

IEEE Trans. on Software Eng. - 1 - (to appear, 2002 or later)

Testing Homogeneous Spreadsheet Gr ids

with the “ What You See Is What You Test” Methodology∗∗∗∗

Margaret Burnett, Andrei Sheretov, Bing Ren, and Gregg Rothermel
Department of Computer Science

Oregon State University, Corvallis, Oregon 97331
{ burnett, andrei, ren, grother} @cs.orst.edu

Abstract

Although there has been recent research into ways to design environments that enable end

users to create their own programs, little attention has been given to helping these end users

systematically test their programs. To help address this need in spreadsheet systems—the most

widely used type of end-user programming language—we previously introduced a visual

approach to systematically testing individual cells in spreadsheet systems. However, the previous

approach did not scale well in the presence of largely homogeneous grids, which introduce

problems somewhat analogous to the array-testing problems of imperative programs. In this

paper, we present two approaches to spreadsheet testing that explicitly support such grids. We

present the algorithms, time complexities, and performance data comparing the two approaches.

This is part of our continuing work to bring to end users at least some of the benefits of

formalized notions of testing, without requiring knowledge of testing beyond a naive level.

Index terms: software testing, spreadsheets, visual programming

1. Introduction

There has been extensive research into effective testing in traditional programming languages

in the imperative paradigm. However, there are few reports in the literature on testing in other

paradigms, and no research (with the exception of our own previous work) that we have been

able to locate on testing in spreadsheet systems. The spreadsheet paradigm includes not only

∗ An early version of portions of this paper previously appeared in conference form [6].

IEEE Trans. on Software Eng. - 2 - (to appear, 2002 or later)

commercial spreadsheet systems, but also a number of research languages that extend the

paradigm with features such as gestural formula specification [3, 17], graphical types [3, 32],

visual matrix manipulation [31], high-quality visualizations of complex data [7], and GUI

specification [19]. In this paper, we use the term spreadsheet languages to describe all such

systems following the spreadsheet paradigm.

Despite the perceived simplicity of the spreadsheet paradigm, research shows that many

spreadsheets contain faults. Field audits of real-world spreadsheets report faults in 20% to 90%

of the spreadsheets audited, and these rates are consistent with spreadsheet model-building

experiments in controlled lab settings [2, 9, 21, 30]. Even though spreadsheets often contain

faults, few companies have policies or standards for developing, documenting, or testing

spreadsheets. Similarly, few companies have procedures for verifying the correctness of

spreadsheets [30]. Furthermore, users tend to be overconfident that their spreadsheets contain no

faults. For example, in Brown and Gould’s experiment [2], subjects were “quite confident” that

the spreadsheets they created were accurate; yet analysis showed that 44% of the spreadsheets

contained faults and that every subject made at least one error. These error rates are consistent

with Galletta et al.’s, in which even expert users could find only about 50% of the faults placed

in their spreadsheets [13].

There have been attempts to reduce the number of faults in spreadsheets. Many of these

attempts are proposals to apply common software development practices. For example, Ronen et

al. [24] propose a structured approach to designing spreadsheets. Their approach includes a

proposed layout of the spreadsheet model and a spreadsheet flow diagram similar to the data

flow diagrams in structured analysis that encourage structured top-down design. Another

approach is for the spreadsheet to include tools that aid comprehension. For example, some

versions of Microsoft Excel auditing tools have included cell precedent and dependent arrows

[18]. Precedent arrows for a cell A point to A from all cells that are referenced in A’s formula.

Dependent arrows for a cell B point from B to all cells that reference B in their formulas. These

approaches add information and structure which may help spreadsheet programmers avoid faults,

but none of them support testing.

To address this problem, in previous work [25, 26, 27], we presented a testing methodology

for spreadsheets termed the “What You See Is What You Test” (WYSIWYT) methodology. The

WYSIWYT methodology provides feedback about the “ testedness” of cells in simple

spreadsheets in a manner that is incremental, responsive, and entirely visual. However,

scalability to large grids (large, two-dimensional matrices of cells) was not addressed in that

IEEE Trans. on Software Eng. - 3 - (to appear, 2002 or later)

previous work. In this paper, we describe improvements that allow the WYSIWYT methodology

to support testing of large grids of cells with shared or copied formulas.

We have integrated a prototype implementation of the WYSIWYT methodology into the

research spreadsheet language Forms/3 [3, 4, 5], and the examples in this paper are presented in

that language. In our prototype, every cell in the spreadsheet is considered to be untested when it

is first created, except input cells (cells whose formulas may contain constants and operators, but

no cell references and no i f -expressions), which are considered trivially tested. For the non-

input cells, “ testedness” is reflected via border colors on a continuum from untested (red, or light

gray in this paper) to tested (blue, or black in this paper).

The process is as follows. During the user’s spreadsheet development, whenever the user

notices a correct value, he or she lets the system know of this decision by validating the correct

cell (clicking in the validation checkbox in its right corner), which causes a checkmark to appear,

as in Figure 1. This communication lets the system track judgments of correctness, propagate the

implications of these judgments to cells that contributed to the computation of the validated

cell’s value, and reflect this increase in “ testedness” by coloring borders of the checked cell and

its contributing cells more blue (darker gray to black). On the other hand, whenever the user

notices an incorrect value, rather than checking it off, he or she eventually finds the faulty

formula and fixes it. This formula edit means that affected cells will now have to be re-tested; the

system is aware of which ones those are, and re-colors their borders more red (lighter gray),

denoting more “untested” .

Figure 1. Forms/3 gr ades spreadsheet. The user validated four of the cells, and then, to test further, entered a new
input for Farnes’s HWAVG. This new input changed the affected Aver age and COURSE cells’ �s to ?s, because
these cells no longer contain the values the user validated. The COURSE formulas (not shown) have an i f -
expression; since only one branch of it has been tested, the borders for the two COURSE cells that have been
validated to date (those in the top two rows) are between red and blue (light gray and black, for color-blind users).

IEEE Trans. on Software Eng. - 4 - (to appear, 2002 or later)

As with programs in other languages, most spreadsheets can have an infinite number of

inputs; hence, not all possible inputs can be tested, and a means must be provided for

determining whether testing has been adequate. In our previous work, we developed an abstract

model for simple spreadsheets with conventional expression-based formulas, and used it to

define several test adequacy criteria [25, 26]. The strongest criterion we defined, du-adequacy, is

the criterion we use in this paper to define when a spreadsheet has been tested “enough”. We

describe the model in Section 2 and extend the model and du-adequacy criterion as they relate to

spreadsheet grids in subsequent sections. The border colors described above indicate the extent

to which the du-adequacy criterion has been satisfied.

Thus, if the user manages to turn all the red (light gray) borders blue (black), the du-

adequacy criterion has been satisfied. In our empirical work on simple spreadsheet cells,

subjects were significantly more likely to achieve du-adequate coverage and do so efficiently

using the WYSIWYT methodology than those not using it [28], du-adequate test suites were

frequently significantly more effective at fault detection than random test suites [25], and

subjects were significantly more likely to correctly eliminate faults using the WYSIWYT

methodology than those not using it [8].

The methodology for testing spreadsheets as described above worked at the granularity of

individual cells. However, most large grids in spreadsheets are fairly homogeneous, i.e., they

consist of many cells whose formulas are identical except for some of the row/column indices.

For example, suppose the spreadsheet in Figure 1 were expanded to calculate student grades for a

class containing 500 students. There are two problems with applying the previous testing

methodology to this kind of grid:

Problem 1: For the user, the problem is that each of the 500 course grade cells would have to

be explicitly validated for all the borders to appear blue (black), denoting completely

tested. The user is not likely to go to this much trouble for essentially identical cells; this

would mean that the user would be burdened with keeping track of which cells “ really”

need testing and which (due to their similarities to other cells) do not.

Problem 2: For the system, the problem is that the performance of the testing subsystem

depends on the number of cells. Hence, responsiveness is impaired by the presence of

large grids.

For both the user and the system, these burdens seem inappropriate, given that the Gr ades

spreadsheet’s formulas with 500 students are exactly the same as those of the Gr ades

spreadsheet with only 5 students. To address these problems, the previous methodology needed

to be extended to explicitly support homogeneous grids. In addition, we imposed a “do no harm”

IEEE Trans. on Software Eng. - 5 - (to appear, 2002 or later)

constraint, requiring that any such extensions not add significant overhead to testing spreadsheets

that do not feature such large grids.

2. Background

2.1 Homogeneity of gr ids

A grid is a two-dimensional matrix of cells. Most commercial spreadsheet systems are

entirely grid-based. The grids of particular interest in this work are largely homogeneous—i.e.,

most of their cells have identical formulas except perhaps for row/column indices. Thus, in this

paper, the term grid implies some homogeneity, and the term region refers to a subgrid in which

every cell has the same formula, except that row/column indices may differ.

A spreadsheet language requires knowledge of the homogeneity of a grid region’s formulas

in order to take advantage of the approach described in this paper, but this knowledge is easily

obtained. It is already present in those spreadsheet languages in which the user is allowed to

explicitly share a single formula among several cells (e.g., Lotus™, Forms/3 [3, 4, 5], Formulate

[31], Prograph spreadsheets [29], and Chi et al.’s visualization spreadsheet language [7]). If not

already present, it can easily be gathered “behind the scenes” by a spreadsheet system, such as by

maintaining knowledge of the relationships among copied formulas as in [10].

