiple
guards explicitly entered by the user on the same cell such
as by virtue of row and column intersections as in Figure 2.
At the outset, we wondered whether the users would regard
this as an error situation, or might instead regard it as being

Figure 3: One of the problems the subjects worked on in the study. The top half of each cell shows the guard. The
stick figure versus computer indicates whether the user or the computer placed the guard on the cell. The bottom
half of each cell has space for the cell’s value (which was written in interactively during the experiment), and
shows the cell’s formula if one is present, such as in the Total column. Guards with down arrows were replicated
down the entire column.

- 5 -

useful and/or valid in some sense, requiring further reason-
ing by the system during propagation, for example. To
explore this issue, we consider it first from the many-to-one
perspective (many guards on one cell), and then from the
one-to-many perspective (one guard on many cells).

Thus, the first question to address was whether users
regarded having many-to-one relationships among guards
and cells as being valid and/or useful.

5.1.1 What the subjects did.Although at the outset of
working with the spreadsheets subjects had differing
attitudes about the validity of multiple user-entered guards
on the same cell, by the time they were finished with their
tasks, four of the five had come to regard multiple user-
entered guards on one cell as being a situation that required
some kind of fixing (by the user). The remaining subject,
however, had quite a different outlook.

Subjects 1 and 4 were the most obvious in their opinions
that multiple user-entered guards on one cell should not be
allowed to remain: both subjects removed the guards they
decided were “extra” ones right away. For example:
S1 (thinking aloud): “I wouldn’t want to make the president

unhappy [refers to a guard on the president’s row of the
Wait Time problem], so I would probably just go ahead
and get rid of [the extra guard].”

Subjects 2 and 5 were somewhat more tolerant of
multiple user-entered guards on one cell. For example,
Subject 5 did not remove the extra guard the examiner put
on the cell in the Wait Time problem, but seemed
uncomfortable with it by the end of the problem. In the
interview afterward, the examiner followed up, asking:
Examiner: “Are you comfortable giving the spreadsheet to

the customer?”
S5: “...They wouldn’t want something that isn’t matching.”

She also stated:
S5: “... you shouldn’t use both [guards] at the same time,

because that just doesn’t work. ... You would somehow
let the computer know which guard to use.”

Similarly, Subject 2 seemed uncomfortable with the extra
guards, but did not remove them. By the last problem she
was expressing her discomfort with the multiple guards:
S2: “It would be better if it was just the 0 and the 130, if

they deleted [the other guard] or erased it...”

Subjects 1, 4, and 5 also questioned the validity of having
two user-entered guards on one cell. As Subject 1 put it,
“How can it have two guards on it?”

However, unlike the other subjects, Subject 3 did not in-
dicate any difficulties with two user-entered guards being on
one cell. Rather, she saw them as working cooperatively
together. As she put it while working on the spreadsheet in
Figure 3:
S3: “Here is her other guard, more of a filter I guess ... It is

like an additional guard on her.”

Unlike the range of views on the many-to-one relation-
ships, subjects consistently chose to make use of the ability
to work with one-to-many relationships (one guard for many
cells). All made decisions about how guards applied row by

row. They could have instead made such decisions one cell
at a time, but none of them did. For example:
S4 (thinking aloud): “I’ll just take off the 145 …guard for

[the row labeled] Sue.”

S1 (during interview): “I would find myself … crossing the
0-100 out.”

Examiner: “For the whole row?”
S1: “Yes.”

5.1.2 Impact on the design.It is interesting to consider the
subjects’ lack of consistency within their own problem-
solving and their lack of agreement with each other about
whether multiple user-entered guards per cell were valid,
given that they uniformly demonstrated that working with a
single guard for multiple cells was useful. The fact that
subjects were not entirely consistent about the validity of
multiple user-entered guards per cell suggests that the right
way to reason about them is not obvious to them. (In fact, it
is possible that there is no single “right way” to reason about
multiple user-entered guards per cell, but even if not, there
at least needs to be a default way for the system to reason.)

It might at first seem tempting to conclude from these re-
sults that the system should support the one-to-many rela-
tionships but not the many-to-one relationships (and hence
not many-to-many relationships). However, without
severely restricting the way users can apply guards in
spreadsheets, this solution is not possible. That is, to support
the one-to-many relationships, it is necessary to also support
the many-to-one relationships that arise at row/column
intersections.

