
1998 IEEE Symposium on Visual Languages, Halifax, Nova Scotia, September 1998, p. 118-125.

Fluid Visualization of Spreadsheet Structures

Takeo Igarashi *

Dept. of Info. Engineering
University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
takeo@mtl.t.u-tokyo.ac.jp

Jock D. Mackinlay, Bay-Wei Chang, Polle T. Zellweger
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304, USA

{mackinlay, bchang, zellweger}@parc.xerox.com

Abstract
Spreadsheets augment a visible tabular layout with

invisible formulas. Direct manipulations of the tabular
layout may or may not result in the desired changes to the
formulas. The user is forced to explore the individual cells
to find, verify, and modify the formulas, which causes heavy
cognitive overhead. We present a set of techniques that
make these formulas and their resulting dataflow structure
easily accessible while maintaining the natural appearance
of the spreadsheet. Transient local views visualize dataflow
structures associated with individual cells, while static
global views and animated global explanations visually
present the entire dataflow structure at once. Semantic
navigation enables the user to navigate through the
dataflow structure interactively, and visual editing
techniques make it possible to construct formulas using
graphical editing techniques. Central to these techniques is
the use of animation and lightweight interaction for rapid
and non-intrusive visualization. Our prototype
implementation suggests that these techniques can greatly
improve the expressive power of current spreadsheets as
well as other applications that have rich underlying
structures.

1 Introduction

Spreadsheets are one of the most successful
applications making use of visual language techniques.
They provide tabular layouts for displaying and
manipulating complex information, and powerful visual
programming mechanisms for applying dynamic structure
to the static visual representation (Figure 1). Users can
structure their problems in a spreadsheet by placing
formulas in cells, automating the calculation of large
complicated systems relatively easily.

However, access to these formulas and their resulting
dataflow structure is not easy in current spreadsheet
applications, resulting in significant cognitive overhead.

Often the layout provides cues about the underlying
dataflow structure of the spreadsheet, making it relatively
easy to understand the structure of the dataflow graph: a
summation formula is typically placed at the end of the
corresponding row or column. But in some cases, a user
must put formulas referring to distant cells in irregular
positions, which makes it difficult to understand the
structure. In these situations, the user is forced to explore
the individual cells to find, verify, and modify the formulas.

An even trickier problem occurs when the user moves
the cells of a spreadsheet with cut and paste or through
direct manipulation. Current spreadsheet applications adjust
the spreadsheet formulas to maintain the original semantics
of the dataflow, which may or may not be what the user
desires. For example, a user exploring various “what if”
scenarios may move a line that participates in a sequence of
numbers, intending to see the sequence without the number.
However, when there are formulas involved, the spreadsheet
application adjusts them to ensure that they still participate
in the sequence, leading to an error in the intended “what
if” calculation. Because the formulas are invisible, the user
may well be unaware of this mismatch with his intentions.

100

 =A0/10

200

 =B0/10

 =A0+B0

 =A1+B1

Numerical View

Formulas

Dataflow graph

100

 10

200

 20 30

 300

Figure 1. Dataflow graph of a spreadsheet. A
spreadsheet has an underlying dataflow graph
in addition to the superficial numerical view. It
is difficult to understand the structure of the
dataflow graph because it is usually invisible.

* This work was done while the first author was a summer intern at
Xerox PARC.

Sophisticated users realize that they must check formulas
after every move operation to ensure that they are correct.

A related problem occurs when a formula is used to fill
a region of a spreadsheet. Current spreadsheet applications
adjust the cell addresses in the formulas by the distance
from the source formula, which again may or may not be
what the user desires. To inhibit these adjustments, the user
can specify a cell in the formula to be an absolute reference
(by using the “$” symbol), but it is difficult to place the $
symbol correctly, which means the filled formulas must also
be checked to make sure they are correct [12].

The invisibility of formulas also causes trouble for users
when they need to understand spreadsheets created by
others. The user must repeatedly select a cell, read the
formula, and move on to the next cell, until he has seen
enough formulas to get an overview of the spreadsheet. As
spreadsheets get larger and more complicated, the overhead
of understanding shared spreadsheets increases
dramatically.

