VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

Program Visualisation for Visual
Programs

James Noble and Robert Biddle

Technical Report CS-TR-01/6
August 2001

School of Mathematical and Computing Sciences Tel: +64 4 463 5341
Victoria University Fax: +64 4 463 5045
PO Box 600, Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

=S
Dt
School of Mathematical and Computing Sciences
Computer Science

PO Box 600 Tel: +64 4 463 5341, Fax: +64 4 463 5045
Wellington Email: Tech.Reports@mcs.vuw.ac.nz
New Zealand http://www.mcs.vuw.ac.nz/research

Program Visualisation for Visual
Programs

James Noble and Robert Biddle

Technical Report CS-TR-01/6
August 2001

Abstract

Publishing Information

Author Information

James Noble and Robert Biddle lecture in Computer Science at Victoria Universtiy of Welling-
ton.

Program Visualisation for Visual Programs

James Noble and Robert Biddle
Computer Science
Victoria University of Wellington
New Zealand
{kjx,robert}@mcs.vuw.ac.nz

Abstract

The Nord Modular music synthesiser systems com-
prises a stand-alone array of digital signal processors
programmed by a dataflow visual langauage and sup-
ported by a visual programming environment that
runs on commodity hardware. We have investigated
applying program visualisation techniques to over 400
Nord Modular programs. Our visualisations make ex-
plicit module types and signal flows that are only im-
plicit in the metaphorical graphical syntax adopted
by the Nord Modular visual programming language.
We have also analysed the programming style used
in Nord Modular programs, in particular, the direc-
tion of program layouts. While we found that pro-
grams tended to arrange signal flow top down and
left to right, we found much more variation than we
expected, both within individual programs and across
the Nord factory program corpus.

1 Introduction

Domain-specific dataflow visual programming lan-
guages are now commonplace throughout the world of
computing. Although not the earliest form of visual
language (that honour, like so many others, of course
is due to Sketchpad [25]) dataflow visual languages
are now by far the most common form of visual pro-
gramming language used in practice. Although they
have been mostly unsuccessful as general-purpose
programming languages, dataflow visual languages
have excelled within specialised niche domains, in-
cluding information visualisation [20], programmable
logic controller programming [15, 1], and business
process re-engineering [14]. Even in just one domain,
computer music, several dataflow visual languages
have been successful as products over relatively long
terms, including Max [7], Bars-n-Pipes [13], and the
topic of this paper, the visual programming language
underlying the Nord Modular series of synthesizers
6].
1 The Nord Modular synthesizer system, by Clavia
AB of Sweden, is a digital (re)creation of the tra-
ditional analogue modular synthesizer systems com-
mon in the 1970s. The key idea of modular synthesis
is that sounds are produced a collection of analogue
modules, where the sounds the modules produce (or
other aspects of their operation) are determined by
control voltages produced by other modules.

A typical modular synthesier (see Figure 1) would
consist of a number of modules such as voltage con-
trolled oscillators (VCO) to produce sounds, voltage
controlled filters (VCF) to shape it, and envelope gen-
erators (EG) and low-frequency oscillators (LFO) to
produce control voltages for use as input to the os-
cillators and filters. The modules are connected to-
gether using “patch cords” that carry control voltages
and audio signals between modules, and eventually to

external amplifiers or recording equipment. Modular
synthezier configurations (settings of module controls
and the patch cord cabling linking them together)
were named “patches”, after the audio engineering
term “patch” meaing to connect, as in “patch cord”.
The term “patch” has remained current for synthe-
sizer programs of all types.

Although still manufactured by enthusiasts today,
analogue modular synthesizers are large, unweildy,
unreliable, and expensive. As a result, they were
quickly eclipsed by integrated synthesizers, still based
on analogue circuitry but where the connections be-
tween modules were fixed — typically with one os-
cillator, filter, a couple of envelope generators, and
a couple of LFOs. Ultimately, analogue synthesiz-
ers were in turn replaced by digital synthesizers that
were also based on fixed algorithms for sound produc-
tion, generally those algorithms mimiced the sound
paths of the integrated analogue synthesizers. Com-
pared with the analogue modular synthesizers, the
integrated synthesizers (particularly the digital in-
tegrated synthesizers) were small, portable, reliable,
and cheap, however, they were much less flexible in
sound production than the old modulars.