The users’ lack of consistency and agreement suggested
to us the need for a tightly integrated explanation system to
clarify any reasoning the system employs. As a result, we
have decided that all reasoning done by the system will be
accompanied by a visible explanation. For example, in our
prototype, the way the system explains guard conflicts is, if
a user mouses over the guard conflict circle, a one-sentence
message appears saying “all guards must match.”

5.2 Issue: How should multiple guards propagate?

Recall that three of the subjects allowed multiple user-
entered guards to exist on a cell for at least some period of
time. Even the subjects who chose to immediately delete
“extra” guards in Task 1 were faced with them in Task 5,
because Task 5 asked them what to do with a spreadsheet
containing two different user guards already on one cell.
Multiple user-entered guards require the system to
propagate the implications of these guards.

5.2.1 Which guards “win”? Given the findings of Section
5.1, it is not surprising that Subjects 1 and 4 always
immediately selected a guard that should “win” (and thus
propagate forward), and deleted the other guard. When
faced with the propagation question, Subject 2 did the same:
S1: “Just going to cross off the 145 on each column of

Sue’s.”

- 6 -

S2: “I want to change the president’s time to the 0-5 seconds
for each of them because he’s different.”

S4: “It seems like since Sam’s a special case you could just
change the range of his guards from 0-100 to 70-100.”

On the other hand, Subject 5 decided that retaining all
user-entered guards available to all cells was important, and
embarked on a conflict-by-conflict precedence strategy,
selecting which guard to use wherever a cell had multiple
non-matching user-entered guards:
S5: “Maybe you can enter Sam’s name and it will forget

about [the 0-100] guard, and remember only something
about the 70-100 guard. Or you can denote Guard 1 and
Guard 2, and say use Guard 1 or Guard 2 on this person’s
name. And then you have the guards there available, and
you just type in 1 or 2.”

Even when they did not “win” a conflict, Subject 5’s
lower-precedence guards still propagated forward.

Subject 3’s solution was also precedence based, but
guard by guard rather than conflict by conflict. This subject
was a little unclear about the meaning of a computer guard,
and reinvented it to mean that a computer guard was one
that had priority. During the Wait Time problem (which
required users to make sure the company’s president did not
have to wait long for service), when she added a guard to
one of the president’s cells, she said:
S3: “I’m going to put a little computer guard on here. I’m

going to use the computer guard because it’s the
president and you don’t want it to fail.”

Her wording suggests that by making it a computer
guard, the guard became more important than the other kind
of guards it might conflict with later in the row.

Although subjects did not agree with each other on strat-
egy, each remained consistent with his or her own strategy.
That is, they built up a method of how to handle multiple
guards and once it was developed, they consistently used the
same method on the remaining spreadsheets and tasks, and
ultimately expressed confidence in the choices they made.

5.2.2 Impact on the design.The subjects demonstrated a
variety of propagation decisions that were all reasonable.
Thus, the approach needed to support such differences.

One way to support these differences might have been to
require the users to select which guard “won” each time a
new propagation was needed with competing guards. How-
ever, if we had proceeded in this direction, we would have
run the risk of demanding so much of the user’s immediate
attention, using guards would become non-productive, vio-
lating Design Constraint 4. On the other hand, if the system
made all the decisions for the users, some of the decisions
would be wrong, because subjects did not all use the same
strategies.

Finding the balance between requiring users to make the
decisions versus making decisions for them to save time is,
in our view, critical to the success of this research. The way
we have balanced these competing factors here is to use
default decisions accompanied by passive feedback, such as
changes in markings that can be attended to as the user de-

sires. Specifically, the system’s default is to circle any con-
flicting guards on a cell. (We will explore exactly what con-
stitutes a conflict in the next section.) To resolve conflicts
among multiple user-entered guards, one option we have
implemented is to allow users to simply remove a user-en-
tered guard from any cell or cells, which is the way Subjects
1, 2, and 4 demonstrated.

To support the precedence-oriented view, we also de-
cided to support another, more sophisticated option, namely
that users can define precedence relationships among
guards. Given such precedence relationships, the system
uses only the guard with the highest precedence and ignores
the other user-entered guards. Users can define precedence
lists among guards in a generic fashion, and can also set up
overriding precedence lists for a group of rows, columns, or
a single cell. The most specific precedence list “wins.” This
is a gentle slope approach: users can simply delete extrane-
ous guards if they choose, but can establish precedence for
more subtle control. This relates to Design Constraint 3 (as
well as to the CD termed Abstraction Gradient), because
users are not forced to grapple with guard precedence unless
they prefer to.

Note that these devices are only available for user-
entered guards. The computer-generated guards produced by
propagating user-entered guards through formulas cannot be
overridden or ignored, and always are considered as having
equal weight to the highest-precedence user guards.