2.2 Static gr ids versus dynamic gr ids

There are two attributes of grids and regions that are static in some spreadsheet languages

and dynamic in others, and these attributes significantly impact the manner in which testedness

of grid cells can be tracked. The first is whether a grid’s size (number of rows and columns) is

specified statically or dynamically. Static specification of grid size is the norm for commercial

spreadsheet systems, but some research systems use dynamic size specifications (e.g., Forms/3

and Formulate).

The second of these two attributes is whether determination is static or dynamic as to exactly

which cells are being referenced in a formula. The most common approach in commercial

spreadsheet systems is static, restricting cell row/column references to be based only on static

position, optionally offset by a constant.

Traditional imperative languages—for which most research in testing has occurred—

typically support statically-sized, dynamically-referenced grids via arrays. Approaches for

reasoning about the testedness of array elements have been suggested [12, 14, 15]; in general,

however, the problem of precisely treating array references at the element level is unsolvable for

IEEE Trans. on Software Eng. - 6 - (to appear, 2002 or later)

the dynamic referencing that is the norm in imperative programs. Thus, the prevalence of static

referencing in the spreadsheet paradigm affords unusual opportunities for reasoning about

testedness.

In summary, for viable application to commercial spreadsheet systems, a testing

methodology must at least support statically-sized, statically-referenced grids. The two

approaches described in this paper do support this type of grid, and also support the dynamically-

sized, statically-referenced grid type.

2.3 Gr ids in Forms/3

Our work was prototyped using Forms/3 grids. In Forms/3, a grid is a tuple (ID, region set,

row dimension cell, column dimension cell), where the row dimension cell and column dimension

cell are two distinguished cells whose formulas define the grid’s dimensions, and the region set

is a set of regions. Each region is also a tuple (ID, cell set, formula), where the cell set is the set

of all the cells contained in the region (each element of which is termed an element cell), and

formula is an expression shared by all element cells. Formula syntax follows conventional

spreadsheet syntax, with the addition of “pseudo-constants” i and j to mean “ this row” and “ this

column,” respectively.

Figure 2. A version of the Gr ades spreadsheet using Forms/3 grids under the Straightforward approach. The user
can enter a formula via a formula tab (). The input cells each have their own formulas (one cell per region), but
note that the rightmost column (region) has a single shared formula, as does the Aver age grid. The user is in the
process of selecting four COURSE cells by stretching the dotted rectangle.

IEEE Trans. on Software Eng. - 7 - (to appear, 2002 or later)

To define values for a Forms/3 grid’s cells, the user statically partitions the grid into

rectangular regions and, for each region, enters a single formula for all element cells it contains.

To statically derive a cell’s formula from its shared region formula, the system replaces any

pseudo-constants i and j in the formula by the cell’s actual row and column number. The row

dimension cell and column dimension cell can have arbitrarily complex formulas. Figure 2

shows a spreadsheet similar to the spreadsheet shown in Figure 1, but rewritten to use grids. The

row and column dimension formulas (not shown) are simply constants in this example.

2.4 The cell relation graph model

In our previous work [25, 26] we defined an abstract model for spreadsheets, called a cell

relation graph (CRG), that we use to model those spreadsheets and to define and support testing.

The approaches described here for testing grids are based upon this model. A CRG is a pair (V,

E), where V is a set of formula graphs, and E is a set of directed edges called cell dependence

edges connecting pairs of elements in V. Each formula graph in V represents the formula for a

cell, and each edge in E models the data dependencies between a pair of cells. There is one

formula graph for each cell in the spreadsheet. Each formula graph models flow of control

within a cell’s formula, and is comparable to a control flow graph representing a procedure in an

imperative program [1, 22]. Thus, a formula graph is a set of nodes and edges. The nodes in a

formula graph consist of an entry node modeling initiation of the associated formula’s execution,

an exit node modeling termination of that formula’s execution, and one or more predicate nodes

and/or computation nodes, modeling execution of i f -expressions’ predicate tests and all other

computational expressions, respectively. The edges in a formula graph model control flow

between pairs of formula graph nodes. Edges that are out-edges from predicate nodes are labeled

with the value to which the conditional expression in the associated predicate must evaluate for

that particular edge to be taken.

For example, Figure 3 depicts a portion of the CRG for the simple spreadsheet shown in

Figure 2. Each formula graph is delimited by a dotted rectangle. In the figure, formula graph

nodes labeled E and X are entry and exit nodes, respectively. Nodes with multiple out-edges

(represented as rectangles) are predicate nodes. Other nodes are computation nodes.

IEEE Trans. on Software Eng. - 8 - (to appear, 2002 or later)

2.5 The du-adequacy cr iter ion for spreadsheets

Using the CRG model, we defined a test adequacy criterion for spreadsheets, which we refer

to as the du-adequacy criterion. We summarize it somewhat informally here; a full formal

treatment has been provided elsewhere [25].

The du-adequacy criterion is a type of dataflow adequacy criterion [11, 12, 16, 22]. Such

criteria relate test adequacy to interactions between definitions and uses of variables in source

code (definition-use associations, abbreviated du-associations). In spreadsheets, cells play the

role of variables; a definition of cell C is a node in the formula graph for C representing an

expression that defines C, and a use of cell C is either a computational use (a non-predicate node

that refers to C) or a predicate use (an out-edge from a predicate node that refers to C). Under the

du-adequacy criterion, cell C is said to have been adequately tested (covered) when all of the du-

1:E

2:constant

3:X

Grades[1,3]

2,3]

3,3]

4,3]

5,3]

5:if (Grades[1,3]>Grades[1,2])

7:round(Grades[1,1]+
Grades[1,2]+Grades[1,3])/3

6:round(Grades[1,1]
+Grades[1,3])/2

4:E

8:X

T F

Grades[1,4]

from Grades[1,1], Grades[1,2]

. . .

. . .

. . .

from Grades[5,1], Grades[5,2]

Figure 3. A portion of the CRG for the spreadsheet of Figure 2. Shown are formula graphs for the Gr ades grid.

IEEE Trans. on Software Eng. - 9 - (to appear, 2002 or later)

associations whose uses occur in C have been exercised by at least one test: that is, where inputs

have been found that cause the expressions associated with both the definitions and uses to be

executed, and where this execution produces a value in some cell that is pronounced “correct” by

a user validation. (The closest analogue to this criterion in the literature on testing imperative

programs is the “output-influencing-All-du” dataflow adequacy criterion [11], a variant of the

“all-uses” criterion [22].) In this model, a test is a user decision as to whether a particular cell

contains the correct value, given the input cells’ values upon which it depends.

For example, the du-associations involving Abbott’s FI NAL cell (Gr ades[1, 3]) and his

COURSE cell (Gr ades[1, 4]), using the node numbers shown in Figure 3, are (2,5T), (2,5F),

(2,6), and (2,7). Hence, under the du-adequacy criterion, Gr ades[1, 4] is adequately tested

when there has been a test in which Gr ades[1, 3] was greater than Gr ades[1, 2] ,

exercising du-associations (2,5T) and (2,6), and another test in which Gr ades[1, 3] was not

greater than Gr ades[1, 2] , exercising du-associations (2,5F) and (2,7). (We are simplifying

this discussion by ignoring the uses of Abbott’ s MI DTERM and HWAVG, since their formula

graphs are not explicitly shown in Figure 3.)

3. The Straightforward approach

An obvious approach to explicitly supporting grid testing is to enhance the user interface so

that the user can validate all or part of an entire region in one operation, but to have the system

maintain testedness information about each cell individually using the CRG model just as

described above. We term this approach the Straightforward approach. The Straightforward

approach modifies our previous methodology’s algorithms in straightforward ways to facilitate

working with large grids. It is important to consider even such a simple strategy seriously,

because if it is viable, there is no reason to invest in more elaborate strategies.

In the Straightforward approach, the only change from the user’s perspective is that a group

selection device such as a rubberband is added. The user can use this device to select a group of

cells in a grid and validate any of the selected cells, which applies the validation to all the

selected cells. The rubberband does not “declare” any permanent relationship; it is simply a

transient selection device. When the user does not use the rubberband, the user’s validation of

one grid cell X applies to X and only X, just as in the previous methodology. Other than the

rubberband, the visual communication devices are exactly the same as in the original

WYSIWYT methodology. Thus, in Figure 2, every cell has its own testing color border and

validation checkbox, just as in our earlier work. For example, if no cells in Figure 2 had been

IEEE Trans. on Software Eng. - 10 - (to appear, 2002 or later)

validated yet and then the user selected and validated Abbott’s COURSE cell only, which

executes the predicate and the el se-expression in the formula, then only Abbott’s COURSE

cell would have been shown in purple (medium gray), denoting partially tested.