In this paper we present a set of techniques to make
implicit spreadsheet structures visible and easily accessible,
by letting users interact directly with the visual dataflow
structure instead of accessing the dataflow indirectly
through textual formulas. We use graphical variation (color,
shading, outlining, etc.), animation, and lightweight
interaction to visualize underlying dataflow structures while
minimizing clutter on the screen.

The first three techniques graphically augment formula
cells to help users visually understand the dataflow structure
without tediously clicking each cell and reading its formula.
The basic idea is to render the dataflow graph directly on
the screen without unduly interfering with the natural
appearance of the spreadsheets. The transient local view
allows users to view dataflow structures associated with an
individual cell in a lightweight manner. The static global
view visualizes the entire dataflow graph of a spreadsheet
by overlaying the static graph on the tabular layout. The
animated global explanation automatically generates and
plays an animated presentation of the dataflow through the
spreadsheet cells to describe structures that are difficult to
see with the static overlay. Semantic navigation allows
users to traverse the spreadsheet structure interactively
based on logical connectivity in cell referencing. Visual
editing techniques allow users to construct dataflow graphs
efficiently using direct manipulation and programming by
example. While semantic navigation and visual editing are
not themselves visualizations, they greatly contribute to the
visual understanding of the dataflow graph, augmenting the
first three techniques.

We call these techniques fluid because of their
interaction style and their visual representation: many
interactions proceed in a smooth manner with the user
expressing interest simply by moving the mouse, and the
visualizations of the dataflow structure are gracefully
integrated with the original tabular layout of the

spreadsheet. Our approach is to augment the existing
tabular display of the spreadsheet rather than replacing it
with a separate visualization. This allows users to
understand the formulas in the context of the regular
spreadsheet layout.

We have implemented these interaction techniques in a
prototype spreadsheet program, written using Pad++ [1, 23]
and Python running on Unix platforms. Although the
prototype system is limited in performance—animation
becomes sluggish at spreadsheets larger than 20x20 cells—
we observed that our fluid visualization techniques
dramatically facilitated the understanding of the hidden
spreadsheet structure.

The rest of the paper is organized as follows. First, we
describe the current state of the art in spreadsheet
visualization. Next we present our visualization techniques
in detail. Finally, we discuss some related work and
summarize the paper.

2 State of the art

Given the problems associated with invisible formulas,
it is not surprising that various attempts have been made to
make them more visible. For example, Microsoft
Excel 97™ [18], arguably the most feature-rich spreadsheet
application available, includes two techniques that provide
limited visualization of the dataflow graph for a given cell.
The first feature, called the “Range Finder,” can be invoked
by selecting a cell that has a formula and clicking in the
formula bar. When this is done, the addresses in the
formula are colored and the corresponding regions in the
spreadsheet are surrounded with colored rectangles, which
can be moved and adjusted to edit the formula in a direct
manipulation fashion.

The second feature, “Auditing,” draws arrows from the
selected cell to its ancestors or descendants. In addition, the
user can directly jump to an ancestor or descendant by
double-clicking the arrowhead.

These techniques try to make the hidden dataflow
structure visually accessible, but they must be invoked via
menus or toolbar buttons, and they are limited to showing
the dataflow for a single cell at a time. There is no way to
display the overall structure of the spreadsheet. The user
must click in each cell individually to see the Range Finder
colored rectangles, and complicated spreadsheets can create
a tangle of arrows, making it difficult to see the
relationships among cells.

Like these parts of Excel, our work is focused on
showing the dataflow structure. Unlike Excel, however, we
are interested in showing both local portions of the structure
and global views. In addition, we optimize the visualization
based on the spatial relationships of the dataflow structure,
and we use both transient techniques (see the next section)
and animation to fluidly present the dataflow structure.

