1 Introduction

A key question in human-computer interaction research is: How can we design software so
that non-programmers can build their own applications? One way to study this question
is to analyze existing user programming environments such as spreadsheets, HyperCard,
the Metaphor Capsule, New Wave, fourth generation database management systems, style
sheets in word processing programs, and statistical packages such as SPSS and SAS. We
can learn much from their successes and failures. Unlike most research systems, these
commercially available programs have large user populations, enabling us to study the
programs as they are actually used in offices and homes.

Our work focuses on spreadsheet software. Spreadsheets have proven enormously popular
with personal computer users, and their benefits have been enumerated by Kay (1984),
Hutchins, Hollan and Norman (1986), and Lewis and Olson (1987). These investigators
have noted that spreadsheets provide a concrete, visible representation of data values,
ir?mtleldiate feedback to the user, and powerful features such as applying formulas to blocks
of cells.

These characteristics of spreadsheets are important. However, the single biggest advan-
tage of spreadsheets is not cognitive but motivational: after only a few hours of work,
spreadsheet users are rewarded by simple but functioning programs that model their prob-
lems of interest. Many users lack formal programming education, and perhaps more im-
portantly, they lack an intrinsic interest in computers. The key to understanding non-
programmers’ interaction with computers is to recognize that non-programmers are not
simply under-skilled programmers who need assistance learning the complexities of pro-
gramming. Rather, they are not programmers at all. They are business professionals or
scientists or other kinds of domain specialists whose jobs involve computational tasks. It is
not enough to say that these users need systems that are “easy to use.” User programming
?ystelzlms should allow users to solve simple problems within their domain of interest in a
ew hours.

2 Methodology

To understand user programming, we believe it is necessary to find out how people actually
use software in the everyday contexts of homes and offices. We have chosen to study a small
number of people in some depth to learn how they construct, debug, and use spreadsheets.
We are interested in the kinds of problems for which people use spreadsheets and how they
themselves structure the problem solving process — topics that by their very nature cannot
be studied under the controlled conditions of the laboratory.

For the study, we interviewed and tape recorded conversations with spreadsheet users in
their offices and homes, and collected examples of their spreadsheets.! Study participants
were found through an informal process of referral. We told prospective participants that
we are interested in software for non-programmers and that we want to talk to people ac-
tively using spreadsheets. The interviews were conversational in style, intended to capture
the users’ experiences in their own words. A fixed set of open-ended questions was asked
of each user, though the questions were asked as they arose naturally in the context of
the conversation. Part of the interview session was devoted to viewing users’ spreadsheets
on-line and discussing their uses and construction. Material in this paper is based on about
335 pages of transcribed interview material from a total of eleven users. User names given



in this paper are fictitious.

3 Why do spreadsheets work so well?
The usefulness of spreadsheets derives from two properties of their design:

¢ Computational techniques that match users’ tasks and that shield users from the
low-level details of traditional programming, and

e A table-oriented interface that serves as a model for users’ applications.

The power of spreadsheets comes from the combination of these properties — either sepa-
rately would be inadequate to solve the spreadsheet user’s two basic problems: computation
and presentation. Our intent in this paper is to understand the reasons for the success
of spreadsheets, and to look for general principles that might be applied to other user
programming environments.

4 Computation: The spreadsheet formula language?

The spreadsheet formula language allows users to compute values in their models by ex-
pressing relations among cell values.® To use the formula language, the user must master
only two concepts: cells as variables, and functions as relations between variables. With
relatively little study, the user acquires the means to solve the basic computational prob-
lems of any modeling task: creating entities that represent the variables in the problem,
and expressing relations among the entities.

As users become more proficient at using spreadsheets, they learn more advanced program-
ming concepts such as relative and absolute cell references, iteration, and conditionals.
Knowing these more advanced concepts is immensely useful, but we want to emphasize
that they are not necessary for beginning users building simple spreadsheets. Spreadsheets
allow users to perform useful work with a small investment of time, and then to go on to
more advanced levels of understanding as they are ready. In our research we found that
users may add new programming concepts to their repertoire very slowly.

For example, Jennifer, a user in our study, has been using spreadsheets for about five
years. She has an accounting position of considerable responsibility in a high technology
firm. Jennifer knows how to write nested conditionals, to link individual spreadsheets,
and to create simple macros. She has not, however, learned how to iterate operations
over a cell range (a group of contiguous cells), though she is aware of this capability, and
plans to learn how to do it. Despite what would be a fatal gap in her knowledge in a
traditional programming language, Jennifer is a successful spreadsheet user. Moreover,
she is continuing to expand her knowledge about spreadsheets, at her own pace.