A strength of the Straightforward approach is that, because all information is kept

individually for each cell, the user has the flexibility to validate any arbitrary group of

contiguous1 cells, or even any cell individually. For example, the actual scenario of Figure 2 is

that the user somehow previously validated the top four COURSE cells, and then changed the

input contributing to the fourth (Smith’s) cell, which is why its validation checkbox now

contains a “?” . At the point the figure was captured, the user was in the process of

rubberbanding the top four COURSE cells in order to validate that group all at once, since all of

those cells use the el se part of the formula and the value being scrutinized in Smith’s COURSE

cell is correct. In this scenario, the user plans to next attend individually to Thomas’s COURSE

cell, which uses the t hen part.

3.1 Information required by the approach

As in the original WYSIWYT methodology, the Straightforward approach requires the

information described in Table 1 for each cell. Like other spreadsheet languages, our system can

retrieve or update any cell efficiently, accomplished via a hash table in our system.

 Information collected Description When collected
1 C.DirectProducers The cells referenced explicitly in C’s formula. Statically
2 C.DirectConsumers The cells whose formulas explicitly reference C. Statically
3 C.Defs The definitions explicitly present in C’s formula. Statically
4 C.Uses The uses explicitly present in C’ s formula. Statically
5 C.DUAs:

 C.DUAs.Incoming
 C.DUAs.Outgoing

C.DUA:

 C.DUA.definition
 C.DUA.use
 C.DUA.exercised

A set of du-associations, consisting of:
 All du-associations whose uses are in C.Uses.
 All du-associations whose definitions are in C.Defs.

An element of C.DUAs, in format (definition, use,

exercised), consisting of:
 The definition.
 The use.

True if C.DUA has been exercised; otherwise false.

Statically
Statically
Dynamically

6 C.Trace The set of C’ s formula graph nodes that were executed in
the most recent evaluation of C.

Dynamically

Table 1. The six types of primary information collected in the Straightforward approach for each cell C. They are
collected by updating hash tables while parsing formulas (statically) and while executing formulas (dynamically).

1 The mention of contiguity is only because the user interface device (a rubberband) needs to spatially surround the
cells.

IEEE Trans. on Software Eng. - 11 - (to appear, 2002 or later)

It is reasonable to rely upon the formula parser to keep the first four items in Table 1 up-to-

date, because the first two are already needed to support the usual spreadsheet abilities of

efficiently updating the screen and cached values after each formula edit, and the next two are

easily collected while collecting the first two. The algorithms for maintaining the remaining

items are described next.

3.2 The algor ithms and their complexities

To support the testing of grids under the Straightforward approach, the system needs to

perform four tasks. In describing cell relationships in these tasks, we use producer/consumer

terminology. A direct producer of cell C is a cell referenced explicitly in C’s formula. From

this, we recursively define a producer of C as either a direct producer of C or a direct producer of

a producer of C. Similarly, a direct consumer of cell C is a cell that refers explicitly to C in its

formula, and a consumer of C is either a direct consumer of C or a direct consumer of a

consumer of C.

The four tasks for incrementally updating all the necessary information are:

Task 1: Collecting static information. Whenever the user edits a formula for C’s region,

C.DUAs.Incoming and C.DUAs.Outgoing are re-collected. In addition, the

outgoing and incoming du-associations in C’s direct producers and direct

consumers, respectively, are updated.

Task 2: Tracking execution. Whenever C is executed, the most recent set of C’s formula

graph nodes executed (C’s trace) is stored in C.Trace.

Task 3: Validation. Whenever the user validates C by clicking on it, each element of

C.DUAs.Incoming whose use node is in C.Trace is marked exercised. This

process is performed on each producer of C as well.

Task 4: Adjusting test adequacy information. Whenever the user edits some non-input

cell’s formula1 for any producer P of C, C.DUAs.Incoming’s elements that

directly or transitively contain uses of P are marked “not exercised” .

For example, the result of Task 1, gathering du-associations, for cell Gr ades[1, 4] in

Figure 2 would include (2,5T), (2,5F), (2,6), and (2,7), as was discussed in Section 2.5; the result

of Task 2, tracing its execution, would be { 4,5,7,8} ; the result of Task 3, validating it, would be

that du-associations (2,5F) and (2,7) as well as some involving Gr ades[1, 1] and

1 A simple variant on Task 4 is triggered by editing an input cell’s formula, which does not change testedness
information, although it does change validation checkmarks of affected cells to question marks. This variant is not
covered in detail in this paper, since it is simply a matter of omitting most of the work of the Task 4 algorithms.

IEEE Trans. on Software Eng. - 12 - (to appear, 2002 or later)

Gr ades[1, 2] would be marked “exercised” ; and the result of Task 4, adjusting testedness

after an edit, would be that such marks in its consumer, Aver age[1, 4] , would be removed

and the borders of both Gr ades[1, 4] and Aver age[1, 4] would be reset to the untested

color (red or light gray). Note that, because these tasks are not triggered by the same user actions,

they run at different times.

Figure 4 gives the algorithm for Task 1, collection of du-associations. Whenever the user

edits the region’s formula, this algorithm processes each cell in the region. After deleting prior

information (using del et ePr i or DUAI nf or mat i on, an algorithm of the same structure and

complexity as the algorithm in Figure 4), the main part of the algorithm proceeds. Note the use

of St at i cal l yResol ve; it is an O(1) routine that returns the actual cell to which a reference

with relative indices resolves. For example, if some cell M[1,3] ’s formula contains a reference to

P[i,j-1] , then St at i cal l yResol ve(M[1,3] ,P[i,j-1]) returns P[1,2] . The low cost of

St at i cal l yResol ve depends upon the static referencing common in spreadsheet languages

and on the ability to determine statically which of the shared formulas is the appropriate one for

a given cell. The mechanisms for formula sharing in commercial spreadsheet systems are static,

so they fulfill this requirement. The formula sharing mechanism in Forms/3 is also static, using

regions, so it too fulfills this requirement. Given static region sizes, St at i cal l yResol ve

works even in the case of dynamically-sized grids, because in that combination each region size

except one (the one that has been defined to hold elements not in any other region) still has a

statically-determined size, which means the applicable region (correct shared formula) for any

al gor i t hm Col l ect AssocSF(R)
 f or each cel l C ∈ R do
 Col l ect Assoc(C)

al gor i t hm Col l ect Assoc(C)
 del et ePr i or DUAI nf or mat i on(C)
 f or each cel l DP i n a use ∈ C. Uses do / / di r ect pr oducer s
 i f DP i s a gr i d cel l r ef er ence t hen
 DP = St at i cal l yResol ve(C, DP)
 f or each def i ni t i on ∈ DP. Def s do
 l et DUA = (def i ni t i on, use, f al se)
 add DUA t o C. DUAs. I ncomi ng
 add DUA t o DP. DUAs. Out goi ng
 f or each use of a def i ni t i on ∈ C. Def s do / / di r ect consumer s
 l et DC be t he cel l cont ai ni ng t he use
 l et DUA = (def i ni t i on, use, f al se)
 add DUA t o C. DUAs. Out goi ng
 add DUA t o DC. DUAs. I ncomi ng

Figure 4. Straightforward approach Task 1 algorithm for collecting a region’s du-associations for region R.

IEEE Trans. on Software Eng. - 13 - (to appear, 2002 or later)

cell can be statically determined. St at i cal l yResol ve is needed only in the producer loop,

in processing the formula to determine C’s relationships to its direct producers; it was already

performed earlier for C’s consumer cells, namely at the times their own formulas were edited.

Except for its introduction of St at i cal l yResol ve, Col l ect Assoc is simply a

slightly modified version of the algorithm developed for the original WYSIWYT methodology.

It is called n times by Col l ect AssocSF, once for each cell in a region of size n. Thus,

because Col l ect Assoc is called for every cell in the region, its cost is n times the single-cell

cost, a cost incurred whenever the region’s formula is edited. The single-cell cost is O(pd+ cd),

where pd and cd are C’s number of direct producers and direct consumers, respectively, assuming

a constant-bounded formula length [25]. Thus, for a region of size n, the total cost is O(n(pd+cd))

for Col l ect AssocSF, where pd and cd have the definitions above generalized to support the

context of regions: they are the number of direct producers and direct consumers, respectively, of

the worst-case cell in the region.

Task 2, collecting each cell’s execution trace, must be performed whenever a cell executes,

and is accomplished simply via a probe in the evaluation engine. Thus, this task can be done

easily and efficiently, adding only O(1) to the cost of executing a cell, and is incurred only for

the cells that actually execute.

For Task 3, the Straightforward approach marks “exercised” the cell’s relevant du-

associations, as well as those of its producers (i.e., its backward dynamic slice), and shows via

colors the resulting increase in du-associations exercised by the user’s testing. To do so, it

simply calls the original WYSIWYT methodology’s version of Val i dat eCover age n times,

where n is the number of cells in the selected group of cells. Val i dat eCover age was

presented in our earlier work, and its time complexity is O(p), where p is the number of C’s

producers [25, 27]. It sets C.DUA.exercised to true for each element of C.DUAs.Incoming whose

use is in C.Trace, and then recursively calls Val i dat eCover age on each cell referred to in

C.Trace’s uses. Finally, it updates the screen display of C to reflect its new testedness status. To

facilitate comparison with the approach presented in the next section, we assume the selected

group is a region of n cells, which is what the user would select in order to validate all element

cells sharing the region’s formula. Since the cost of this task is n times the cost of the task

performed on a single cell, the Task 3 total is O(np), where p represents the number of producers

(worst case) of any cell in the selected group.