3 Transient local view

The transient local view technique allows the user to
see a part of a dataflow graph associated with the current
cell, the cell that the user is interacting with. The system
visualizes both incoming cells (cells that affect the current
cell—i.e., that appear in the current cell’s formula) and
outgoing cells (cells that are affected by the current cell—
i.e., cells that have formulas that the current cell appears
in). The system visually distinguishes the two kinds of cells
by using color, line thickness, or other graphical
characteristics. Our implementation groups incoming cells
into spatially adjacent regions and encloses each region
with a rectangle. The rectangle is connected to the current
cell with a hairline, while outgoing cells are filled with
gray. Figure 2 shows an example of a transient local view of
a cell. Grouping incoming cells makes use of both the
logical structure of the spreadsheet (they are inputs to the
current cell) and the physical structure of the spreadsheet
(they are adjacent in space).

The reason we call this technique transient lies in the
manner in which the user specifies the current cell. In
conventional spreadsheet applications, the user must move
the cursor to a cell of interest and click in it to see the
formula. In our system, the user specifies the current cell
simply by moving the mouse cursor over the cell. When the
cursor comes into a cell, the dataflow graph associated with
the cell (incoming and outgoing cells) gradually appears on
the screen (fades in), and it gradually disappears when the
cursor moves away from the cell (fades out). Thus, the user
can explore the dataflow graph structure of a spreadsheet
simply by moving the cursor around the spreadsheet (see
Figure 3).

This “mouseover” style of interaction is present in other
systems. A notable example is Microsoft’s “ToolTips,”
which are tiny windows containing a few words of

explanatory text. ToolTips appear when the cursor lingers
over an item. However, ToolTips are separate from the
annotated objects and overlay them, while our presentation
of the dataflow graph is integrated with the original view of
the spreadsheet, not obscuring the spreadsheet and not
becoming too obtrusive. The fading effect plays an
important role in achieving this integration—it can
smoothly present larger visual structures as the user moves
the cursor about the spreadsheet. Without the fading
animation and careful timing, constant flashing of the
dataflow information would occur. In particular, when the
dataflow graph is extensive, it would be very distracting to
see large graphs appear and disappear frequently.

This transient interaction mode is suspended during
some operations, like editing, so that incidental movements
of the cursor will not cause unwanted visualizations.

4 Static global view

The transient local view has several advantages. It does
not require special operations, so the user’s focus can
remain on the spreadsheet content as he simply moves the
cursor around to invoke the local visualizations. It does not
clutter the screen because it limits the presentation of the
dataflow graph to that associated with one cell. Finally, the
fading transition effect helps the user to view the global
structure of a spreadsheet in a pleasing, non-jarring
manner.

However, there are also many cases when the user may
want to see the entire structure at once. For example, a user
may want to quickly review the entire structure when he is
handed a spreadsheet created by another user. We
implemented the static global view to show this kind of
overall structural information. In this mode, every dataflow
connection appears on the screen—this means every
incoming and outgoing cell for every cell in the spreadsheet
(Figure 4). As in the transient local views, cells are
presented as groups, which serves both to minimize clutter
and to summarize the dataflow.

Time

Figure 3. Lightweight access to dataflow
graphs. The user can explore the dataflow
graph simply by moving the cursor around. The
graphs fade in and fade out for minimal visual
disturbance.

Figure 2. Transient visualization of a cell. The
transient local view visualizes the incoming and
outgoing cells of the current cell. Incoming
cells are enclosed by thin lines, and outgoing
cells are filled with gray. B3 refers to A1
through D1, and is referred to by D3 and D4.

A B C
0
1
2
3
4

10 20 30

100 100
200

D

40

200
300

Even with the grouping technique, overlapping of many
portions of the graph is unavoidable, and it can be difficult
to follow the detailed dataflow for particular cells. Instead,
the static global view is useful for getting a general
overview of the entire structure. In our implementation, we
assign different colors for vertical, horizontal and single-
cell group structures. As a result, the user can quickly see
how the spreadsheet is structured. This global view is also
valuable in editing the dataflow structure (see Section 7.1).