The spreadsheet formula language is characterized by:
e High-level, task-specific functions.

e Very simple control constructs.
This combination of attributes in the spreadsheet formula language strikes a fine balance

between expressivity and simplicity. Users have sufficient means to model their problems,
but at a very attractive price in terms of learning and development time.



4.1 High-level, task-specific functions

The formula language offers a small number of arithmetic, financial, statistical, and logical
functions. Most spreadsheets also offer simple database functions, date and time functions,
and error trapping functions. In our study we found that most users normally use fewer
than ten functions in their formulas. Users employ those functions pertinent to their
domain (e.g., financial analysis) and do not have need for other functions.

Spreadsheet users are productive with a small number of functions because the functions
are high-level, task-specific operations that do not have to be built up from lower level
primitives. For example, a common spreadsheet operation is to sum the values of a range
of cells within a column. The user writes a simple formula that specifies the sum operation
and the cells that contain the values to be summed. The cell range is specified compactly
by its first and last cell; e.g., SUM(C1:C8) sums cells 1 — 8 in Column C. In a traditional
programming language, computing this sum would require at least writing a loop iterating
through elements of an array, and creating variable names for the loop counter and sum-
mation variable. Spreadsheet functions obviate the need to create variable names (cells are
named by their position in the grid), and to create intermediate variables to hold results
— non-task-related actions that many users find confusing and tiresome (Lewis and Olson,

1987).

4.2 Control constructs

Lewis and Olson (1987) stated that a strength of spreadsheets is the “absence of control
model.” They noted that flow of control is a difficult programming concept. However,
it is not the case that control mechanisms are absent in spreadsheets — they are just
conceptually simple. Formulas can be written as if-then-else statements. A conditional
in a spreadsheet formula is easy to understand because it does not transfer control from
one part of the spreadsheet to another; its effects are local to the individual cell. Iteration
is also quite simple; users can select a range of cells over which to iterate an operation.
These conditional and iterative capabilities were routinely used by those in our study and
added a great deal of functionality to their spreadsheets.

Users’ own formulas contain an implicit flow of control as any arbitrary cell can be related
to any other. When a value in one cell changes it may trigger a series of changes in
dependent cells. This is the very basis of the spreadsheet’s functionality, and it is quite
powerful. Users can begin by building quite simple cell relations, and move on to more
elaborate models as their knowledge expands.

4.3 User Programming Languages

Several lines of research on user programming proceed from the assumption that graph-
ical techniques such as as program visualization, visual programming (Myers, 1986), and
program induction (Maulsby and Witten, 1989)* will provide significant leverage to non-
programmers. Since the spreadsheet formula language is textual, we question whether
graphics per se is really the key to user programming languages. A limited language of
high-level functions is more important than the particular form the language takes. In
our study we asked users to discuss the disadvantages of spreadsheets. Not one user men-
tioned difficulties with the formula language (though users had other specific complaints



about spreadsheets). Syntax is often suggested as a problem area in textual languages,
but in our study users reported that syntax errors were few once they were familiar with a
spreadsheet. Users noted that in any case, most such errors are immediately caught by the
spreadsheet itself which will not permit poorly formed formulas. Proper syntax checking
appears to be sufficient to enable users to cope with syntax errors. Textual languages are
compact, efficient, and can be developed in less time than graphical languages. These are
significant advantages which should be considered in the development of user programming
languages.

Another line of user programming research suggests that users can program by modifying
existing example programs (Lewis and Olson, 1987; Neal, 1989). These researchers believe
that the complexity and difficulty of general purpose programming can be reduced by
giving non-programmers a “head-start” with existing code which they then modify for
their particular applications.® Even assuming that the daunting problem of information
access were to be solved such that users coufd easily locate apposite examples, we think
that general purpose programming languages, no matter how well supported, are not
appropriate for the large population of users who lack intrinsic interest in computers, and
have very specific jobs to accomplish. These users should be supported at their level
of interest, which is to perform specific computational tasks, not to become computer
programiners.

What about programming by modifying domain-specific examples? This solution still does
not solve the problem of having to depend on the existence of appropriate example code.
True user programming systems allow users to build a meaningful application without
reliance on obtaining code from other more sophisticated users. No programmer wants to
lack the skills with which to create a program from scratch, since that is so often necessary.
If it is impossible to begin a program without an existing program, the user is denied real
control over the computational environment. It is not clear whether users who modify
existing example programs ever really come to understand the programs they modify.
Without a firm grasp of the language in which the examples are written, the ability to
modify a program to suit one’s needs would seem very limited.