The Clavia Nord Modular synthesizer system is a
recent development to address this problem. Essen-
tially, the Nord Modular implements a flexible, mod-
ular system using integrated digital signal processing
(DSP), rather than discrete analogue or digital com-
ponents. Since its implementation technology is the
same as the integrated synthesizers, it shares most
of their benefits: it is small, portable, reliable, and
(relatively) cheap: however, by allowing users to pro-
gram (or at least reconfigure) the DSP algorithms,
the Nord Modular retains most of the flexibility of
the old analogue modular systems. This is of course
its main liability compared with existing integrated
synthesizers with fixed signal flow: users, that is mu-
sicians, need to be able to program the synthesizer,
rather than simply set parameters to make patches.
To address this problem, the Nord Modular uses a
visual programming language and environment.

Using the Nord Modular is different from using
a physical analogue modular system in a number of
important ways. The largest, probably the most sig-
nificant, is that programming analogue systems is
embodied in the physical world, connecting physi-
cal patch cables to physical modules, whereas in the
Nord, this experience is recreated in software for
general-purpose computers. Because the Nord is a
software simulation of a modular synthesizer, some
constraints are different. In a physical modular syn-
thesizer, users are restricted to a certain number of
modules of a given type; if you run of out oscillators,
you must do without or buy a new module. In the
Nord Modular, patches are limited by the amount
of DSP processing power: you can choose to trade
off oscillators against filters or envelope generators,
but only up to a fixed limit. As a side effect of being

[+]]
o

O

|'r-'I (=1 [+T] 1
oloimy B

Figure 1: An analogue modular synthesizer

able to choose modules, users can choose the layout of
the modules in a patch: as Figure 1 shows, physical
module positions are fixed in a traditional modular
synthesizer.

The topic of this paper is an analysis of the vi-
sual programming language used to create patches on
the Nord Modular, with particular emphasis on pro-
gramming style. Before starting this work, we had
several hypotheses about what we could expect from
a dataflow visual programming language, compared,
say, to a physical modular synthesizer system:

e The programming environment would support
the tasks of constructing and debugging modular
patches.

e Modules would typically be positioned so that
signals would flow left-to-right, top-to-bottom.

e Closely related modules would typically be
placed near each other so patch cables would be
short.

In this paper, we test these hypotheses by applying
program visualisation techniques to the Nord Modu-
lar programming language to analyse the program-
ming style with which it is habitually employed. Sec-
tion 2 begins by describing the Nord Modular system
in more detail: the hardware, the programming lan-
guage, and the programming environment. Then, sec-
tion 3 describes patch maps, our primary visualisation
of Nord Modular programs, that addresses the ques-
tion of debugging support. Section 4 then describes
patch wheels, our visualisation that shows signal flow
direction within programs, that is the core of our anal-
ysis of programming style. Section 5 builds upon this
visualisation, aggregating information about several
hundred patches to give overall information about
general trends in programming style. Section 6 then

places this work in the context of related work on vi-
sual programming, and section 7 concludes the paper.

2 Clavia Nord Modular

In this section we discuss the Nord Modular system.
We provide a brief introduction to the hardware, and
then concentrate on the programming language and
environment.

2.1 Hardware

The Nord Modular synthesizer looks rather different
from a traditional modular synthesizer: it’s an un-
differentiated red box with a few knobs and switches
that is connected to a personal computer via a stan-
dard)MIDI interface (compare Figure 2 with Fig-
ure 1).

Figure 2: Nord Modular Hardware

The main contents of the box are a number of Mo-
torola DSP56000 digital signal processors which sup-

port the synthesis engine: the knobs and switches can
be used to control paramters of the synthesizer mod-
ules in performance without recourse to a computer.
There are three models of the hardware (standard
verisons with and without a musical keyboard, and
a “mini” version with one processor rather than an
array of four or eight), however the programming is
the same for each model.

2.2 Software

The key aspect of programming the Nord Modular
is designing (or debugging or understanding) Nord
Modular programs, known as patches: selecting mod-
ules, patching them together with patch cables, and
setting internal module parameters. Figure 3 shows
a very basic Nord Modular patch. This comprises
four modules: an input module named Keyboardl,
an oscillator (OscB1), an envelope generator (ADSR-
Envl) and an output module (2 outputsl).

heybomE] Hute. Eate 'u'el. E:I

Coarse Fine

Destination | 112 3{4 IE"u"AI M L) R

Figure 3: A Simple Modular Patch

The Nord Modular system includes approximately
a hundred different types of modules, including os-
cillators, low frequency oscillators, filters of various
categories, audio inputs, envelope generators, clocks,
sequencers, logical and arithmetic operations, and au-
dio outputs. Every module is an instance of a partic-
ular module type, and can be given a textual name
by the programmer.

