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Abstract

Spreadsheets are an extremely common form of end-user programming that
have many applications, from calculating student marks to accounting for global
multinationals. Ways of studying the structure of a spreadsheet itself are normally
constrained to the tools provided in the spreadsheet software. As a result there
are limited facilities within the spreadsheet software user interfaces to create new
visualisations, but the visualisation can also be supported externally. This report
explores new ways to visualise spreadsheets in a manner that is independent of
the program they were created in, explains the technology involved, and presents
examples of the visualisations that can be produced. The techniques involved
in reading the spreadsheets also facilitate larger scale analysis of spreadsheets
for performing corpus analysis. Using corpus analysis techniques we can study
aspects of how end-users program spreadsheets in practice.
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Chapter 1

Introduction

Although end-user programming has received a growing amount of attention,
there has been little research into aspects of end-user programming beyond the
programming part per se. Programming is only one part of the development
process, and focusing on other aspects is important for reliability of the programs
end users create. In fact, reliability is an issue in end- user programming, as shown
by statistics about spreadsheets, a widely used type of end-user programming

language. [7](pg 1)

1.1 Motivation

Since spreadsheets made an entrance into the world of computing they have found extensive
use in a diverse range of disciplines, as well as throughout the general population. Profession-
als in commerce, mathematics, engineering, science, medicine, the arts, social science, and
education find the spreadsheet to be a natural tool for modelling, implementing and analysing
algorithms, constructing laboratory reports, carrying out statistical analyses, and producing
graphical displays. The versatility they provide allows the same programming interface to
produce fiscal reports, help predict future stock market trends, record and analysis empirical
data, and record student marks.

The notation used for such a powerful language is relatively easy to learn and use, most
likely due to its similarities with the requirements and solution processes for the problems
being modelled. The function and usage of the primitive operations is conceptually simple
but they can be combined to perform reasonably complex tasks.

It is these similarities along with those that separate them from the majority of everyday
programming paradigms that make the spreadsheet paradigm an interesting research topic.

Some of the properties that separate spreadsheets from most mainstream programming
languages include that they are not compiled but rather updated in near real time as the user
makes changes and interacts with individual worksheets. Also, spatial relationships replace
time as the primary organising principle, and most sheets are constructed by end-users rather
than trained programming professionals. Rather than immersing the programmer in low-level
details of traditional programming, spreadsheets attempt to shield users from these details
to instead free them to concentrate on solving the problem at hand.

The common theme between all uses of spreadsheets is that many larger problems result
in the construction of monolithic programs that are hard to comprehend, even by those who
programmed them. The logic of a spreadsheet model, with its many interrelated cells, can be
arduous to follow, making it difficult to modify and debug a complex model. Comprehension
issues are not just constrained to large, complex spreadsheets either. Relationships between



cells can span large regions of space or involve sizeable volumes of cells in a concise notation,
adding to the cognitive load on the user.

1.2 First Contact

When first interacting with a spreadsheet the user can have to process a daunting amount of
information in terms of layout and hidden inter-cell dependencies created by formulas. This
problem with the organisation of code has been observed by users for some time and was
commented on by Bonnie Nardi [38] where she mentions:

It is difficult to get a global sense of the structure of an individual formula that
may have dependencies spread out all over the spreadsheet table. Users have to
track down individual cell dependencies one by one, tacking back and fourth all
over the spreadsheet.

1.3 Approach to solving the problem

A possible solution to this problem, and that investigated as part of this honours project,
would be the creation of a set of images that could represent the contents at a more abstract
level than possible with the spreadsheet software. The user would start with very general
information and then progress towards the actual details present in the spreadsheet. As the
user progresses through these visualisations they are learning about the layout and depen-
dency structures without being exposed to actual values and other lower level properties in
the spreadsheet.

The spreadsheet programs themselves provide a limited ability to achieve such abstract
views of the information they contain. This resulted in a design goal to have the ability
to quickly implement new visualisations in a manner independent from the application they
were created in and free from interaction with the applications developing company. To
create these abstract diagrams, access to the internals of the spreadsheet, at the same level
accessible by the user, is required. To avoid the limitations present in the spreadsheet software
the information is extracted to a more versatile programming environment, which is Java in
the case of this project. The greater flexibility achieved outside the application is a trade-off
with the benefits that could be achieved by having visualisations directly integrated with the
information in the spreadsheet.