5.2.3 How the subjects propagated the guards. During
Task 4, subjects were asked to assume the role of the system
and propagate the guards, filling in any missing computer
guards. We were particularly interested in observing how
the subjects chose to propagate guards when there were
guard conflicts. What we observed was that the subjects did
not exhibit any coherent or consistent propagation strategy
in the presence of guard conflicts. Because of this, we
decided not to propagate conflicting guards. This decision
was motivated largely by Design Constraint 3: since there
was no clear propagation scheme that either the users or we
were able to devise of what to propagate, we chose not to
propagate at all rather than to devise some complicated
scheme that might have been too confusing for end users.

5.3 Issue: what constitutes a conflict?

We have mentioned that in our early prototype that han-
dled only one-to-one relationships, any two guards that did
not exactly match were considered to be in conflict. We
wanted to explore both whether this rule should still hold in
the presence of many-to-many relationships, and the basis
subjects used in deciding which guards were in conflict.

When we thought about this issue, we were able to pre-
dict two possible approaches upon which subjects might
base their decisions: basing decisions on the purposes of the
guards involved, or using set-based reasoning. An example
of reasoning based on guard purpose would be to choose the
“0 to 100” guard for Sam’s Midterm as being not in conflict
(due to greater importance) than the “70 to 100” guard, be-
cause the first is a validity guard whereas the second is more
of an omni-present query. An example of using set-based
reasoning would be to decide that if there is intersection,

- 7 -

there is no conflict, such as deriving “10 to 20” if a cell had
one guard of “1 to 20” and a second guard of “10 to 30.”

Because we thought of these two approaches in advance,
we were able to devise spreadsheet problems that offered a
variety of set-based relationships among guard values and
whose guards had a variety of purposes. However, we did
not restrict ourselves to looking for only these possible
reasoning patterns.

5.3.1 How the subjects defined guard conflicts. Our work
in devising spreadsheet problems whose guards had a
variety of purposes did not pay off. We did not find any
evidence of reasoning patterns based upon a guard’s
purpose. It is possible that subjects based their decisions
upon a guard’s purpose, but they did not mention it during
thinking aloud or otherwise give any hint in their reasoning
patterns that they were classifying guards as “validity
guards” versus “query guards” or other similar purpose-
based classification schemes.

On the other hand, as Table 1 indicates, set-based
reasoning was extremely common in reasoning about guard
conflicts, primarily (but not always) using intersection. In
other words, guards did not conflict if they had a non-empty
intersection.

However, Subjects 2 and 5 did not rely heavily on inter-
section. Although Subject 2 made decisions based on exact
match when computer and user guards were not in agree-
ment, she behaved differently for user-user guard conflicts.
In this case she used the union of the two guards to guard
the cell (i.e., a value must satisfy at least one of the guards),
in essence defining guard conflicts out of existence.

Subject 5 showed a different strategy, one that we had
not anticipated in advance. In her view, the computer guard
was always right, and any other guard on the cell should
then be ignored. We call this strategy “the all-knowing
computer.” This is problematic, because a computer-user
guard conflict is often due to a formula error, in which case
the user guard—not the computer guard—is the correct one.

5.3.2 How the subjects dealt with value violations. We
chose to also have subjects identify value violations by
circling cell values not satisfying the relevant guards,
because doing so would require them to think deeply about
the implications of the guards and guard conflicts.

Subjects 1, 3, and 4 (and to some degree Subject 5) all
reasoned about value violations in the same way: if the
value fell outsideany of the guards they circled it. This is
consistent with the intersection-based reasoning of Table 1
in that to avoid a value violation, a value had to fall in the
intersection of all the guards on a cell. For example:
S3: “[The cell value] 12 would be wrong because it would

go through this first filter [a user guard of 3-90], but it
would not go through [the computer guard of 0-5], so the
computer would get it there.”

Recall that Subject 2 used union-based reasoning about
user-user guards. When faced with determining value
violations, she changed her opinion. Instead, she decided it
did not make sense to reason about the correctness of a
value within a cell in which the two guards did not match
exactly. When she noticed the guards were different she
commented:
S2: “Fine in one, but not in the other. I would change [the

guard] because [the value is] fine in one and not in the
other.”