For Task 4, whenever a region’s formula is edited, the Straightforward approach repeatedly

calls Adj ust Test edness , the original WYSIWYT methodology’s version [25, 27], for every

cell in the region. Once invoked on C, Adj ust Test edness keeps calling itself until every

IEEE Trans. on Software Eng. - 14 - (to appear, 2002 or later)

consumer of C has been processed. Thus the cost of the task is n times the cost of the task

performed on a single cell, or O(nc), where c is the number of consumers (worst case) of any cell

in the region.

4. Region Representative approach

The Region Representative approach is a more elaborate approach. It aims directly at

Problem 2 (system efficiency) by doing most of its reasoning at the granularity of entire regions

rather than at the granularity of individual cells, thereby removing some of the dependency on

region size. (Recall from Sections 2.1 and 2.3 that a region is a group of adjacent cells known by

the system to have been given the same formula by the user; an example is Figure 5’s COURSE

column, whose cells share the formula shown.) Unlike in the Straightforward approach, in the

Region Representative approach the user does not explicitly select a group of cells to validate;

rather, the user’s validation of a single cell is considered to be a validation of all cells in the same

region for the same input values as those affecting the explicitly validated cell. This approach

improves system efficiency over the Straightforward approach and provides many conveniences

to the user, some of which are even greater than in the Straightforward approach, but it does not

provide quite as much flexibility to the user.

Figure 5. The Gr ades spreadsheet from Figure 2 shown here under the Region Representative approach. The user
is in the process of testing by clicking the validation checkbox of Abbott’s COURSE cell, which validates du-
associations connected with the el se part of the formula for the entire COURSE region.

IEEE Trans. on Software Eng. - 15 - (to appear, 2002 or later)

The visual devices depict the reasoning differences from the Straightforward approach. The

crux of these differences is that the information collected when a user validates an element cell is

shared with all the other elements in the region, and this sharing is indicated via a single testing

border around the entire region, as in Figure 5. For example, if no cells in Figure 5 have been

validated yet and then the user validates Abbott’s COURSE cell, which executes the predicate

and the el se-expression in the formula, the COURSE column’s testing border turns purple

(medium gray), which is the point at which the screenshot in Figure 5 was made. If the user

subsequently validated Thomas’s COURSE cell, which executes the t hen-expression, the entire

column’s testing border would then become blue (black), denoting fully tested.

Although an important motivation in developing the Region Representative approach has

been to reduce the workload of the system, the Region Representative approach also offers

several advantages to the workload of the user. These advantages stem from the fact that the user

does less test input generation manually: a large grid already provides a variety of input data.

The first advantage is that the user may not need to conjure up new test inputs. For example, in

the Gr ades spreadsheet, the user tested Abbott’s COURSE cell in part by selecting another cell

for validation—Thomas’s COURSE cell—because it had a useful set of test inputs already

contributing to it. In contrast to this, in the Straightforward approach the user could achieve

coverage on Abbott’s COURSE cell only by editing in different input values to force execution

of both branches in that particular cell (Abbott’s). This leads to a mechanical advantage as well:

the Region Representative approach requires fewer physical actions, i.e. edits and validation

clicks, to achieve full coverage. This mechanical advantage becomes significant in a large grid,

such as a 500-student version of the Gr ades spreadsheet. The third advantage is that, when the

user does not provide a new test input, he or she does not need to modify the “ real” input data

and then remember to restore it. Fourth, the user’s job as oracle (decider of the correctness of

values) may be easier with the Region Representative approach, because with so many inputs

from which to choose, it may be possible to notice one that produces obvious answers, such as

Thomas’s values (bottom row of Figure 5).

An apparent disadvantage is loss of flexibility: the user seems to have no way to prevent the

propagation of testedness to all the cells in the region. Hence, some functionality is lost. For

example, the user cannot exclude a cell from group tests in favor of individualized testing, such

as a cell that refers to an out-of-range value. However, most instances of this disadvantage can be

removed by allowing the user to subdivide a region into more than one region for testing

purposes. For example, suppose there is a region R in which each cell is computed by adding

one to the cell above it. The user might want to test the top row of a rectangular region

IEEE Trans. on Software Eng. - 16 - (to appear, 2002 or later)

separately because it is based on an initial set of values (those provided by a different region

above it) rather than upon cells in the same region. To do this in our prototype, the user simply

subdivides R into two regions, R1 and R2, and tests them separately.

4.1 CRG model modifications

The Region Representative approach requires modifications to the CRG model described in

Section 2.4. The first modification is that, instead of a formula graph for each cell in a region R,

R’s cells are collectively modeled by a single formula graph of an abstract cell Rij, termed the

region representative for region R, such as in Figure 6. The second modification is that du-

associations are separated into two classes: those whose definitions occur in input cells (termed

constant du-associations) and those whose definitions do not. Consider CS, a set of constant du-

associations with the same use; all cells whose du-associations’ definitions are elements of CS

are said to be members of the same constant region. Each constant region is represented by a

single region representative, since all of its members are in essence simply different input

possibilities for the same use.

Using a single formula graph to represent multiple constant definitions involving the same

constant use is important to the practicality of the approach. Without this device, a user would

1:E

2:constant

3:X

Grades[i,3]

5:if (Grades[i,3]>Grades[i,2])

7:round(Grades[i,1]+
Grades[i,2]+Grades[i,3])/3

6:round(Grades[i,1]
+Grades[i,3])/2

4:E

8:X

T F

Grades[i,4]

from Grades[i,1], Grades[i,2]

Figure 6. CRG showing the region representative of Figure 5’s Gr ades ’ column 4, labeled Grades[i,4] here.
Column 3 contains input cells that do not have any shared formulas, but form a constant region, labeled Grades[i,3] .
Constant regions are also formed by columns 1 and 2. Note how much smaller this CRG is than the Straightforward
approach’s version of Figure 3: there are 4 CRG nodes in this figure, as compared to the 20 nodes in Figure 3.

IEEE Trans. on Software Eng. - 17 - (to appear, 2002 or later)

have to validate enough cells to involve every input cell in the spreadsheet—one for each

student, in the Gr ades example—and this would interfere with the scalability needed to solve

Problem 2. For example, returning to Figure 5, all cells in the Gr ades grid’s columns 1-3

(labeled HWAVG, MI DTERM, and FI NAL) have individual constant formulas. Since there are five

students, there are five constant du-associations terminating at the same use: the reference to

Gr ades[i @3] in the COURSE region’s t hen-expression. If the system required each of these

du-associations to be validated separately, the user would need to validate five rows twice,

modifying inputs for each, to exercise all the references in the t hen and the el se referring to

these separate uses. However, since constant du-associations terminating in the same use node

are represented by a single representative instead, as illustrated in Figure 6, the user can pick just

one row that has been executed by the t hen case (Abbott’s row in our example) and thereby

exercise all the region’s du-associations involving that use node with just one test, and then pick

one more row (e.g., Thomas’s) for the el se case.

4.2 Information collected

To realize the Region Representative approach, most of the testing-oriented information

corresponding to that described in Table 1 must be shared among element cells of a region via

the region’s representative. See Table 2.

 Information collected Description
1 Rij.DirectProducers The region representatives and non-region cells that are potentially

referenced in Rij ’s formula.
2-5 Rij.DirectConsumers,

Rij.Defs, Rij.Uses,
Rij.DUAs and its components

Same as Table 1, except replacing “C” by “Rij” , and replacing “cells” by
“region representatives and non-region cells” . For example, item 2
becomes:

 The region representatives and non-region cells whose formulas
explicitly reference Rij.

6 C.Trace The set of Rij’s formula graph nodes that were executed in the most recent
evaluation of cell C.

Table 2. Region Representative approach’s information collected. In the Region Representative approach, only the
trace information is still stored for each cell. The region representative Rij stores the rest of the testing-oriented
information as a representative of all cells in its region. (The numbering at left refers to the numbering of Table 1.)

4.3 Task 1 reasoning: Collecting static information for region R

The algorithm for collecting Rij.DUAs (Task 1) is shown in Figure 7. As in the

Straightforward approach, this algorithm is triggered whenever a formula is edited. One

important difference from Col l ect AssocSF (Figure 4) is that du-association collection is

done once per region rather than once per cell. The other important difference is that if region

IEEE Trans. on Software Eng. - 18 - (to appear, 2002 or later)

representative Rij refers to grid G’s cell DP, then the representative of every region in G to

which DP could possibly belong must be regarded as a source of definitions used by Rij.

Col l ect AssocRR uses St at i cal l yResol veRegi on, which is similar to

St at i cal l yResol ve, but returns information about regions rather than about cells. Given a

region R and its representative Rij whose formula includes a reference P[i,j-1] ,

St at i cal l yResol veRegi on returns a list of representatives for regions to which P[i,j-1]

could belong, at a cost of O(r) where r is the number of regions in grid P. In

St at i cal l yResol veRegi on, Rij provides the context. For example, if R, which includes

row 1 from columns 2 to 4, refers to P[i,j-1] , where P is a grid with regions at the same positions

as in R’s grid, then St at i cal l yResol veRegi on(Rij,P[i,j-1]) returns two representatives:

one for the region of P containing only row 1 column 1, and one for the region of P containing

row 1 columns 2 to 4.