5 Animated global explanation

The static global view works well to visualize the
overall structure of the spreadsheet, especially when the
dataflow graph has a regular pattern. However, for
spreadsheets in which each cell is involved in many
formulas, or in which the graph overlaps tightly in visually
confusing ways, the static global view may not be very
useful. In addition, the static global view does not
effectively convey the general direction of dataflow.

To address these issues, we use animation to construct
an unfolding story of the structure of the spreadsheet. Flows
of cell values start at initial cells (that contain data only),
join and split at intermediate cells, and end at terminal cells
(typically, the result of a computation). We call this
sequence the narrative expression of the dataflow graph,
and the animated global explanation presents the story as
a series of animations. It first examines the formulas to
analyze cell dependencies, then determines an ordering for
the graph, and finally shows the dataflow as a series of
animations in which nodes at the beginning of the dataflow
animate first, cascading into other animations as successive
cells are visited. As a result, the user is presented with a
visual demonstration of the march of computation within
the graph. Figure 5 shows an example of the animated
presentation.

In choosing the animation order of the explanation, we
use information from both the underlying dataflow graph

and the tabular layout structure. Cell dependencies provide
the basic ordering for the animation, but there can be many
possibilities for simultaneous animation of various parts of
the graph. Therefore, we also use information about the
graphical layout of the spreadsheet to decide which
animations to fire simultaneously. Just as the transient local
and static global views use spatial relationships to group
cells to form a more effective visualization, the animated
global explanation uses spatial relationships to group
animations to perform a more effective visualization. The
goal is to produce an overall animation that sensibly
organizes the dataflow into understandable chunks. In
Figure 5, the animations of the first three horizontal flows
occur simultaneously because these flows have regular
spatial structure. Our current algorithm searches for these
kinds of parallel dataflows to optimize into animation
groups.

6 Semantic navigation

Excel’s auditing function allows the user to move to
spatially disjoint, but logically connected, cells by double-

Figure 5. Animated presentation of the
dataflow structure. The system automatically
generates an animated global explanation of
the dataflow structure of a spreadsheet.
Incoming cells flow into their outgoing cells.
We use fading effects throughout to create a
smooth and pleasing animation.

60

150

240

450

10 20 30

40 50 60

70 80 90

Time

60

150

240

450

10 20 30

40 50 60

70 80 90

60

150

240

450

10 20 30

40 50 60

70 80 90

60

150

240

450

10 20 30

40 50 60

70 80 90

60

150

240

450

10 20 30

40 50 60

70 80 90

Figure 4. Static global view. The user can
see the entire dataflow graph at once. The
system uses different colors for different
shapes of regions.

A B C
0
1
2
3
4 500

D

170

250
860

180

260

120 240

170

250

180

260
20 20 130

100 70

10 80 90

10 40 210
80

clicking the arrowheads, a technique we call semantic
navigation. In semantic navigation, the navigation cues are
the semantic relations among cells rather than the
superficial spatial continuity (Figure 6). We improved this
semantic navigation interface to achieve easier access to the
hidden structure by introducing keyboard-based operations
and expressive animations.

We chose to make our semantic navigation available
from the keyboard because it can streamline the “edit cell/
navigate to new cell” cycle. The current implementation
works as follows:

1. The user begins semantic navigation by pressing the
control key.

2. A large arrow sprouts from the current cell, growing
to point to one of the semantically connected cells
(incoming or outgoing cells). We call the cell that the
arrow is pointing to a destination cell (Figure 6a).

3. The user can select the destination cell among the
semantically connected cells using the left and right
arrow keys (Figure 6b).

4. The user can jump to the destination cell by pressing
the up arrow key (Figure 6c). The user can then
continue to navigate through the dataflow graph by
repeating 3 and 4 (Figure 6d).