5.3.3 Impact on the design. The outcome of these results
might be expected to be that we took the way the majority of
subjects reasoned, and incorporated it into our design.
However, we could not take this approach for reasoning
about conflicts, because the reasoning mechanisms most
subjects showed for reasoning about conflicts were not
sound—they would result in incorrect resolutions of
conflicts. We have already explained the problem with the
“all-knowing computer.” Using intersection would also in-
correctly allow errors to slip through the system unnoticed,
eroding the value of the guards. For example, referring
again to Figure 1, using intersection-based reasoning would
mean that no guard conflict would be shown on the Celsius
cell. The other alternative, union-based reasoning, would
never result in guard conflicts, and would accept even more
erroneous values than intersection-based reasoning.

Thus, to keep the errors out, it is necessary for guards to
exactly match to be considered to be free of guard conflicts,
provided that all guards are at equal precedence levels. Our
current prototype does this, as Figure 4 shows. However,
recall that users can control this behavior: they can delete
guards that do not apply to particular cells, or can establish
precedence hierarchies to cause certain guards to “win” over
other guards, if this level of sophistication is desired.

Even in the presence of guard conflicts, it is necessary
for the system to reason about whether value violations ex-
ist. The approach follows intersection reasoning here, as did
most of the subjects, in essence saying that a value must
satisfy all the (top-precedence) guards to be free of
violation.

As the other issues also showed, subjects did not agree
on their reasoning, and thus might not understand the sys-
tem’s reasoning choices without explicit support. As we
pointed out before, part of our design includes an explana-
tion system in the form of consistent, one-sentence explana-
tions for each reasoning outcome. For example, if the user
mouses over a value violation, the system displays the
message “value must satisfy all guards.” Key to this strategy

User-User User-Computer

Subject 1 N/A Intersection

Subject 2 Union Exact match

Subject 3 Intersection Intersection

Subject 4 N/A Intersection

Subject 5 Intersection All-knowing computer

Table 1: Subjects’ set-based reasoning or lack
thereof. The User-User column shows set reasoning
subjects used for user-user guard conflicts. (N/A
indicates that the user eliminated the conflict.) The
User-Computer column shows the reasoning used for
user-computer guard conflicts.

- 8 -

is the fact that a reasoning explanation can be given in just
one sentence, which is helped by following Design
Constraint 2 (consistency) to avoid special-case reasoning.

6. Conclusion
In this paper, we have considered how a system should

reason behind the scenes about many-to-many relationships
between requirement specifications (guards) and spread-
sheet cells. Although the approach is about behind-the-
scenes reasoning, the reasoning is not really very far behind
the scenes, because end users need to understand how the
reasoning works if they are to trust it and use it effectively.
Thus, we designed the approach following a human-centric
procedure. First, we drew from Cognitive Dimensions, At-
tention Economics, and literature about on-line trust, to de-
vise a set of five design constraints to guide the develop-
ment of our approach.

Second, we turned to the users themselves for additional
insights, via a small think-aloud study. The subjects demon-
strated that the troublesome side of the many-to-many rela-
tionships lay on the many-to-one side (many guards to one
cell). They exhibited a variety of reasoning approaches,
some of which were reasonable and some of which were
faulty. We were able to employ some of their reasoning
mechanisms in our approach, as is shown in the following
issue-by-issue summary:

• Many-to-many relationships: Subjects were inconsistent
in their attitudes and reasoning about multiple guards
on one cell (many-to-one), but all chose to work with
one guard over multiple cells (one-to-many). Because
of their difficulties with many-to-one relationships—
which are required to support the one-to-many
relationships—we added to the design an explanation-
based approach for all reasoning about guards.

• Propagation: Subjects demonstrated a variety of
propagation mechanisms, all of which were reasonable.
The impact on our design was to support all the
propagation mechanisms they demonstrated via a gentle
slope approach, except with guard conflicts (in which
case no propagation at all occurs).

• What is a conflict/violation: Regarding guard conflicts,
subjects demonstrated several mechanisms for defining
guard conflicts, many of which were unsound. Instead
of adopting unsound mechanisms, the design uses an
exact match rule to define guard conflicts. Regarding
value violations, subjects demonstrated intersection
reasoning, which was adopted by our design.

The most important outcome was that subjects’ differing
approaches made clear that many-to-many relationships will
require careful support to be viable for end users. We are
working to provide this support via an explanation-based
approach for all aspects of the system’s behind-the-scenes
reasoning.

Acknowledgments
We thank the members of the Visual Programming Re-

search Group at Oregon State University for their feedback
and help. This work was supported in part by the National
Science Foundation under Awards CCR-9806821 and ITR-
0082265.

References
[1] Belkin, N. Helping people find what they don’t know,Comm.