St at i cal l yResol veRegi on’s reasonable time cost is possible because regions are

rectangular and contiguous; hence geometric reasoning can be used instead of a search to

determine whether a cell reference could be within a particular region’s boundaries. In the above

example with Rij as the representative for region R spanning (1,2) to (1,4), Rij’s reference to

P[i,j-1] falls within the rectangle bounded by (1,1) and (1,3); hence, any region in P overlapping

this rectangle is potentially the region in which one of the P[i,j-1] s actually resides.

It is also possible to extend St at i cal l yResol veRegi on to accommodate non-

contiguous and non-rectangular regions. For example, in the Gr ades spreadsheet of Figure 5,

al gor i t hm Col l ect AssocRR(Ri j)
 del et ePr i or DUAI nf or mat i on(Ri j)
 f or each cel l / r ep DP i n a use ∈ Ri j . Uses do / / di r ect pr oducer s
 i f DP i s an or di nar y cel l
 t hen r egReps = { DP}
 el se r egReps = St at i cal l yResol veRegi on(Ri j , DP)
 f or each def Ri j ∈ r egReps do
 f or each def i ni t i on ∈ def Ri j . Def s do
 l et DUA = (def i ni t i on, use, f al se)
 add DUA t o Ri j . DUAs. I ncomi ng
 add DUA t o def Ri j . DUAs. Out goi ng
 f or each use of a def i ni t i on ∈ Ri j . Def s do / / di r ect consumer s
 l et DC be t he cel l / r ep cont ai ni ng t he use
 l et DUA = (def i ni t i on, use, f al se)
 add DUA t o Ri j . DUAs. Out goi ng
 add DUA t o DC. DUAs. I ncomi ng

Figure 7. Task 1 algorithm for collecting a region’s du-associations in the Region Representative approach.

IEEE Trans. on Software Eng. - 19 - (to appear, 2002 or later)

suppose Green has a medical emergency and misses the midterm exam, and suppose the

instructor chooses to calculate Green’s COURSE grade using a special formula that omits the

MI DTERM cell. Geometrically, this would divide the Gr ades grid’s COURSE column (region)

into three rectangular regions—one for every student above Green, one for Green’s COURSE

grade, and one for every student below Green—but logically, two regions would be more

appropriate because only two distinct formulas are needed—one for Green’s COURSE grade,

and one for all the other students’ COURSE grades. Supporting a region consisting of multiple

disjoint rectangles could be done if St at i cal l yResol veRegi on (and

St at i cal l yResol ve) were changed to reason about each rectangle rather than about each

region, changing the cost to O(rect), where rect is the number of rectangles. Since ignoring non-

rectangular and non-contiguous regions in this presentation does not result in loss of generality,

for the rest of this paper we will ignore them for brevity.

4.3.1 Time complexity of Task 1

Suppose there is a region R and its representative is Rij. Let pd' be the number of region

representatives1 that are potentially referenced by Rij’s uses, i.e., a conservative (static)

definition of Rij’s direct producers. This is the set traversed by the first two loops of the

algorithm. Within these first two loops is a call to St at i cal l yResol veRegi on, which

costs O(r), where r is the maximum number of regions in a grid being referred to by any one

reference in Rij’s formula. Let f be the maximum number of definition nodes in any referenced

region’s formula graph. This is the set traversed by the innermost loop. Finally, let cd' be the

number of region representatives that have previously been determined to potentially reference

Rij (a conservative definition of Rij’s direct consumers). These are the cells visited by the last

loop. Thus, the total time cost of the algorithm is:

 O(rfpd'+cd')

The above cost can be further simplified when there is a maximum imposed on formula

lengths. Most spreadsheet languages have such a maximum; for example, in Excel, the

maximum is 1024 characters. Given the presence of such a maximum, f becomes constant-

bounded by the maximum formula length, simplifying the asymptotic time cost of Task 1 to:

 O(rpd' + cd')

1 For simplicity, in cost analyses we will consider a cell that is not in a region to be a representative of itself.

IEEE Trans. on Software Eng. - 20 - (to appear, 2002 or later)

as compared to the Straightforward approach’s cost of O(npd+ncd). The savings over the

Straightforward approach’s cost come from all three factors. This is because Rij’s pd' direct

producers and cd' direct consumers include region representatives, each of which potentially

replaces multiple elements in all the element cells’ pd direct producers and cd direct consumers.

Similarly r is potentially much smaller than n. For example, for the COURSE region of Gr ades

(i.e., Gr ades[i , 4]) of Figure 5 and Figure 6, although cd' and cd are equal (cd'=cd=1), and pd'

and pd are equal (pd'= pd=3), r=1 region whereas n=5 cells in the COURSE region.

4.3.2 Cost of Task 1 in context

This algorithm is triggered when the user edits region R’s formula. At this point, the costs

any spreadsheet system must incur even without the existence of a testing subsystem are those of

parsing the formula, which costs at least the number of characters in the formula; of calculating

at least the on-screen cells in R, requiring visits to the on-screen cells in R and some of their

producers; and of notifying consumers of the edited cell that their values are out of date,

requiring recalculation and/or discarding of any previously cached values [25].

Of these three costs, the costs of evaluation and notification are the most useful to consider,

because they are the greatest that involve the same cell sets as in Task 1. If all of the region’s

cells are on the screen, the cost of evaluation is at least as great as O(pd'), because the system

needs to revisit at least all direct producers and to recalculate producers (including direct

producers) that do not already have up-to-date cached values. (Each cell can keep a pointer to its

representative, as is the case in our implementation, so that a visit to a cell can lead to the

representative with only a constant cost addition.) Notification of consumers requires the system

to visit at least all the direct consumers. Since evaluation and notification visit at least the same

cells as in Task 1, then when the region is entirely on the screen and r is small—which is the

case for spreadsheets with many shared formulas and/or multiple input cells—the cost of Task 1

in the context in which it is performed increases by a multiplicative constant factor. However,

when these conditions do not hold, whether the worst case cost of Task 1 increases by more than

a multiplicative constant factor the cost of work triggered by a formula edit depends on the host

spreadsheet language’s particular evaluation and caching strategies.

4.4 Task 2 reasoning: Tracking execution traces

Storing execution traces whenever a cell executes is, as in the Straightforward approach,

implemented simply by inserting a probe into the evaluation engine, so no separate algorithm is

presented here. The probe adds O(1) to the cost of evaluating a cell.

IEEE Trans. on Software Eng. - 21 - (to appear, 2002 or later)

4.5 Task 3 reasoning: Validating all of region R

The algorithm for validation is shown in Figure 8. Val i dat eRepRR is similar to a single

call to the original WYSIWYT methodology’s Val i dat eCover age algorithm, with the

difference that Val i dat eRepRR derives cell references from generic region row/column

specifiers, which is accomplished via the call to St at i cal l yResol ve. Even though trace

information for each cell is used, in general this algorithm reasons at the granularity of regions

about du-associations in the region’s formula. It marks as exercised region du-associations

involving uses in the cell’s trace being validated, and then repeats recursively on the producers

contributing to these uses. In contrast to this, in the Straightforward approach, Task 3 makes

multiple calls to the original WYSIWYT methodology’s Val i dat eCover age algorithm.

Suppose the algorithm’s incoming parameter cell C exists in region R, whose representative

is Rij. Let p be the worst-case number of producers of any element cell in R (i.e., the worst-case

size of the backwards dynamic slice of any cell in R). Val i dat eRepRR traverses du-

associations for all direct producers in C’s trace (jointly accomplished by the top two loops), and

then has a recursive call to the producers of these producers. Thus, the total time cost is simply:

 O(p)

as compared to the Straightforward approach’s cost of O(np).

Task 3 is triggered when the user performs one validation of cell C. Its cost is similar to the

cost of evaluating a cell when there are no relevant cached values, but unlike the evaluator, Task

3 does not need to access any consumers to notify them that their cached values are out of date.

al gor i t hm Val i dat eRepRR(C, Val i dat edI D)
 l et R = C’ s r egi on
 l et Ri j = R’ s r egi on r epr esent at i ve
 Ri j . Val i dat edI D = Val i dat edI D
 f or each use ∈ C. Tr ace do
 f or each DUA i n Ri j . DUAs. I ncomi ng do
 i f DUA. use = use t hen
 l et def Cel l = t he cel l r ef er enced i n DUA. def i ni t i on
 i f def Cel l i s a gr i d cel l t hen St at i cal l yResol ve(C, def Cel l))
 i f DUA. def i ni t i on ∈ def Cel l . Tr ace t hen
 DUA. exer ci sed = t r ue
 i f def Cel l . Val i dat edI D < Val i dat edI D t hen
 i f def Cel l i s not a gr i d cel l
 t hen Val i dat eCover age(def Cel l , Val i dat edI D)
 el se Val i dat eRepRR(def Cel l , Val i dat edI D)
 Updat eDi spl ay(R)

 Figure 8. Task 3 algorithm for validating a cell in region R under the Region Representative approach.