There is a need to draw a distinction between programming by modifying example pro-
grams and the reuse of software modules. Reusable software modules are clearly desirable.
In the spreadsheet world there is software reuse in the form of templates used by groups
of users (Nardi and Miller, 1989). However users are not dependent on templates, and
they routinely create their own applications using the spreadsheet formula language. We
asked users what they liked about spreadsheets, and several users reported that they can
be “creative” with spreadsheets, that it is “easy” to build their own models. One user
captured a general feeling about spreadsheets in noting that he thinks of the spreadsheet
as a “blank canvas” — a medium in which to directly express his own thoughts; just the

opposite of an artifact created by someone else that must be re-worked before it is of any
use.

The large variety of applications modeled with spreadsheets (Lewis and Olson, 1987) does
indeed suggest a blank canvas. Spreadsheet applications include mathematical model-
ing (Arganbright, 1986), simple databases, managing small businesses, forecasting trends
(Janowski, 1987), analyzing scientific and engineering data, and of course the financial
applications for which they were first intended. Users have programmed these diverse and
sometimes sophisticated applications (see Arganbright, 1986) without the aid of example
programs.



5 Presentation: The tabular grid

The second major element of the spreadsheet interface is a strong visual format for orga-
nizing and presenting data — the tabular grid into which users put data values, labels and
annotations. The table helps users solve three crucial problems: viewing, structuring and
displaying data.

5.1 Viewing data

Virtually every user in our study reported that an advantage of spreadsheets is the ability
to view large quantities of data on one screen. Applications modeled with spreadsheets are
data-rich, and users in our study had a strong preference for being able to view and access
as much data as possible without scrolling the screen. How do spreadsheets manage large
amounts of data such that users feel that it is well-presented and comprehensible?

Spreadsheets have done well at data display by borrowing a commonly used display format
— that of the table. Cameron (1989) pointed out that tables have been in use for 5000
years. Inventory tables, multiplication tables and tables of reciprocal values have been
found by archaeologists excavating Middle Eastern cultures. Ptolemy, Copernicus, Ke-
pler, Euler, and Gauss used tables. Modern times brought us VisiCalc, the first personal
computer spreadsheet. VisiCalc was modeled directly on the tabular grid of accountants’
columnar paper which contains numbered rows and columns. It is interesting that today’s
spreadsheets, while much enhanced in functionality, have not changed the basic VisiCalc
format in the smallest detail. A tabular grid in which rows are labeled with numbers and
columns are labeled with letters characterizes all commercially available spreadsheets.

Tables are so familiar and common in our everyday lives that we are unlikely to pause
to appreciate their clever design — they are extraordinarily simple and viewable. It is
quite easy, even in a large table, to ascertain the categories represented in the vertical and
horizontal dimensions, to scan for individual data values, and to get a sense of the range of
values and other characteristics such as a rough average. The perceptual reasons for tables’
exceptional capability to effectively display data are not well understood, but Cleveland’s
notion of “clustering” — the ability to hold a collection of objects in short-term memory and
carry out further visual and mental processing (personal communication, 1989) — seems
relevant. The arrangement of data items in rows and columns appears to permit efficient
clustering, as users can remember the values in a row or column and then perform other
cognitive tasks that involve the values.

The familiarity of tables further enhances the ease with which we use them; our schooling
explicitly trains us in table use from reading calendars to learning matrix algebra, and
everyday experience provides ample opportunity to both create and view tables.

Tables provide good information access as users can locate data in a simple geometric
space. In a large spreadsheet though the data are not continually visible (a desideratum
of proponents of direct manipulation) as the entire spreadsheet will not fit on one screen,
the geometric organization of the grid permits users to find their data quickly.

For example, Jennifer was discussing a spreadsheet that contained about 300 rows and we
asked her how she “gets around” in this large spreadsheet. Notice that in the following ex-
change she thinks we want to know the mechanics of navigating with mouse and keyboard.



She adds the comment about the geometric layout of her spreadsheet as a clarification,
though we have not talked about layout at any time in her interviews:

Interviewer: Now when you're actually using a spreadsheet this big, how do
you get around to the places you want to be?