As the figure shows, programmers select modules,
and then lay them out. The editor constrains mod-
ule positions to one of four columns about thirty
rows without scrolling: all modules are one col-
umn wide, however, different modules have different
heights. Modules are then connected with “patch ca-
bles”, from output connectors (square socket icons)
to input connectors (round socket icons); inputs may
be futher daisy-chained to other inputs. The sockets
and patch cables are coloured to represent the type
of signal that flows through them: audio signals are
coloured red; low frequency signals blue; control sig-
nals are coloured yellow or grey.

In Figure 3, outputs from the keyboard input and
oscillator input are patched to inputs of the envelope
generator, and the envelope’s output is patched to the
inputs of the output module.

Figure 5: Nord Modular Editor

Fach module has a number of parameters con-
trolled by knob or switch icons. These can be ad-
justed to tune the module’s operation, and can also
be bound to physical knobs on the Modular hardware
so that they can be controlled in real-time. In Fig-
ure 3, the oscillator has knobs for parameters named
Coarse, Fine, KBT, PWidth, Pitch (two), and FMA,
plus buttons to select a waveform, and a mute button
marked “M”.

A simple patch, or a single module, can generally
be understood quite easily in isolation. More complex
patches, such as that shown in Figure 4, are rather
more difficult to interpret!

2.3 Programming Environment

Patches are produced using a programming environ-
ment called the Nord Modular Editor!, then down-
loaded automatically to a Modular synthesizer if one
is connect to the computer running the editor. Fig-
ure 5 shows the programming environment. This is
basically a standard Microsoft Windows (or Macin-
tosh) program that communicates with the Modular
hardware using standard MIDI interfaces, protocols,
and cables.

As well as providing the interface for users to cre-
ate and edit patches, the Modular editor also allows
patches to be stored to standard file systems. Unlike
many other synthesizers, where patch information is
only available encoded in MIDI System Exclusive for-
mats, the Nord Modular patches are stored in stan-
dard ASCII files (one of the advantages of a system
that relies on commodity computer support). This
file format is quite simple, and has been designed to
be easy to exchange between Modular users. For ex-
ample, on a web page, a textual link (or snapshot
image of a patch in the Editor) can be linked to the
patch file. Clicking on the patch will then automati-
cally open the patch file in the editor and load it into
a Modular synthesizer, assuming one is attached.

The ease with which patches can be archived and
shared has meant that many Modular users have
made patches available; the manufacturer, Clavia,
also collects user-contributed programs on their web
site. This ensures there is a readymade corpus of pub-
lically available Modular patches for visualisation and
analysis, probably more so than with any other visual
programming language.

1The Nord Modular Editor is available to download free from
http://www.clavia.se/nordmodular.

Audioln Left
Right

OurDry - Phase Q - Leslie
ate
v E

—
320MW 753210
—

L R

1PPg Nen | mid @7

ap Mod
=t Rat= [FIKIEYEFS

@ |Overdrivel Overdri
o _tom) WA R) w2 O

_I Dy Mix evel
/" | vesinstion (77 s i)))

Doppler L

Amplifier1

Wet&Dry R

ST

Wrapper

StereoChor..1 Detune Amount

Wavewrap Leslie

Destination I?ii i L

b multimode filter

Destination Wii i L

12db multimode filter
Resonance

Resonance

1 05| P
BP
LP

HP [

L106]
BF [§]
LP

Figure 4: A More Complex Patch

3 Patch Maps

The standard Nord Modular Editor’s display is well
suited for constructing new patches: selecting mod-
ules, wiring them together, and setting their parame-
ters. Often, when first “reading” an unfamiliar patch,
however, a programmer needs to trace the patch back-
wards from the output modules (that produce the
sound) through envelopes, filters and audio modifiers
back to the osciallators that create the sound. This
task can be quite time consuming in the standard dis-
play: simply identifying the output modules to work
out where the backwards tracing should begin is dif-
ficult, as output modules (like all other modules) are
uniformly displayed as grey boxes with a partiuclar
set of controls.

We attempted to address this problem using soft-
ware visualisation. Visualisation is often applied
to textual programs, say to assist debugging or to
highlight important aspects of algorithims, however,
we were interested in applying software visualisation
techniques to visual programs.