5. When the control key is released, the cursor keys
once again function for normal spatial navigation.

Every visual effect is presented in an animated manner
to aid the user’s comprehension of the navigation. The
arrowhead moves continuously and the current cell
indicator flies smoothly. This semantic navigation
mechanism not only reduces the number of keystrokes, but
also promotes better understanding of the dataflow
structure. Easy access to logically connected cells makes the
user feel that the cells are close to each other, even if they
are spatially distant. In other words, semantic navigation
visualizes the hidden topology of the dataflow graph
through its characteristic interaction.

7 Visual editing

In previous sections, we discussed techniques to
visually present the underlying dataflow structure of a
spreadsheet. In this section, we will introduce techniques to
visually edit the dataflow structure underlying the textual
formulas. This visual editing functionality works
surprisingly well in constructing dataflow structures that are
spatially regular and simple, but complicated to specify
textually. Direct editing of dataflow graphs allows the
user to edit the dataflow structure in a way similar to object-
oriented drawing editors, and interactive graphical
induction enables the user to construct regular formulas for
a series of cells interactively.

7.1 Direct editing of dataflow graphs

Direct editing of dataflow graphs is a straightforward
application of dataflow graph visualization. It allows the
user to move, scale, and delete the visualized dataflow
graphs using standard direct manipulation techniques [27].
These editing operations cause the textual formulas to be
updated accordingly. It is especially useful to edit multiple
dataflow graphs directly at a time. (Excel allows graphical
editing, but only of one region at a time.)

a) An arrow grows
when the control key is
pressed.

b) The user can change
the direction of the arrow
using left/right arrow keys.

c) The current cell indicator
flies to the destination cell
when the up arrow key is
pressed.

d) The user can then
continue navigating from
the destination cell.

Figure 6. Semantic navigation of dataflow
graphs. The user can navigate through the
dataflow graph using arrow keys by holding
down a control key.

Figure 7. Direct editing of dataflow graphs.
The user can transform the dataflow graph
in ways similar to editing in object-oriented
drawing editors. In this example, the user
grabs a handle and drags it to scale two
parts of the graph.

36

10
20
30 6

4
2

72

10
20
30 6

4
2

When the static global view is in effect or the user
enters editing mode by clicking a cell in the transient
visualization mode, dataflow graphs are made visible. The
user can grab a graph by clicking it, move the selected
constraint by dragging it, and scale it by dragging the
handles that appear at its corners. Multiple graphs can be
activated by clicking them with shift key pressed, causing
all active graphs to move and scale simultaneously (Figure
7).

7.2 Interactive graphical induction

The visual representation of dataflow graphs makes it
possible to understand the structure as a collection of
regular patterns such as those shown in Figure 8. This
section describes our approach of constructing these regular
structures graphically using induction. In current
spreadsheets, the user must use the “$” symbol to specify
absolute references, and then correctly perform fill
operations to construct the desired dataflow patterns. The $
symbol indicates that the following parameter is invariant
throughout the fill operation, while other parameters change
according to the relative position of the filled cells. For
example, if the formula for B2 is =$A2*B$1 and the user
filled the region of B2-D4 with this formula, the formula for
D4 becomes =$A4*D$1.

This scheme fails for a number of useful patterns, such
as those shown in Figure 8. Even in simple cases it is very
difficult to construct and understand correct formulas using
$ symbols. Hendry proposed a programming-by-example
technique to solve the problem [11]. His approach is to have
the user key in the first two formulas, specify the region for
filling, and run a menu command to initiate the fill. He
showed that two examples are sufficient to express common
spreadsheet structures. Formulas for the filled cells can be
automatically inferred from the relative position of the cells
and the difference of parameter values between the two
examples. Although he doesn’t use this term, he has
essentially proposed filling formulas using induction on the
structure of the first two formulas.

Our interactive graphical induction technique
extends his approach by using graphical examples [7]
instead of textual formulas for the induction. The system
allows the user to edit the two examples graphically, and
then visually presents the result of the fill operation. Our
current implementation works as follows:

1. Key in a formula in the cell that starts the fill region.

2. Select the fill region and run the fill command.

3. The system presents a graphical proposal of the
second step of the induction, which can be
graphically manipulated into the correct state.