Jennifer: I use the mouse on the gray bar. It lets you leap down a page. It’s
kind of like page-up and page-down. But I can page-right and -left more easily
than you can with the keyboard.

Interviewer: OK, so that’s not really an issue. Even though you do have a
lot of data it’s pretty easy to find it.

Jennifer: UmmHmm. I'm so familiar with the spreadsheet too, that I know
that if 'm here [points to a place on the spreadsheet] in Municipal Bonds, that
I know I’m in the middle of the document, and I know that Preferred Stocks
is above that, and I know that Collaterized Mortgage Obligations are below
that, so depending on what the next transaction is, I know whether to go up
or down.

Today’s spreadsheets also allow users to assign names to cell ranges. In our study, some
users assigned range names in large spreadsheets and then located the range by typing in
the name, rather than scrolling to it. Spreadsheets thus offer both logical and spatial clues
to data location that enable users to quickly find data even in very large spreadsheets. ®

5.2 Structuring data

A spreadsheet table is much more than an effective data display — it is a problem solving
medium. We tend to think of data presentation as largely a matter of setting forth in-
formation for the user to view and browse. But the means by which data are presented
strongly affect the problem solving process. The table inhabits problem solving cognition
in two ways.

First, the very structure of the table is the means by which users come to organize their
models. Data are arranged into rows, columns, and cells. The spreadsheet provides a
structure into which a model is cast. Users do not have to tnvent a structure — it is given
to them. The initial phase of a modeling problem is reduced to simply recognizing a format
into which a problem is framed, rather than being faced with the necessity of inventing a
format from scratch.

Second, in the very process of laying out data in a spreadsheet, the user is viewing
and studying the data which are immediately reflected back from the table. This con-
trasts sharply with traditional programming where the parameters and variables of a
model are implicit in the procedures that manipulate them, and have no explicit visual
representation.”

The structured visual format for data presentation provided by the spreadsheet table plays
an active role in helping users to structure and then critique their models. We now look
in more detail at how users structure and critique spreadsheet models.

The most striking thing about spreadsheets is how they help users to think through prob-
lems. The tabular format provides a simple but powerful framework onto which users map
their problems. The importance of this structure became evident as users described how
they use spreadsheets to model problems even when their initial ideas about the problem

6



solution are extremely ill-defined. We were struck by the fact that many users reported
that when they begin a spreadsheet they have only a general goal in mind fge.g., “maximize
profits over the next three quarters” or “decide how much house we can afford”), and very
little idea of how to achieve the goal. When beginning work on a new spreadsheet, users
often do not even know what the parameters of a problem are. They only find out about
all the relevant aspects of a problem in the process of actually trying to solve it.

For example, Jeremy, one of the participants in our study, described how he learned to use
spreadsheets. A job assignment required developing business plans for joint ventures with
foreign companies. Large, complex spreadsheet models were part of the plans. Although
programmers were available to help, Jeremy discovered that not only was it easier to be
in control of spreadsheet development himself, but that he could use the spreadsheet to
work through the problem, in particular to identify the variables of interest and to make
sure that the model was complete.

Jeremy described this process:
Jeremy: We had to have rather large complex spreadsheets [for the business
plans] where you had lots of variables. And I found it easier to develop that
myself than to go to somebody and say here’s what I want, here’s what I want,
here’s what I want. And that’s what really got me going on [spreadsheets]. . .

Interviewer: Why was it easier for you to do this yourself than to specify it
for a programmer?

Jeremy: ...I think it was quicker and easier because I felt that I was learning
as I went, as I was developing the spreadsheets, I was learning about all the
variables that I needed to think about. It was [as] much a prop for myself as
[a way of] ...getting the outcome ... And there were a lot of false endings, 1
should say, not false starts. I'd get to the end and think, “I’'m done,” and I'd
1(})10k a,li.;1 it ’z’md I'd say, “No, I'm not, because I've forgotten about one thing or
the other.

How do spreadsheets help users give shape to fuzzy ideas?

The spreadsheet provides an overall organizing framework of rows, columns and cells within
which users organize the parameters, variables, formulas and subparts of their models.

Rows and columns are used to represent the main parameters of a problem. Users know
that related things go in rows and columns, and all spreadsheet applications take advantage
of the simple but powerful semantics provided by the row/column convention.

Each cell represents and displays one variable. A cell value may be a constant, or may be a
calculated value derived from a formula. In the case of calculated values, the spreadsheet
associates a visual object, the cell itself, with a small program, the formula. Program
code is thus distributed over a visual grid, providing a system of compact, comprehensible,
eagily located program modules. The spreadsheet itself automatically updates dependent
values as independent values change; therefore the user’s the task is to write a series of
small formulas, each associated with a distinct visual object, rather than the more difficult
task of specifying the full control loop of a program as a set of procedures.