Our first visualisation of Nord Modular patches
are what we call patch maps. A patch map basically
shows all the modules and cables in a patch, but only
the modules and cables: it abstracts away any details
of the module design, connectors, parameters, and so
on. Patch maps use colour coding to support tasks
involving comprehension. The patch map displays a
fairly simple module boz for each module in the patch,
labelled textually with the module name and type,
and draws straight lines (with arrow heads) between
modules for each cable. Unlike the editor’s display
of the patches, where all modules are uniformly grey,
every module in a patch map is coloured according
to their category: input modules are green, output
modules are red, oscillators are blue, low frequency
oscillators are dark blue, and so on. Also unlike the
standard display, where input and output connectors

20z B1:0zch

ZabsREne] Enme-ADSR

Figure 6: A Patch Map for a Simple Patch

may be located anywhere on a module and are shown
as sockets, in a patch map input and output connec-
tors are not shown explicitly and cables begin and end
in two rows across the top of each module box. The
cables are coloured with the same colour they have in
the underlying patch

Figure 6 shows a simple patch map, in fact, a map
for the patch shown in Figure 3. As described above,
each module is represented by a coloured module box,
annotated with the module’s name and type, and ca-
bles are shown by arrowed lines. Comparing the two
figures, the patch map is simpler (and much less im-
pressive) than the patch itself; clearly large amounts
of time and effort have been expended crafting the
design of the standard displays in the Modular Ed-
itor. In terms of the overall topology of the patch,
both displays have the same overall geometry: indeed,
the relationships between the map and the standard
patch display is quite straightforward.

The patch map has a number of advantages over

gydiotreAudioln

30dFSve\rapper] Wavewrap

1 GeFiltere 1:FilterE

1L o E ghdid

Lamplifier1:Amplifier
Curapper: 0 nff
16 StereoChorus]:StereoChorus

azlie:Amplifier

26'Fiter] FiltkerD

Wrerdrive]: Overdrive

o ettD i B:Controliiser
27 F e A:FilkedD

Figure 7: A Patch Map for a Complex Patch

Some Module

Same Module

=G EINE
= T L

Figure 8: Two Different Module Types?

the patch display itself, along with a couple of ob-
vious major disadvantages: it does not display any
information about the details of the modules, and it
is nowhere near as graphically !

The first advantage of patch maps is that the
colour coding makes it easier to identify particular
categories of modules in a patch map than in the stan-
dard display. Thus, when reading a patch, users can
easily pick out different types of modules — output
modules in particular — and then work backwards
from there to understand the signal flow of the whole
patch. For example, compare identifying output mod-
ules in the patch shown in Figure 4 with finding the
red-coloured modules in the patch map for the same
patch shown in Figure 7, which is printed at similar
scale.

Identifying particular type of module (say a 24db
filter rather than just all filter category modules)
is similarly easier using the patch map rather than
in standard display. Although the map does not
distinguish between different types of modules visu-
ally (only different categories are distinguished using
colour) each module box is labelled textually with
the name of the type, and users need only inspect the
modules of a particular type, rather than all the mod-
ules in the program. In the standard display, patch
types are distinguished only by fine details of the
their graphical design, although a pop-up legend ap-
pears when modules are double-clicked. While some
modules have textual legends, they are not standard
across all modules, and do not necessarily match a
module’s name (see Figure 8).

The second advantage of patch maps is more sub-
tle: a patch map can be smaller than the standard
patch display. This can be seen by comparing Fig-
ures 3 and 6. The patch map’s simple boxes can be
scaled flexibly, while the fine crafted graphics of the
Nord editor can be displayed at only one scale. This
means that a patch map can display more modules in

StChorus1 Detune Amount

2 output=1
Destination [1;z 3 |cval M| L

B 5tChoruz]; StereoChorus

Figure 9: Chorus into Output-2: Excerpts from Patch
and Patch Map

a patch than the standard editor in the same amount
of screen real estate, thus giving an overview of the
structure of an entire patch.

Other advantages of patch maps relate to cables
rather than to modules. The position of connectors
on patch map module boxes are syntatically simple
(left to right across the top of the box) whereas in the
standard display connectors are positioned arbitrarily
on the face of modules to reflect module semantics.
Although outputs are usually to the right and bottom
of a module, this is by no means a rigid convention,
and inputs may also be along the bottom edge or to
the right of a module. As a result, some logically
parallel signal flows in a patch can become contorted
in the standard display, but will be displayed cleanly
in a patch map. For example, Figure 9 compares
the connection between the stereo chorus and an out-
put module in a patch and a patch map; the patch
displays signals moving diagonally backwards (down-
wards but to the left), while the patch map makes the
parallel stereo signal flow clear.