4. Press the confirm button to perform the fill operation.

The key idea is in step 3: the system prompts the user

to specify the second example graphically. As a result of
this interactive approach, the user no longer needs to
prepare the textual formulas carefully before the fill
operation. All the user has to do is to answer the system’s
request for confirmation, by very naturally moving the
graphical boxes to the correct locations. In addition, the
graphical representation of the first two examples and
subsequent filled cells also helps the understanding of the
resulting structure of the dataflow graph. Figure 9 shows
examples of dataflow structures created using this graphical

Figure 8. Regular patterns of cell
referencing. It is difficult to encode these
patterns using $ symbols. In fact, the
fourth example cannot be expressed using
$ symbols.

 =A$1 =B$1 =C$1 =$C$1 =$C$1 =$C$1

=$A2+$B$1
=$A3+$B$1
=$A4+$B$1

Figure 9. Interactive graphical induction.
The system automatically infers the cell
referencing for the filled cells based on
induction from the first two graphical
examples. The first example is given by the
user. The system generates the default second
example and asks the user to adjust it.

e
s

a) Initial state. The
current cell refers to
two incoming cells.
This will be used as
 the first example.

b) The default second
example generated by
the system.

Select “Fill”
on a region

Press OK
button

d) Result of the inductive fill
operation based on a) and c).

The user edits
 the second
 example

c) The second example
specified by the user.

induction mechanism. Both position and size of regions are
correctly inferred because the system applies induction for
the row and column numbers of both the upper-left and
lower-right cells of the fill regions.

8 Related work

The success of the spreadsheet as an easy-to-use
computational environment [8, 12, 22] has led to several
end-user programming systems based on spreadsheet-like
interfaces. ACE [13] extended the basic idea of
spreadsheets, a tabular layout enhanced by textual notations,
and applied it to the development of interactive graphical
applications. NoPumpG [29] applied the idea of the
spreadsheet’s automatic maintenance of predefined
relationships among cell values to the control of graphical
representations. C32 [19] used a spreadsheet interface for
constructing constraints in user interface toolkits. Forms/3
[3, 10] is a general-purpose visual programming language
based on the spreadsheet paradigm. Yang et al. proposed
design benchmarks for visual programming [30] including
static dataflow visualization.

Toolglass and Magic Lenses [2] use spatially dedicated
lenses to visually present and interact with the underlying
information layer. In contrast to a Magic Lens visualization
of the dataflow structure of spreadsheets, fluid visualization
controls the entire space in a coordinated way, providing a
more integrated interface.

Zooming interfaces [1, 24] and distortion-oriented
focus+context techniques [9, 15, 16] are efforts to present
vast information spaces within a limited screen space. They
try to present a focal part of the information space clearly
while maintaining the surrounding context. For example,
work on visualization of spreadsheets [26, 28] use
focus+context techniques to visualize very large tabular
layouts. The difference is that our focus is on the
visualization of the hidden dataflow structure behind the
tabular layout, and not that of the tabular layout itself.

Many modern user interface systems incorporate
animation [3, 21]. Animations can give the feeling of
solidity, continuity, and real existence to visual objects.
They help the user to understand visual events by softening
abrupt changes on the screen. They are indispensable tools
to present a sequence of events in an intuitive way (i.e.
algorithm animation [25]). In this paper, we proposed
another useful application of animation effects: animations
to reify and visualize invisible information. It is difficult to
present hidden dataflow structures with static
representations. Animation makes it possible to visualize
these invisible structures.

Our graphical induction technique can be seen as an
application of programming by demonstration/example
techniques [7]. Metamouse [17] detects repetition in the
user’s graphical editing operations and suggests the next
operation. Eager [6] analyzes a sequence of HyperCard

operations and suggests the next set of operations.
Chimera [14] and IMAGE [19] find appropriate geometric
constraints from given graphical examples.