Tables provide a simple mechanism for segmenting models into smaller subparts: leaving
empty cells between segments. A spreadsheet can be modularized, at least visually, for the
purpose of showing its subparts. In our study, we found that users segment spreadsheets
by such criteria as years, months, geographic regions, companies, and departments.

7



Spreadsheets relieve users of the necessity of inventing their own modeling frameworks — a
demanding task which would force them to build a problem solving infrastructure before
getting to work on their actual goals. The spreadsheet table, by virtue of a structured
visual format for presenting data, provides the hooks upon which a user hangs a model.
The advantages of this structure are amplified by the fact that as the user builds the model,
it emerges in a highly visible way. The model is not buried in a text file of many lines of
computer code, it is not littered with obscure variable names, but instead consists of an
orderly set of parameter names and variable values laid out in a simple two-dimensional
space. Users can see exactly what their parameters and variables are as they add them to
the model.

The visibility of the emerging model is very important in the problem solving process.
In our study we found that users critique their models by visually inspecting them. As
Jeremy noted, he evaluated the completeness of his model by looking at it “I’d look at it
and I'd say, ‘No, I'm not [done], because I’ve forgotten about one thing or the other.’”
Other users also described the process of visually inspecting their models as they were
building them. For example, one user stated: “I may not even ...know the final form,
look and feel of the spreadsheet that I want. I’ll just start getting the data in, and then
I'll start ... playing with moving rows and columns around and doing things until I see,
until I get what I want” (our emphasis). The act of viewing data in a spreadsheet table is
thus not merely a means by which to find a data value, or check out the bottom line; it is
a key aspect of the active process of model construction.

To summarize, the way data are presented — that is, what the user sees — shapes the problem
solving process. As a user begins developing a spreadsheet, the tabular grid provides an
overarching structure into which the parameters and variables of a model are cast. As
the spreadsheet begins to take shape, the user views the emerging model and evaluates its
accuracy and completeness. Within the framework of the rows and columns the user can
restructure the model by re-arranging rows and columns and by adding new parameters
as they become known. A spreadsheet model is grounded in the distinct tabular format
of rows and columns, and is constructed in successive approximations as the user critiques
the emerging model.

5.3 Displaying data

Users welcome structure in modeling the parameters and variables of their problems, but
seek flexibility in creating their own displays. In office environments many spreadsheets are
viewed and used by a group of co-workers, and users in our study emphasized the impor-
tance of creating effective presentations — often paper copies or slides of their spreadsheets.

The spreadsheet table has some useful flexibility. All spreadsheets allow users to vary
column width, and modern spreadsheets allow users to vary individual column widths and
row heights. Spreadsheets allow users to split the screen so that non-contiguous portions of
a spreadsheet may be viewed on the screen (or printed out) at once. Spreadsheet cells are
flexible building blocks; they are used not only to hold variables, but also to display labels
and annotations, and to segment large spreadsheets into subparts by means of empty cells,
as noted. All users in our study used some or all of these capabilities. All users in our
study who had spreadsheet products that give users control over color, fonts, shading and
outlining used these techniques to highlight important data. In short, spreadsheets give
users a reasonably good user interface toolkit.



6 Summary

Of course, spreadsheets are not without their problems, many of which derive from the
same properties that give them their strength. The ability to build spreadsheets through
assigning small pieces of code to specific cells means that it is difficult to get a global sense
of the structure of the spreadsheet, which requires tracing the dependencies among the
cells. Many users in our study described awkward pencil and paper procedures for tracing
cell dependencies in debugging spreadsheets. For the same reason, spreadsheets are not
particularly modular: since the code that implements a particular piece of a spreadsheet
is distributed over a potentially large and unpredictable set of cells, it is difficult to reuse
a piece of one spreadsheet in another new spreadsheet.

Nevertheless, the strengths of spreadsheets are profound. Spreadsheets suggest that two
key characteristics for user programming environments are:

1. A limited set of carefully chosen, high-level, task-specific operations that are sufficient
for building applications within a restricted domain, and

2. A strong visual format for structuring and presenting data.

The ability to create applications with only a few functions is an important benefit of
spreadsheets. Users have specific tasks to accomplish within their domain of interest.
They want functionality that matches those tasks at a high level such that they do not
have to either learn or use lower level primitives. Task-specific functions allow users to
develop quick facility with a program and to build a real application, however simple, in
a short time. The motivational barrier is thus breached as users achieve rapid success. As
users continue to use a program they are not constantly faced with the job of stringing
together lower level functions as they work, but can concentrate on the actual problem
solving itself.