IEEE Trans. on Software Eng. - 22 - (to appear, 2002 or later)

4.6 Task 4 reasoning: Adjusting testedness for region R

The algorithm for adjusting testedness is shown in Figure 9. It is called when a region’s

formula is edited. For each outgoing du-association in the region, it marks the du-association

“not exercised,” and recursively processes consumers that make use of the edited region.

The two explicit loops traverse the du-associations in direct consumers of C. There is also a

recursive call to consumers of these consumers. The algorithm is quite similar to that of the

Straightforward approach, except that it stops when it has visited all consumers’ representatives

(which is the same as the number of consumers for one cell), instead of visiting all consumers of

all cells. Thus, the total time cost of Task 4 is:

 O(c)

where c is the number of consumers’ representatives referred to by C’s region representative’s

formula, as compared to the Straightforward approach’s cost of O(nc).

Task 4, like Task 1, is triggered when a new formula is entered for region R. Most evaluation

strategies require visits to all the consumers of R’ s cells for purposes of discarding cached values

and/or recalculating them, the specifics of which depend on whether the engine uses lazy or

eager evaluation [25]. Because of this fact, Task 4 under the Region Representative approach

adds only O(1) to the other work that is normally performed by a spreadsheet system without a

testing subsystem.

4.7 A high-level overview of cost savings

The number of cells visited to reason about testing provides a high-level system-independent

measure of time savings potential. Table 3 compares the two approaches on this basis.

al gor i t hm Adj ust Test ednessRR(C, UnVal i dat edI D)
 l et R = C’ s r egi on
 l et Ri j = R’ s r egi on r epr esent at i ve
 f or each DUA ∈ Ri j . DUAs. Out goi ng
 DUA. exer ci sed = f al se
 f or each useCel l r ef er enced i n DUA. use
 i f useCel l . UnVal i dat edI D < UnVal i dat edI D t hen
 i f useCel l i s an or di nar y cel l
 t hen Adj ust Test edness(useCel l , UnVal i dat edI D)
 el se Adj ust Test ednessRR(useCel l , UnVal i dat edI D)
 Updat eDi spl ay(R)

Figure 9. Task 4 algorithm to adjust testedness when a shared (region) formula is edited.

IEEE Trans. on Software Eng. - 23 - (to appear, 2002 or later)

System Task Trigger Cells Visited:

Straightforward Approach (SF)
Cells Visited:

Region Representative Approach (RR)

Task 1: Collect
du’s for region
R.

The user
changes region
R’s formula.

SF1 =
|R’ s direct producers| +
|R’ s direct consumers| + n

RR1 =
|R’ s direct producers’ representatives| +
|R’ s direct consumers’ representatives| + 1

Task 2: Track
execution traces.

1 or more cells
execute.

SF2 =
Number of cells executing

RR2 = SF2

Task 3: Validate
all of region R.

The user
performs one
validation.

SF3 =
|R’ s producers| + n

RR3 =
|R’ s producers’ representatives| + 1

Task 4: Adjust
testedness for R.

Same as Task
1.

SF4 =
|R’ s consumers| + n

RR4 =
|R’ s consumers’ representatives| + 1

Table 3. Number of cells visited in reasoning about region R containing n cells. (For simplicity of this table, we
defined an “ordinary” non-region cell to be a representative of itself.)

5. Effects of the visual devices on time costs

There are three visual devices used in the original WYSIWYT methodology to communicate

testedness to users about individual cells. Two of them—border colors and validation checkbox

contents (checkmark, question mark, or blank)—have already been shown in the figures. Here

we consider the effects of these two devices and a third device on the time costs.

The third device available to users, which has not been shown in the figures to this point, is

optional dataflow arrows1 colored with “ testedness” status in the same manner as the border

colors. Not only do these arrows show dataflow paths among cells; when formulas are showing,

they also show the interactions between formula subexpressions and the testedness of each—in

other words, each du-association’s testedness status. Because these arrows extend visual

feedback about testedness to the granularity of interactions among subexpressions, they provide

information that can direct users to a testing action that will increase testedness. To users, this

additional information seems to be almost as important as the border colors: in an empirical

study of the original WYSIWYT methodology, 100% and 92% of the participants reported that

the border colors and arrows, respectively, were helpful to their testing effort [28].

In the Straightforward approach, all three of the visual devices were employed unchanged for

grids, just as described in the paragraphs above. This was also the case in our earliest prototypes

of the Region Representative approach. However, the impacts of this naive decision on both

usefulness and time costs were dramatic. From the user’s perspective, the number of arrows

leading in and out of the cells in just a single grid were sometimes so great, the screen became

1 To avoid adding too much clutter, each cell’s arrows are transient, and appear/disappear when the user clicks on
the cell.

IEEE Trans. on Software Eng. - 24 - (to appear, 2002 or later)

swamped with these arrows, rendering worthless their communication value to users. From the

system’s perspective, the time savings that accrued from the Region Representative approach’s

behind-the-scenes reasoning improvements were so overshadowed by the high visual update

costs of re-coloring each cell border individually, the savings were obliterated. Thus, both

aspects of scalability were lost.

Changing the visual devices in the Straightforward approach to solve these problems did not

seem reasonable, since the very essence of that approach is its reasoning about individual cells,

and this must be reflected in visual communications with the user. However, the Region

 (a) (b)

(c)

Figure 10. Since the Region Representative approach reasons at the granularity of regions rather than cells, borders
and arrows depict testedness statuses and relationships at the granularity of regions as well (evident in grid M2). (a)
The initial state of spreadsheet Dual Ref er enci ng with the optional arrows showing. (b) The user has validated
M2[1, 1] ; hence several borders and arrows become more blue (darker gray or black). (c) The user has now also
validated M2[1, 2] , which turns more of the borders and arrows blue (black).

IEEE Trans. on Software Eng. - 25 - (to appear, 2002 or later)

Representative approach reasons region by region rather than cell by cell, and we were able to

reflect this reasoning granularity in the visual devices. This can be seen by considering Figure

10. First, note that there is only one testing border, which surrounds the entire region in M2.

Also, consider M1[1, 2] ’s definition, which M2[1, 1] uses. This relationship is not depicted

with arrows cell by cell, but rather region by region, by pointing into M2’s region’s shared

formula, or the region boundary if the formula is not showing. Thus, the arrows in the figure

show that M2’s single region uses only the rightmost two of M1’s regions.

For a given spreadsheet S, let r be the number of regions in S and let n be the maximum

number of element cells that any region has. Although Task 1 does not itself trigger visual

updating, in order to support the later visual display of the colored arrows, Task 1 must collect

du-associations about individual constant cells—in addition to the constant region representative

du-associations that are sufficient for reasoning purposes. Doing so adds a cell-based loop to the

Task 1 algorithm for the Region Representative approach, introducing a cost dependency on the

number of constant cells (nr) rather than on the number of constant regions (r).

Task 3 and Task 4 entail visual updating, and these costs can be significant. Under the

Straightforward approach, Task 3 requires repainting O(nr) cells to update each cell’s testing

border. If colored arrows are on display, the cost increases to O((nr)2). However, under the

Region Representative approach, this task requires only O(r) updates of the testing borders, or

O(r2) if colored arrows are displayed. For Task 4, the relationship between the Straightforward

approach and the Region Representative approach is the same in terms of r and n as for Task 3,

for border and arrow updating. In addition, Task 4 requires repainting the validation checkboxes

of O(nr) cells for both approaches.

The actual pixel repainting algorithms are part of the Garnet user interface toolkit [20], and

incur the usual expense of reasoning about which pixels are visible and “dirty” . Because these

algorithms work with pixels, in addition to the dependency on the number of objects updated

(expressed using r and n above) there is also a dependency on the physical sizes of these objects.

Thus, repainting a single region’s border is more expensive than repainting a single cell’s border,

which inherently adds some cost back to the Region Representative approach’s region-based

visual updating strategy. Such repainting algorithms are well established, and are not part of our

work; hence they are not presented here.

IEEE Trans. on Software Eng. - 26 - (to appear, 2002 or later)

6. Per formance exper iments

To provide additional, concrete information about how the scalability of the Region

Representative approach compares to that of the Straightforward approach, we conducted

performance experiments. The purpose of these experiments was to complement the analyses of

the previous sections, which are about theoretically worst cases, with evidence about the

approaches’ actual time costs for large and small spreadsheets. Also, to measure the extent to

which the effects of visual updating actually impact performance, the impact of costs associated

with visual updating are considered.

Since the main objective of the experiments was to investigate scalability, we chose to vary

only the size of the spreadsheet, holding other variables (such as degree of homogeneity, internal

formula complexity, and interrelationships among formulas) constant. Figure 11 shows the

spreadsheet used. In the figure, cells for 10 students are shown. The experiments were run on

five different versions of this spreadsheet, involving 1, 10, 100, 200, and 500 students.

The spreadsheet used is similar to the simplified grade computation examples shown earlier

in this paper, but contains a collection of formulas reflective of some common grading policies,

such as allowing extra credit, rewarding improvement, and discarding the lowest quiz grade.

Figure 11. 10-student version of the Mat r i xGr ades spreadsheet. (The bottom borders have been arranged to allow the
relevant formulas to display without overlap.)