9 Discussion and conclusions

Spreadsheets have hidden dataflow graphs in addition
to their superficial tabular layouts. We have presented a
series of techniques that make the dataflow structure visible
and accessible, while maintaining the original appearance
of the spreadsheet. The goal of these techniques is to impart
a better understanding of the dataflow structure by letting
the user visually interact with these hidden structures.

We implemented these interaction techniques in our
prototype spreadsheet program, and they noticeably improve
the understandability of spreadsheets. Keys to our approach
are carefully designed graphical integration of the dataflow
information with the spreadsheet layout, animation of all
graphical changes, and lightweight interaction. We found
fading animations to be particularly effective—the user
becomes subtly aware of the existence of the hidden
dataflow graph at the position where it has faded away.

Future work includes integration with more realistic
spreadsheet programs. As we mentioned earlier, our
prototype spreadsheet program is written using Pad++ [1,
23] and Python running on Unix platforms. Although
Pad++ provides powerful scaling and animation primitives
for exploring novel ideas rapidly, it exacts a performance
toll. As a result, smooth animation is possible only for
spreadsheets containing 400 cells or fewer. Scaling our
experiences to larger spreadsheets raises three issues:
animation performance, algorithm performance, and
visualization and navigation of large spreadsheet structures.
We are confident that a custom implementation would
support animation of larger spreadsheets comfortably. Our
algorithms for supporting our various techniques rely upon
traditional dataflow computations that are computationally
tractable for larger spreadsheets. Visualization and
navigation of very large spreadsheets, where cells refer to
distant cells outside of the boundaries of the screen, is a
more substantive issue. We expect that animated
presentation and semantic navigation techniques would be
especially useful for such spreadsheets. In these cases,
automatic camera controls may be required, such as
zooming out to provide a larger context, panning to a
logically-connected cell, and then zooming in to permit a
closer view.

Fluid visualization for spreadsheets is a particular
application of our general set of fluid user interface
techniques, whose goal is to provide lightweight,
contextual, and animated access to a secondary layer of
content while maintaining the appearance of the primary
material. Fluid techniques allow the user to fluidly shift
attention from primary to secondary content, as the system

fluidly alters its display to show previously hidden
secondary content in the context of its associated primary
content. Other domains in which we have explored fluid
user interfaces include hypertext linking [31] and
annotation [4]. Among possible further applications of the
fluid visualization techniques are maps, CAD diagrams,
and other graphical domains with rich underlying
structures. Our experiences so far suggest that fluid
techniques can be a powerful aid to users in a wide variety
of situations that require comprehending and interacting
with data.

References

1. Bederson, B.B., Hollan, J., Perlin, K., Meyer, J., Bacon, D.,
and Furnas, G., Pad++: a zoomable sketchpad for exploring
alternate interface physics, Journal of Visual Languages in
Computing, Vol.7, No.3, pp. 3-31, 1996.

2. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.,
Toolglass and Magic Lenses: The see-through interface, in
Proceedings of SIGGRAPH’93, 1993.

3. Burnett, M., Ambler, A., Interactive visual data abstraction in
a declarative visual programming language, Journal of Visual
Languages and Computing 5(1), pp.29-60, 1994.

4. Chang, B.W., Mackinlay, J., Zellweger, P., Igarashi, T., A
negotiation architecture for fluid documents, in Proceedings of
UIST’98, to appear, 1998.

5. Chang, B.W., Ungar, D., Animation: from cartoons to the user
interface, in Proceedings of UIST’93, pp.45-55, 1993.

6. Cypher, A., Eager: programming repetitive tasks by example,
in Proceedings of CHI '91, pp. 33 – 39, 1991.

7. Cypher, A., ed., Watch What I Do: Programming by
Demonstration, The MIT Press, 1993.

8. Fischer, G., Beyond human computer interaction: designing
useful and usable computational environments, in Proceedings
of the HCI’93 Conference on People and Computers VIII,
pp.17-31, 1993.

9. Furnas, G.W., Effective view navigation, in Proceedings of
CHI’97, pp.367-374, 1997.

10. Gottfried, H.J, Burnett, M., Graphical definitions: making
spreadsheets visual through direct manipulation and gestures,
in Proceedings of IEEE Symposium on Visual Languages’97,
1997.