A final advantage is that patch maps display ar-
rowheads on cables to show the direction of signal
flow, while the standard display does not. Although
this is a minor visual issue, it is certainly useful when
first approaching a patch and its overall topology is
unclear, especially if the patch cords in question do
not generally flow top down or left to right. We

discovered the advantages of arrowheads almost ac-
cidently: in fact, only after we had drawn them on
patch maps did we realise that the standard display
did not provide any indication of the direction of sig-
nal flows along patch cables.

All these advantages can be seen more readily on a
patch map for a larger and more complex patch: Fig-
ure 7 shows a patch map for the more complex patch
in Figure 4. Comparing Figure 4 and Figure 7 we see
some of these advantages more clearly: the map will
fit on a small screen where the patch would generally
need to be scrolled around the editor window; it is
easier to locate important modules (such as the three
independent output modules) in the map than in the
patch; the overall signal flow is clearer in the map,
because the map has fewer distracting details on in-
dividual modules, and because the map’s arrowheads
give the direction of the signal flow.

The key point from the consideration of this Patch
Map visualisation is that it provides specialised sup-
port for reading modular patches, in particular, when
learning to use an unfamiliar patch. Unlike Patch
Maps, the Modular Editor colour codes cables, but
not modules; and does not draw arrowheads. Both
of these graphical features could be included in an
extended version of the Modular Editor, which would
enable the Editor to provide the same support as cur-
rently provided by patch maps.

4 Visualising Patch Cable Layouts

After visualising the layout of whole patches with
patch maps, we became interested in the program-
ming style used by Modular programmers. Because
Nord Modular patches are quite a simple dataflow
language, without any abstraction or definition mech-
anisms there is not that much scope for style, the de-
grees of freedom being primarily the layout of mod-
ules in a patch and secondarily the names given to
particular modules — these two being the only parts
of a patch that can be changed without altering the
sound processing in the patch.

Because patches range in size from two or three
modules up to thirty or more, we chose to consider the
flow of signals through a patch — that is, the relative
positions of interconnected modules — rather than
modules’ absolute positions. We hypothesized this to
be quite straightforward, flowing predominantly left-
to-right and also top-to-bottom, as in reading a tex-
tual program.

To investigate these cable layouts, we developed
a second visualisation that we called the wheel visu-
alisation, shown in Figure 10. The wheel visualisa-
tion was inspired by the “cartwheels” displayed dur-
ing one-day international cricket matches to visualise
the strokes played by a batsman. Our patch wheels
display the relative direction and distance of each ca-
ble in a patch, as if every cable in the patch was
translated so that it started from the centre of the
visualisation.

Figure 10 shows a patch wheel for the simple patch
in Figure 3 (compare with the patch map in 6).
This “wheel” is degenerate because the signal flow in
the patch is straight down. Figure 11 shows a patch
wheel for the more complex patch in Figures 4 and 7.
The wheel visualisation shows the cables in the same
colours as the standard patch (red for audio signals,
blue for low frequency modulations, yellow or grey for
control voltages).

Both these figures illustrate one important fea-
ture of Nord Modular patches: that signal flow is not
solely rightwards and downwards. Both these patches
(indeed, most patches) have significant cables flowing
right-to-left, bottom-to-top, or both. Figure 12 shows
a patch wheel for a particularly odd patch, where the

Figure 10: A Patch Wheel for a Simple Patch

Figure 11: A Patch Wheel for a Complex Patch

predominant flow is rightwards and upwards, it ap-
pears: Figure 13 shows the corresponding patch map.
To give an idea of the predominant direction of a
patch, we extended the basic wheel visualisation with
a filled black circular marker drawn to mark the aver-
age of all the cable vectors. This shows that the signal
flow in the simple patch is downwards (as would be
expected), while the signal flow in the more complex
patch is primarily downwards, but also flows slightly
right to left.

Whatever the dominant cable direction in a patch,
there can always be some cables that do not con-
form closely to the average direction. Some patches
produce a characteristic shape on the wheel display,
where different kinds of cables typically flow in dif-
ferent directions, as in Figure 14: audio flows right-
wards or downwards, LFO modulations flow upwards
and leftwards, and control signals flow left and down.
Figure 15 shows the corresponding patch: note the
sequencer and clock modules in the upper right —
the source of rightwards control signals flowing down
to the drum synth modules and up to the oscillators.