IEEE Trans. on Software Eng. - 27 - (to appear, 2002 or later)

Also, for compactness on our screen shots and analyses, additional input cells that do not add

materially to the computations, such as for student names and IDs, have been omitted. The

spreadsheet computes a course letter grade (A, B, C, D, or F). The scores range from 0 to 100.

The first two columns of Mi ns track the minimum of each pair of quiz scores, and the final

column is the minimum of the first two columns. The total score is the sum of the average of the

three highest quiz scores, the points awarded based on the extra credit score, and bonus points for

improvement. The letter grade is A, B, C, or D if the total score is greater than or equal to 90,

80, 70, or 60, respectively, and is an F if the total score is less than 60.

In our first performance experiment, all non-constant formulas in the spreadsheet were

edited, thus triggering Tasks 1, 2, and 4. We term this the user-edit experiment. In our second

performance experiment, we validated the minimum number of cells needed to achieve full

coverage (Task 3). We term this the user-validate experiment. To compare runtimes of the two

approaches, we ran both experiments on a Sun workstation and compared the timings of the

Region Representative approach to those of the Straightforward approach. All timings are

execution time averages of ten consecutive runs, and were taken on a Sun UltraSparc with 512

MB of RAM, with a single user, under Liquid Common Lisp 5.0.3 with Garnet [20].

Task 1: The comparisons for Task 1 (collecting static information) in the user-edit

experiment are graphed in Figure 12. As the graph shows, for 10-500 students, the Region

Representative approach was much faster than the Straightforward approach, and it did not slow

the system down appreciably for the spreadsheet of 1 student. Further, responsiveness per edit

remained reasonable for the Region Representative approach, adding less than one-half second to

the spreadsheet’s response time per formula edit even in the 500-student spreadsheet. The

polynomial growth of savings demonstrated in this experiment by the Region Representative

approach is consistent with the multi-factor advantage pointed out earlier by the analysis of this

task’s reasoning cost. The Region Representative’s growth is not flat because of the information

that must be collected to support the visual aspects, as discussed in Section 5.

Task 2: The costs of Task 2 were negligible under both approaches.

Task 3: Figure 13 displays performance comparisons for Task 3, gathered in the user-

validate experiment. In the experiment, the goal was to validate all cells in the spreadsheet.

Under the Region Representative approach, it was possible, by selecting appropriate test cases, to

achieve 100% coverage in 10 validations. The fact that at least 10 is required for this spreadsheet

can be seen from the two rightmost formulas alone: Let t er Gr ade has 5 cases and I mp has 2

cases, each of which interacts with each Let t er Gr ades case. The same inputs that exercise

these were also chosen so that the other interactions were exercised at the same time.

IEEE Trans. on Software Eng. - 28 - (to appear, 2002 or later)

Thus, under the Region Representative approach, we achieved full coverage by validating 10

cells in the Let t er Gr ade column once each, a total of 10 validations per spreadsheet, with the

exception of the 1-student spreadsheet. In the 1-student spreadsheet, under both approaches, we

measured timings by validating the only cell in the Let t er Gr ade column once. This did not

achieve full coverage in this spreadsheet, but is the most useful for consistent comparisons with

the larger grids. Also, even though it does not achieve full coverage, its timing shows that the

overhead expense did not swamp the costs in small grids.

On the other hand, in the Straightforward approach, each Let t er Gr ade cell had to be

validated 10 times to achieve full coverage, a total of 10N validations per spreadsheet. In

addition to checking off values, in the Straightforward approach a great deal of editing of input

cells was required; however, we omitted this cost, choosing instead to isolate validation cost.

Task 1

3.1 t
0.4 pe1.2 t

0.2 pe0.6 t
0.1 pe

0.1 t
�0 pe

0.1 t
�0 pe

78.3 t
11.2 pe

17.4 t
2.5 pe

6.8 t
1.0 pe

0.5 t
0.1 pe0.1 t

�0 pe

0

20

40

60

80

100

0 100 200 300 400 500

Timings
(seconds)

Task 3

9.4

3.9
2.1

0.4

�0

86.1

34.3

16.9

1.8

�0

0

20

40

60

80

100

0 100 200 300 400 500

Timings
(seconds)

Figure 12. Task 1 costs of editing all 7 of the non-
constant formulas for the different spreadsheet sizes on
the x-axis. Solid black denotes the Straightforward
approach, and gray/dashed denotes the Region
Representative approach. Data labels marked “ t” are
total times incurred for these edits, and are the values
actually plotted. In addition, average response times per
single edit action are shown (marked “pe”).

Figure 13. Total execution times of Task 3 in the user-
validate experiment (validating enough cells to turn all
testing borders blue or black). For both approaches,
response times (not shown) were all less than one second
per user validation action.

IEEE Trans. on Software Eng. - 29 - (to appear, 2002 or later)

Thus, the graph shows only the execution costs of checking off enough values to achieve 100%

du-adequacy.

In the Task 3 measurements, the impact of the visual updating was very apparent. In the

Region Representative approach, the GUI updates accounted for 50% to 90% of the total cost. In

the Straightforward approach, the GUI cost was much higher than in the Region Representative

approach in number of seconds (e.g., 34.9 seconds versus 9.3 seconds in the 500-student case),

but the reasoning cost still outweighed the GUI cost in that approach. This is because each

spreadsheet required 10 separate validation actions for each cell in the Straightforward approach,

which caused 10 duplicated traversals over the same paths (greatly increasing the reasoning cost)

even though only fractions of the paths required visual updating during any one traversal.

Task 4: Figure 14 presents performance

comparisons of the two approaches for Task

4, collected in the user-edit experiment. Task

4 includes a visual component, which is the

reason the Region Representative approach’s

times increased at a slow linear rate, rather

than holding constant. The Region

Representative approach’s total costs were

approximately the same as for Task 3;

however, the Straightforward approach’s total

costs were much less expensive than for Task

3, because Task 4 features only 7 user actions

(edits) per spreadsheet triggering data

structure traversals, as compared to the 10N

user actions (checkmarks) per spreadsheet of

Task 3, which triggered many more

traversals. Task 4’s cost per edit (response

time cost) was just over 1 second for the

largest spreadsheet under the Region

Representative approach, compared with almost 5 seconds for the same spreadsheet under the

Straightforward approach.

User Actions: Table 4 shows the user actions required to perform Task 3 in the user-validate

experiment, assuming that the quiz and extra credit scores had previously been entered. In the

table, the user edit actions under the Region Representative approach are 0 in the best case,

Task 4

8.2 t
1.2 pe

3.3 t
0.5 pe1.7 t

0.2 pe0.2 t
�0 pe

0.1 t
�0 pe

0.1 t
�0 pe

0.7 t
0.1 pe

6.7 t
1.0 pe

13.8 t
2.0 pe

33.5 t
4.8 pe

0

20

40

60

80

100

0 100 200 300 400 500

Timings
(seconds)

Figure 14. Task 4 comparison in the user-edit
experiment.

IEEE Trans. on Software Eng. - 30 - (to appear, 2002 or later)

which occurs if there are at least 10 students and if these students’ inputs exercise all the du-

associations. The probability of this being true increases with the number of students in the

spreadsheet. In the worst case, the user must edit scores for 9 of the students in the grid in order

to get the additional coverage needed beyond that provided by the real scores. Given the

necessary input actions, 10 validations are required, one for each unique du-association path, to

achieve 100% coverage. These counts follow the user-validate experiment’s design, which count

the minimum number of actions needed. Users could enter more inputs and validate more cells

if they wished.

Region Representative approach
(actions)

Straightforward approach
(actions)

N-student version
of

Mat r i xGr ades
spreadsheet

Students
whose scores

must be edited

Validation
actions

Students
whose scores

must be edited

Validation
actions

1 student 9 10 9 10
10 students 0-9 10 90 10-100

100 students 0-9 10 900 10-1000
200 students 0-9 10 1800 10-2000
500 students 0-9 10 4500 10-5000

Table 4. User actions required to test the Mat r i xGr ades spreadsheet (Task 3). The edit counts in the
Straightforward approach are greater than the number of students because each student must be edited 9 times.

The user edit actions under the Straightforward approach come from the fact that each cell is

reasoned about separately; hence to completely validate every cell, each cell must be forced

through all 10 test cases. Because the user is allowed to select a set of cells and validate them

with one click, the number of physical mouse clicks required to perform the validations could be

reduced to as few as 10 if the user first rubberbands the entire group. However, there is no

similar way to reduce the number of edit actions in the Straightforward approach: the user must

enter enough inputs to force every student row through each of the 10 cases.

7. Conclusion

In previous work, we presented the WYSIWYT methodology, an approach to supporting

systematic testing of individual spreadsheet cells. However, the approach was not scalable to

large homogenous grids, because the costs of the methodology were highly dependent on the

number of cells rather than on the number of distinct formulas. Thus, 500 cells with the same

replicated formula would have to be tested individually.

An obvious approach to solving this problem is to provide what amounts to a simple user

interface device, namely to rubberband large groups of cells to test them at once. In this paper

IEEE Trans. on Software Eng. - 31 - (to appear, 2002 or later)

this approach is termed the Straightforward approach. In contrast, the Region Representative

approach incorporates the homogeneity of spreadsheet grids into all of the theoretical model, the

system’s reasoning mechanisms, and the user’s interactions about testedness.