ACM 41(8), Aug. 2000, 58-61
[2] Blackwell, A. and Green, T. R. G. Investment of attention as an

analytic approach to cognitive dimensions. In T. Green, R. Ab-
dullah & P. Brna (Eds.)Collected Papers Wkshp. Psychology
of Programming Interest Group, 1999, 24-35.

[3] Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein,
J., and Yang, S. Forms/3: a first-order visual language to ex-
plore the boundaries of the spreadsheet paradigm,J. Func-
tional Programming, Mar. 2001, 155-206.

[4] Burnett, M., Sheretov, A., Ren, B., and Rothermel, G. Testing
homogeneous spreadsheet grids with the ‘What You See Is
What You Test’ methodology,IEEE Trans. Software Engi-
neering, June 2002 (to appear).

[5] Corritore, C., Kracher, B., and Wiedenbeck, S. Trust in the
online environment,HCI International, Vol, 1, New Orleans,
LA, Aug. 2001, 1548-1552.

[6] Ericsson, K. and Simon, H.Protocol Analysis, MIT Press,
Cambridge, MA, 1984.

[7] Ernst, M., Cockrell, J., Griswold, W., and Notkin, D. Dynami-
cally discovering likely program invariants to support program
evolution,Int’l. Conf. Software Engineering, Los Angeles, CA,
May 1999, 213-224.

[8] Gray, W. and Fu, W. Ignoring perfect knowledge in-the-world
for imperfect knowledge in-the-head: implications of rational
analysis for interface design,ACM Conf. Human Factors in
Computing Systems,Seattle, WA, Mar. 2001, 112-119.

[9] Green, T. R. G. and Petre, M. Usability analysis of visual pro-
gramming environments: a ‘cognitive dimensions’ framework,
J. Visual Languages and Computing7(2), June 1996, 131-174.

[10] Karam, M., Smedley T. A testing methodology for a dataflow
based visual programming language,IEEE Int’l. Conf. Human
Centric Computing, Stresa, Italy, Sept. 2001, 280-287.

Figure 4: The current prototype, with guards
displayed on the second column and the top row.
The value of Sam’s final is circled because it has a
value violation. There is also a guard conflict, on the
top row’s second cell, which is circled in red. The
user has moved the mouse over the guard conflict,
causing the explanation “All guards must agree” to
pop up.

- 9 -

[11] Krishna, V., Cook, C., Keller, D., Cantrell, J., Wallace, C.,
Burnett, M., and Rothermel, G. Incorporating incremental
validation and impact analysis into spreadsheet maintenance:
an empirical study,IEEE Int’l. Conf. Software Maintenance,
Florence, Italy, Nov. 2001, 72-81.

[12] Landay J. and Myers, B. Sketching interfaces: toward more
human interface design,Computer34(3), Mar. 2001, 56-64.

[13] Miller, R., and Myers B. Outlier finding: focusing user at-
tention on possible errors,ACM Symp. User Interface Software
and Technology, Orlando, FL, Nov. 2001

[14] Nardi, B. A Small Matter of Programming: Perspectives on
End-User Computing, MIT Press, Cambridge, MA, 1993.

[15] Panko, R. What we know about spreadsheet errors,J. End
User Computing, Spring 1998.

[16] Reichwein, J. Rothermel, G., and Burnett, M. Slicing spread-
sheets: an integrated methodology for spreadsheet testing and
debugging,Conf. Domain-Specific Languages, Austin, TX,
Oct. 1999, 25-38.

[17] Rosenblum, D. A practical approach to programming with
assertions,IEEE Trans. Software Engineering 21(1), Jan.
1995, 19-31.

[18] Rothermel, G., Li, L., DuPuis, C. and Burnett, M. What you
see is what you test: a methodology for testing form-based vis-
ual programs,Int’l. Conf. Software Engineering, Kyoto, Japan,
Apr. 1998, 198-207.

[19] Rothermel, G., Burnett, M., Li, L., DuPuis, C., and Sheretov,
A. A methodology for testing spreadsheets,ACM Trans.
Software Engineering and Methodology, Jan. 2001, 110-147.

[20] Sankar, S., and Mandal, M. Concurrent runtime monitoring of
formally specified programs,Computer26, Mar. 1993, 32-41.

[21] Wallace C., Cook, C., Summet, J., and Burnett, M. Assertions
in end-user software engineering: a think-aloud study,IEEE
Symp. Human-Centric Computing Languages and
Environments, Arlington, VA, Sept. 2002 (tech note, to
appear).