5 Layout of all Nord Patches

With the patch wheel visualisations giving overviews
of the (relative) layout of individual patches, our in-
terest was piqued in the kinds of layouts used gen-
erally. The Nord Modular comes with 467 so-called
“factory patches” — that is, patches designed and in-
stalled when the synthesizer comes from the factory.
To investigate this, we modified the patch wheel visu-
alisation to analyse all the factory patches, and draw
only the black average vector marker. The resulting
visualiastion, shown in Figure 16 is a scatterplot of
the average vector for each factory patch: the aver-
age displacement for the scatterplot is shown by a red
marker from the origin shown as a cross.

Jopagtalglsc]:Spectrallzc

2:\ 33 Gect

.“
17, F_'

1 Zh ler 2 b gt
IR horus] - Sterecpefl: 1
11H e e

Herclzc]:Perclzc

"lr]i wparlDigitizer i

dHotelluant]:Motetuant

4:NumSynth]:DiumSynth

22 0% ardnive]:Overdnive

Lompl. ier]Amplifier

Partial 3enl:FartialGen

oizel:Moize

Figure 13: A Patch Map where Flow is Reversed

Figure 12: A Patch Wheel where Flow is Reversed

This scatterplot visualisation illustrates two main
features of Nord Modular programs. First (as we had
hypothesised) the average direction of signal flow in
the programs is left-to-right and top-to-bottom. This
is shown by the red marker being displaced by 0.178
columns left and 2.85 rows down from the origin.
Note that because modules are long and shallow rect-
angles, one column is approximately sixteen times as
large as a row, so the overall angle of displacement is
approximately on the diagonal.

Second (and we had not expected this) there is
clearly a reasonably large distribution of the average
cable vector in modular programs. While in some

Figure 14: A Patch Wheel where Flow is Segmented

programs this is quite strongly left to right and top
to bottom, in others it is left to right only, or even
right to left or top to bottom.

We also determined the average modulus (length)
of each cable: at 7.65 this is much larger than the
modulus of the average cable vector at 2.86. What
this means is that there must be a large distribution
of cable directions within each patch — if the cable
directions were completely evenly distributed (and if
each cable the same length) the modulus of the av-
erage vector would be zero, whereas if the cables all
flowed in the same direction the modulus of the aver-
age vector would be the same as the average modulus
of each cable. This is illustrated graphically in many
of the patch wheel figures.

To summarise: although cables, signal flow, and
layout in Nord Modular patches tends towards left-to-
right, top-to-bottom, there is a wide variation, both
within individual patches, and across the patch li-
brary as a whole.

6 Related Work

Dataflow visual languages are arguably the most com-
mon form of visual language, and there are a number

FilterF1

Classic LP filter

ClkGen1 24 pulzes/b [#]

Coarse Fine KET Freg

104Hz JECY

cSIUC‘I Detune Fligz
v g (/)
) Partials «/»| ;

Mixer2 '@ 1@ :Q' .

Moise Ft!r T o
Freq Res Swp Doy

QA

E Amt Dey | Click MNoise

g
n
2AIQ Q@

o 1]
Master Slave

Q" @

Hoize1

TQHIEIT
DED

Res 4 puls!s.ﬂ:

Rate
EEE) [Gn

Gk [#]

||
 |ErentSeql qE ﬂ :
I i |¢. Et!p- Lmk:
L '

REt 123 4567 8 9101 1213141516
edaQ

Clei s raniEr:

Out

/ ‘white Colored @ﬁ 7

® D@

Preset

FitterB1 /

L (D) | | o
Q W

Moise Filter
Freq Res Swp Doy

Amp
@ . Atta:k’ ____.-

2 outputs2

Destination |48

Preset

Cone I

Mix Bus bl

Figure 15: A Patch where Flow is Segmented

of commercial systems based upon such languages,
including the IRIS Explorer [20], LabView [1, 19],
VEE [15], CAPRE, [14], and MAX [7, 9], as well
as the Nord Modular patch language [6]. Given this
widespread practical acceptance, it is perhaps surpris-
ing that there has been little standalone research on
visualising programs in these languages or analysing
the kinds of programs these languages are acutally
used to write.

Most research on visualisation of visual programs
is generally subsumed with research on the visual pro-
gramming environments themselves — indeed, one
of the reasons for the research community moving
away from dataflow languages is that the execution
of these programs is not easy to visualise. Rather,
following Sketchpad [25] once again, many modern
(non-dataflow) visual languages incorporate dynamic
visualisations directly into the programming model,
so that whenever a program runs it is visualised:
Toontalk [16], Agentsheets [22], and VIPR [5] are just
three examples of this approach.