Spreadsheets succeed because they combine an expressive high level programming language
with a powerful visual format to organize and display data. The user is actively engaged
with the spreadsheet table as a problem solving device throughout the process of model
building. The tabular structure of rows, columns and cells provides a modeling framework.
The visibility of the emerging model allows the user to monitor and evaluate its accuracy
and completeness.

The spreadsheet experience suggests that general programming languages are not the an-
swer for non-programmers. Users who lack intrinsic interest in computers and who have
specific tasks to get done are more likely to respond to a software system that provides
high-level functionality in their area of expertise than to tolerate the slow detour of a gen-
eral programming language. Insofar as techniques such as program visualization, visual
programming, programming by example modification and program induction support gen-
eral programming, they are unlikely, in our view, to succeed at helping non-programmers
gain increased computational power. A more fruitful line of endeavor is to identify ways
to support the development of high-level, task-specific languages and appropriate visual
formats for new user programming environments.



7 Notes

1. The interviews were conducted by the first author. We use the plural “we” here for
expository ease.

2. We refer to “the formula language” because most spreadsheet programs have nearly
identical languages which differ only in small syntactic details.

3. Spreadsheets also have macro languages, but they are used by many fewer users and do
not constitute the basic interface to spreadsheet functionality that we are concerned with
here.

4. Programs are “induced” by generalizing from concrete examples created by the user via
graphical direct manipulation techniques.

5. Example modification is not the same as the use of didactic examples which have an
important role in learning and enhancing skill in programming (and many other areas of
endeavor). Didactic examples are especially helpful in learning language syntax as part of
a larger program of study in which the fundamental concepts of a programming language
are learned.

6. In our study the largest spreadsheets had about a thousand rows.

7. The spreadsheet provides immediate feedback. When the user changes data values,
other values related through formulas are immediately updated. This compression of the
test-evaluate-debug cycle 1s an important feature of spreadsheets, but one that has been
discussed by other investigators (Hutchins et al., 1986; Lewis and Olson, 1987) so we do
not expand on it here.

8 Acknowledgments

We are grateful for comments from Lucy Berlin, Martin Griss, Jeff Johnson, Nancy
Kendzierski, Jasmina Pavlin and Craig Zarmer.

9 References

Arganbright, D. (1986). Mathematical modeling with spreadsheets. Abacus 3:4:18-31.

Cameron, J. 61989 . A cognitive model for tabular editing. OSU-CISRC Research Report,
June, 1989. Ohio State University.

Cleveland, W. (1989). Personal communication.

Hutchins, E., Hollan, J. and Norman, D. (1986). Direct manipulation interfaces. In User
Centered System Design (Eds. D. Norman and S. Draper). Erlbaum Publishers: Hillsdale,
NJ.

Janowski, R. (1987). Spreadsheets: An initial investigation. Internal Technical Report,
Hewlett-Packard Laboratories, Bristol, England.

10



Kay, A. (1984). Computer software. Scientific American 5:3:53-59.

Lewis, C. and Olson, G. (1987). Can principles of cognition lower the barriers to pro-
gramming? In Empirical Studies of Programmers: Second Workshop (Eds. G. Olson, S.
Sheppard and E. Soloway). Ablex Publishing Corporation: Norwood, NJ.

Maulsby, D. and Witten, 1. (1989). Inducing programs in a direct-manipulation environ-
ment. In Proceedings of CHI’89, Conference on Human Factors in Computing Systems.
April 30 - May 4, 1989. Austin, Texas. Pp. 57-62.

Myers, B. (1986). Visual programming, programming by example, and program visualiza-
tion: A taxonomy. In Proceedings of CHI’86 Conference on Human Factors in Computing
Systems. April 13 - 17, Boston.

Nardi, B. and Miller, J. (1989). Twinkling lights and nested loops: Distributed problem
solving and spreadsheet development. Hewlett-Packard Laboratories, Palo Alto, STL-
Report 89-30.

Neal, L. (1989). A system for example-based programming. In Proceedings of CHI’89,

Conference on Human Factors in Computing Systems. April 30 - May 4, 1989. Austin,
Texas.

11