11. Hendry, D.G., Display-based problems in spreadsheets: a
critical incident and a design remedy, in Proceedings of IEEE
Visual Languages’95, pp.284-290, 1995.

12. Hendry, D.G., Green, T.R.G., Creating, comprehending, and
explaining spreadsheets: a cognitive interpretation of what
discretionary users think of the spreadsheet model,
International Journal of Human-Computer Studies, Vol.40,
pp. 1033-1065, 1994.

13. Johnson, J.A., Nardi, B., Zarmer, C.L., Miller, J.R., Ace:
building interactive graphical applications, Communications of
the ACM, Vol.36, No.4, pp.41-55, 1993.

14. Kurlander, D., Feiner, S., Inferring constraints from multiple
snapshots, ACM Transactions on Graphics, Vol.12, No.4 , pp.
277-304, 1993.

15. Lamping, J., Rao, R., Pirolli, P., A focus+context technique
based on hyperbolic geometry for visualizing large hierarchies,
in Proceedings of CHI'95, pp.401-408, 1995.

16. Mackinlay, J.D., Robertson, G.G. and Card, S.K., The
Perspective Wall: detail and context smoothly integrated, in
Proceedings of CHI'91, pp. 173-179, 1991.

17. Maulsby, D., Kittlitz, K. and Witten, I., Metamouse:
specifying graphical procedures by example, in Proceedings of
SIGGRAPH '89, Vol. 23, No. 3, pp. 127-136, 1989.

18. Microsoft, Microsoft® Excel 97,
http://www.microsoft.com/excel/.

19. Miyashita, K., Matsuoka, S., Takahashi, S., Yonezawa, A.,
Interactive generation of graphical user interfaces by multiple
visual examples, in Proceedings of UIST’94, pp.85-94, 1994.

20. Myers, B.A, Graphical techniques in a spreadsheet for
specifying user interfaces, in Proceedings of CHI'91, pp. 243-
249, 1991.

21. Myers, B.A., Miller, R.C., McDaniel, R., Ferrency, A., Easily
adding animations to interfaces using constraints, in
Proceedings of UIST’96, pp.119-128, 1993.

22. Nardi, B., Miller, J.R., The spreadsheet interface: a basis for
end user programming, in Proceedings of IFIP INTERACT’90,
pp. 977-983, 1990.

23. Pad++ Reference Manual, http://www.cs.unm.edu/pad++/.
24. Perlin, K., Fox, D., Pad - an alternate approach to the

computer interface, in Proceedings of SIGGRAPH'93, pp. 57-
64, 1993.

25. Price, B.A., Baecker, R.M., and Small, I.S., A principled
taxonomy of software visualization, Journal of Visual
Languages and Computing, Vol.4, No.3, pp.211-266, 1993.

26. Rao, R., Card, S., The Table Lens: merging graphical and
symbolic representations in an interactive focus+context
visualization for tabular information, in Proceedings of
CHI'94, pp. 318-322, 1994.

27. Shneiderman, B., Direct manipulation: a step beyond
programming languages. IEEE Computer, Vol.16, No.8, pp.57-
69, 1983.

28. Spenke, M., Beilken, C., Berlarge, T., FOCUS: the interactive
table for product comparison and selection, in Proceedings of
UIST’96, pp.41-50, 1996.

29. Wilde, N., Lewis, C., Spreadsheet-based interactive graphics:
from prototype to tool, in Proceedings of CHI'90, pp. 153-159,
1990.

30. Yang, S., Burnett, M., DeKoven, E., Zloof, M., Representation
design benchmarks: a design-time aid for VPL navigable static
representations, Journal of Visual Languages and Computing
8(5/6), Oct/Dec 1997.

31. Zellweger, P., Chang, B.W., Mackinlay, J., Fluid links for
informed and incremental link transitions, in Proceedings of
Hypertext’98, pp.50-57, 1998.