There has been some work on specialised visualisa-
tion of visual programs, however. Burnett has applied
software visualisation techniges to support testing of
Forms/3 programs [23], and Grundy and Hosking
have applied some program visualisation techniques
to software engineering modelling languages [11, 12]
— in one case, successfully visualising a “gedanken”
notation that was never designed to be executed [10].

Probably because most visual languages do not
have a large user base, the practice of the visual lan-
guages community has been to adopt empirical usabil-
ity evaluations to understand how languages are used,
or to measure the effectiveness of individual small de-
tails of language designs [23, 3], or researchers may
participate in programming communities to evaluate
their use of langauges [4, 18].

Because they are time consuming, usability evalu-
ations or participant observation are generally limited
to tens of subjects working on tens of programs. Sur-

veys can provide information from many more sub-
jects, but surveys cannot engage with actual pro-
grams, only programmers opinions and beliefs about
their programs [26]. Probably closest in spirit to
our work is the empirical analysis of spreadsheet pro-
grams, where accountants or auditors work through
a corpus to identify features of programs, such as
cell error rates [21]. In the mainstream textual lan-
guage community, analyses of programs are carried
out mainly to improve implementations: analyses and
critiques of programming style are generally based on
single examples, drawing on literary critisism [17, 24]
or the patterns movement [2] for models.

In comparison with usability evaluation or partici-
pant observation, an approach based on corpus analy-
sis requires a sample of several hundreds of programs,
but does not require detailed analysis of the process
by which those programs were written. Corpus anal-
ysis is best suited to investigating the parole [8] of a
language — the way it is used in practice — while
other techniques can provide more specific informa-
tion about the design of languages themselves.

7 Discussion and Conclusion

In this paper we have investigated applying pro-
gram visualisation to the dataflow visual language for
patches for the Nord Modular synthesizer. At the
start of this exercise, we established several hypothe-
ses about Nord Modular programs: in general these
have been borne out by our visualisation research, al-
tough not as strongly was we had expected.

The first hypothesis was that the Nord Modular
programming language would support the tasks of
constructing and debugging modular patches. While
the interface seems to support construction tasks well,
it does not provide as much support for debugging
Modular patches as we expected. Our alternative
visualisation, patch maps, applies colour coding to
modules as well as to cables, draws arrowheads on

Figure 16: Scatterplot of average cable vector for 467 patches

patch cables, and uses stereotyped locations for in-
put and output sockets. Compared with the standard
display, patch maps provide some better support for
finding particular types of modules in a patch and
for understanding a patch’s signal flow, and thus for
reading and debugging patches.

The second and third hypotheses were about pro-
gramming style related to module layout and con-
sequent signal flow — we hypothesized that signals
would flow from left-to-right, top-to-bottom, and that
closely related modules would be placed near each
other so patch cables would be short. Again, these
hypotheses were sustained, but rather weakly: the
main result of our visualisations of signal flow is that
while these hypotheses are true at a large scale, many
individual patches have idiosyncratic signal flow and
patch cable lengths, and that signal flow is often
tightly segmented according to cable type.

The key technical advantage allowing us to pro-
duce these visualisations, and to perform corpus anal-
ysis in particular, is that the Nord Modular patch
files are stored in a simple ASCII format. Perform-
ing a similar analysis on many other visual languages
would be much more difficult, because we would first
have had to parse a much more complex binary file.

We do need to note that these results are some-
what preliminary. For technical reasons due to the
Modular patch file format, some patch cables have
been omitted from the patch wheel and scatter plot
visualisations — it appears this is due to cables that
“daisy-chain” inputs to other inputs, rather than out-
puts to inputs. Also, each Nord Modular program
actually consists of two separate patch areas — a
polyphonic voice area (PVA) where modules are du-
plicated for polyphonic patches and a common voice
area (CVA) which is shared across all polyphonic
voices: our current tools analyse only the polyphonic
voice area. We plan to extend our tools to address
these issues, but do not expect these to markedly im-
pact our results.

We also plan further visualisation work on Nord
Modular programs: indeed, there seems quite some

scope for research since only a small amount of stand-
alone visualisation has been performed upon dataflow
visual languages, and very little corpus analysis has
performed upon visual langauges of any type. We
are considering visualising the “real estate utilisa-
tion” across patches — that is, which modules tend to
occupy which positions in the screen layout, or con-
versely, how particular screen locations are generally
used. We may also investigate the utilisation of par-
ticular modules within patches, perhaps comparing
this against amount of DSP processing load imposed
by the module, and the use of secondary notation,
particularly the names programmers assign to mod-
ules. More ambitiously, we would like to experiment
with providing automatic layout support for modules
(to reorganise patches to minimise cable length and
cable crossings) and with program slicing (so that all
the modules producing one part of a patch could be
automatically extracted from a patch making multi-
ple sounds). Finally, to date we have worked only
with the four hundred Nord Modular factory patches
supplied or gathered by Clavia: we hope to extend
this work to analyse the several thousand patches
available on the Internet.