Both the Straightforward and the Region Representative approaches allow a user validation

action on one cell to be leveraged across an entire region. This reduces user actions and, in the

case of the Region Representative approach, also reduces manual test case generation. However,

the user action savings available under the Straightforward approach are not as great as those

available under the Region Representative approach, as the experiments showed. Also, unlike

the Straightforward approach, the Region Representative approach greatly reduces the system

time required to maintain testedness data, so that it removes much of the dependency of system

time on grid region size. This is critical in maintaining the high responsiveness that is expected

in spreadsheet languages even in the presence of large grids. However, the time analyses and

performance experiments also brought out the tension between the system completing the tasks

speedily in order to maintain responsiveness in the highly interactive world of spreadsheets

versus providing as much immediate visual feedback about testedness as possible, which slows

down the system.

This work is part of our ongoing effort to develop an integrated, incremental approach to

testing for both end users and programmers working in the spreadsheet paradigm. We have

performed some empirical work [8, 25, 28], and more is planned. Our studies so far show

significant testing advantages in using the WYSIWYT approach, but there are many potential

pitfalls, which we are working to overcome. One possibility is that, for some spreadsheets, users

may have difficulty devising suitable test cases. To address this, we are working on including

automatic test case generation. We have also been working on ways to ease the user’s oracle

task, integration of explicit assistance for fault localization [23], and continual improvements to

the visual devices that can guide users to actions that will increase testing coverage of the

spreadsheet.

All the mechanisms we are incorporating into our WYSIWYT methodology are designed for

tight integration into the environment, with the only visible additions being checkboxes and

coloring devices. There are no testing vocabulary words such as “du-association” displayed, no

dialog boxes about testing options, and no separation of testing results from the program

fragments producing those results. This design reflects the goal of our research into testing

methodologies for this kind of language, which is to bring at least some of the benefits that can

come from the application of formal testing methodologies to spreadsheet users.

IEEE Trans. on Software Eng. - 32 - (to appear, 2002 or later)

Acknowledgments

Curtis Cook and Thomas Green have made important contributions relating to the

methodology’s usability and usefulness to users. We also thank the other members of the Visual

Programming Research Group at Oregon State University for their feedback and help with the

implementation. This work was supported in part by the National Science Foundation under ESS

Award CCR-9806821, Faculty Early CAREER Award CCR-9703198, and ITR Award ITR-

0082265 to Oregon State University. Patent pending.

References

[1] A. Aho, R. Sethi, and J. Ullman, Compilers, Principles, Techniques, and Tools. Reading, MA: Addison-
Wesley Publishing Company, 1986.

[2] P. Brown and J. Gould, “An Experimental Study of People Creating Spreadsheets,” ACM Trans. Office
Automation 5 (3), 258-272, July 1987.

[3] M. Burnett and H. Gottfried, “Graphical Definitions: Expanding Spreadsheet Languages through Direct
Manipulation and Gestures,” ACM Trans. Computer-Human Interaction 5(1), 1-33, Mar. 1998.

[4] M. Burnett, A. Agrawal, and P. Zee, “Exception Handling in the Spreadsheet Paradigm,” IEEE Trans.
Software Engineering 26(10), 923-942, Oct. 2000.

[5] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S. Yang, “Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet Paradigm,” J. Functional Programming, 155-206,
March 2001.

[6] M. Burnett, A. Sheretov, and G. Rothermel, “Scaling Up a ‘What You See Is What You Test’ Methodology
to Testing Spreadsheet Grids,” Proc. 1999 IEEE Symp. Visual Languages, 30-37, Sept. 1999.

[7] E. Chi, J. Riedl, P. Barry, and J. Konstan, “Principles for Information Visualization Spreadsheets,” IEEE
Computer Graphics and Applications, July/Aug. 1998.

[8] C. Cook, K. Rothermel, M. Burnett, T. Adams, G. Rothermel, A. Sheretov, F. Cort, and J. Reichwein,
“Does a Visual ‘Testedness’ Methodology Aid Debugging?” Oregon State University TR #99-60-07, rev.
Mar. 2001. Available at ftp://ftp.cs.orst.edu/pub/burnett/TR.EmpiricalTestingDebug.ps

[9] Coopers & Lybrand UK, “Spreadsheet Modelling in Financial Services Institutions,”
http://www.planningobjects.com/jungle1.htm, June 1997.

[10] R. Djang and M. Burnett, “Similarity Inheritance: A New Model of Inheritance for Spreadsheet VPLs,”
Proc. 1998 IEEE Symp. Visual Languages, 134-141, Sept. 1998.

[11] E. Duesterwald, R. Gupta, and M. L. Soffa, “Rigorous Data Flow Testing through Output Influences,”
Proc. Second Irvine Software Symposium, 131-145, Mar. 1992.

[12] P. Frankl and E. Weyuker, “An Applicable Family of Data Flow Criteria,” IEEE Trans. Software
Engineering 14(10), 1483-1498, Oct. 1988.

[13] D. Galletta, D. Abraham, M. El Louadi, W. Lekse, Y. Pollalis, and J. Sampler, “An Empirical Study of
Spreadsheet Error-Finding Performance,” Accounting, Management, and Information Technology 3(2), 79-
95, 1993.

[14] D. Hamlet, B. Gifford, and B. Nikolik, “Exploring Dataflow Testing of Arrays,” Proc. Int’ l. Conf. Software
Engineering, 118-129, May 1993.

[15] J. Horgan and S. London, “Data Flow Coverage and the C Language,” Proc. Fourth Symp. Testing,
Analysis, and Verification, 87-97, Oct. 1991.

[16] J. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,” IEEE Trans. Software
Engineering 9, 347-354, May 1993.

[17] J. Leopold and A. Ambler, “Keyboardless Visual Programming Using Voice, Handwriting, and Gesture,”
Proc. 1997 IEEE Symp. Visual Languages, 28-35, Sept. 1997.

IEEE Trans. on Software Eng. - 33 - (to appear, 2002 or later)

[18] Microsoft Corporation, Microsoft Excel 4.0 User’s Guide 1 and Microsoft Excel 4.0 Function Reference,
1992.

[19] B. Myers, “Graphical Techniques in a Spreadsheet for Specifying User Interfaces,” Proc. ACM Conf.
Human Factors in Computing Systems, 243-249, May 1991.

[20] B. Myers, D. Guise, R. Dannenberg, B. Vander Zanden, D. Kosbie, E. Pervin, A. Mickish, and P. Marchal,
“Garnet: Comprehensive Support for Graphical, Highly Interactive User Interfaces,” Computer, 71-85,
Nov. 1990.

[21] R. Panko, “What We Know About Spreadsheet Errors,” J. End User Computing 10(2), 15-21, Spring 1998.
A longer, continuously-updated version is at http://panko.ccba.hawaii.edu/ssr/, with related information at
http://panko.ccba.hawaii.edu/humanerr/ and http://panko.ccba.hawaii.edu/humanerr/SS.htm.

[22] S. Rapps, and E. J. Weyuker, “Selecting Software Test Data Using Data Flow Information,” IEEE Trans.
Software Engineering 11, 367-375, Apr. 1985.

[23] J. Reichwein, G. Rothermel, and M. Burnett, “Slicing Spreadsheets: An Integrated Methodology for
Spreadsheet Testing and Debugging,” Proc. Conf. Domain Specific Languages (DSL’99), 25-38, Oct. 1999.

[24] B. Ronen, R. Palley, and H. Lucas, “Spreadsheet Analysis and Design,” Communications of the ACM 32
(1), 84-93, Jan. 1989.

[25] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A. Sheretov, “A Methodology for Testing Spreadsheets,”
ACM Trans. Software Engineering and Methodology, 110-147, Jan. 2001.

[26] G. Rothermel, L. Li, and M. Burnett, “Testing Strategies for Form-based Visual Programs,” Proc. Eighth
Int’ l. Symp. Software Reliability Engineering, 96-107, Nov. 1997.

[27] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, “What You See Is What You Test: A Methodology for
Testing Form-Based Visual Programs,” Proc. Int’ l. Conf. Software Engineering, 198-207, Apr. 1998.

[28] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green, and G. Rothermel, “An Empirical Evaluation
of a Methodology for Testing Spreadsheets,” Proc. Int’ l. Conf. Software Engineering, 230-239, June 2000.

[29] T. Smedley, P. Cox, and S. Byrne, “Expanding the Utility of Spreadsheets Through the Integration of
Visual Programming and User Interface Objects,” ACM Proc. Workshop on Advanced Visual Interfaces,
148-155, May 1996.

[30] T. Teo and M. Tan, “Quantitative and Qualitative Errors in Spreadsheet Development,” Proc. Thirtieth
Hawaii Int’ l. Conf. System Sciences, Part 3, Vol. 3, 149-155, Jan. 1997.

[31] G. Wang and A. Ambler, “Solving Display-Based Problems,” Proc. 1996 IEEE Symp. Visual Languages,
122-129, Sept. 3-6, 1996.

[32] N. Wilde and C. Lewis, “Spreadsheet-Based Interactive Graphics: From Prototype to Tool,” Proc. ACM
Conf. Human Factors in Computing Systems, 153-159, Apr. 1990.