References

[1] Ed Baroth and Chris Hartsough. Visual pro-
gramming in the real world. In Margaret M. Bur-
nett, Adele Goldberg, and Ted G. Lewis, editors,
Visual Object-Oriented Programming. Prentice-
Hall, 1995.

Kent Beck. Smalltalk Best Practice Patterns.
Prentice-Hall, 1997.

Alan F. Blackwell. Pictorial representation and
metaphor in visual language design. Journal
of Visual Languages and Computing, 12(3):223—
252, 2001.

J. Carroll and M. Rosson. Paradox of the active
user. In J. Carroll, editor, Interfacing Thought:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Cognitive Aspects of Human-Computer Interac-
tion. MIT Press, 1987.

Wayne Citrin, Soraya Ghiasi, and Benjamin G.
Zorn. VIPR and the visual programming chal-
lenge. Journal of Visual Languages and Comput-
ing, 9(2):241-258, 1998.

Clavia DMI AB, Sweden. Nord Modular Manual,
v3.0 edition, 1999.

Cycling '74. MAX Reference, 2001.

Ferdinand de Saussure. Cours de linguistique
générale. V.C. Bally and A. Sechehaye (eds.),
Paris/Lausanne, 1916.

Peter Desain, Henkjan Honing, Robert Rowe,
and Brad Garton. Putting Max in perspective.
Computer Music Journal, 17(2), 1993.

J.C. Grundy and J.G. Hosking. ViTABaL: a vi-
sual language supporting design by tool abstrac-
tion. In IEEE Symposium on Visual Languages,
1995.

J.C. Grundy and J.G. Hosking. High-level static
and dynamic visualisation of software architec-
tures. In IEEE Symposium on Visual Languages,
2000.

John C. Grundy, John G. Hosking, and War-
wick B. Mugridge. Serving up a Banquet: To-
wards an environment supporting all aspects of
software development. In Software Engineering:
Education and Practice (SE:E+P), Dunedin,
1996.

Richard Hagen. Blue
works’ bars and pipes
http://www.richardhagen.org.

ribbon sound-
professional.

Gregory A. Hansen. Automating Business Pro-
cess Re-Engineering: Using the Power of Visual
Simulation Strategies to Improve Performance
and Profit. Prentice Hall PTR, 2nd edition, 1997.

Robert Helsel. Visual Programming with HP-
VEE. Prentice Hall PTR, 1997.

Ken Kahn. Toontalk — an animated program-
ming environment for children. Journal of Visual
Languages and Computing, june 1996.

Brian Kernighan and Ken Plauger. The El-
ements of Programming Style. McGraw-Hill,
1974.

Bonnie A. Nardi. A Small Matter of Program-
ming: Perspectives on End User Computing.
MIT Press, 1993.

National Instruments Inc. LabView User Man-
ual, july 2000.

The Numerical Algorithms Group Limited, Ox-
ford. IRIS Ezxplorer User’s Guide, 5.0 edition,
2000.

Raymond D. Panko. What we know about
spreadsheet errors. Journal of End User Com-
puting, 10(2):15-21, Spring 1998.

Alexander Repenning and Tamara Sumner.
Agentsheets: A medium for creating domain-
oriented languages. IEEE Computer, 28(3):17—
25, 1995.

[23]

[24]

[25]

K. J. Rothermel, C. R. Cook, M. M. Burnett,
J. Schonfeld, T. R. G. Green, and G. Rothermel.
Wysiwyt testing in the spreadsheet paradigm:
An empirical evaluation. In Proceedings of the
22nd International Conference on Software En-
gineering, pages 230-239, June 2000.

Suzanne Skublics, Edward J. Klimas, and
David A. Thomas. Smalltalk with Style. Prentice-
Hall, 1996.

Ivan E. Sutherland. Sketchpad: A man-machine
graphical communication system. In Proceedings
AFIPS Spring Joint Computer Conference, vol-
ume 23, pages 329-346, Detroit, Michigan, May
1963.

K.N. Whitley and Alan F. Blackwell. Visual pro-
gramming in the wild: A survey of LabVIEW
programmers. Journal of Visual Languages and
Computing, 12(4):435-472, August 2001.