1.4 End-user programming

In addition to providing new ways to view a spreadsheet there is also the aim of exposing
the programming style and structure that occurs when domain experts rather than trained
programmers code an application. So while one aspect of this research project involves
examining individual spreadsheets there is also the objective of applying program visualisation
techniques to a corpus of spreadsheets. The corpus will be used to do an empirical analysis
of the dependency structures and general organisational layout patterns that typically occur
in real-world problems. Of particular interest is how they model complex problems using the
latitude granted by the spreadsheet model.

More specifically, the aim is to investigate styles and approaches used by people in pro-
gramming visual spreadsheets. As Noam Chomsky observed about corpus linguistics [54],
this is measuring user performance via naturally occurring data rather than actual user com-
petence.



This can have interesting research benefits, as although users may be aware of advanced
features like specialised functions or general rules of best practice, they may not apply them
when dealing with real world problems. So although spreadsheets can grant users a flexible
set of lower level operations, questions remain as to if they benefit from the full latitude
granted by the spreadsheet language. It may be the case that users only ever use a small
subset of the available operations in the majority of programming tasks. The remaining set
of operations are then only rarely used for specialised problems. These claims are backed up
in later chapters through the use of the corpus.

Spreadsheets are one of the most common forms of end-user programming currently in
use, and Microsoft Excel is the most utilised example of a spreadsheet application. With a
market share often topping more than 90%, the potential user base is vast. Even greater
in magnitude is the number of spreadsheets that these users generate. This made Excel the
obvious spreadsheet to concentrate research on.

A selection of all spreadsheets created will become part of a publicly accessible repository
that is scattered around the Internet. This untapped resource offers the potential for research
into the how end-users utilise the power and versatility spreadsheets provide.



Chapter 2

Background

Following their creation in the late seventies, spreadsheets rapidly developed into one of the
most widely used software products during the 1980s and 1990s. Their design, which mimics
that of an accountant’s spreadsheet with of rows and columns, provides an end user program-
ming environment that is accessible to a range of professions with different backgrounds and
interests. This proven versatility has seen them used by accountants, managers, and a vast
variety of other end users, as well as computer professionals.

This chapters serves to provide the reader with a background history of spreadsheets,
what support they currently have for visualisation, the related research in the field, and then
to finally introduce the concepts of corpus analysis.

2.1 A Brief history of Spreadsheets

Since its inception, the core spreadsheet paradigm hasn’t evolved too far from its original
founding concepts. Time has seen an evolution in the features present, and the performance
has improved, but the basics of the paradigm, such as the grid layout and underlying formula
language, remain remarkably similar. All spreadsheets can trace their roots back to a common
ancestor, VisiCalc.

2.1.1 VisiCalc - A beginning

The spreadsheet began when Dan Bricklin and Bob Frankston created VisiCalc in 1979.
The founding idea emanated from Bricklin wanting to create an effective way to utilise the
computational power of microcomputers to solve small business school problems by “putting
together the immediacy of word processing and the fluidity of the screen.” [30] The core
spreadsheet concept was patterned after a traditional blackboard production-planning layout.
The resulting model used a set of cells arranged into rows and columns on a simple two-
dimensional grid as an addressing mechanism for describing the spatial relationships between
cells. This addressing system is constructed by identifying columns with letters and rows by
positive integers. Individual cells are then referenced by a unique column and row pair. For
example, Eb refers to the cell in column E of row 5.

Originally written in assembly language for a 32 KB Apple II, VisiCalc was a small
spreadsheet with a terse single-line menu. Figure 2.1 is sourced from Dan Bricklin’s website
[11] and shows what the original interface looked like. The popularity and usefulness of this
first spreadsheet led to the rapid development of numerous other spreadsheets, including early
ports of VisiCalc to the Z80 and IBM PC (8086 or 8088 code).



i3 (V) «+0Z-Bl13+013

(]
—

S T
[l g

£
)

e =

—T =T

LE
IL
HO
EH
AL
{EH
AS

i
I
B
=

Figure 2.1: The original VisiCalc in use

2.1.2 Evolution

VisiCalc was soon replaced as the market leader in the increasingly competitive spreadsheet
market. The first main rival to topple its dominance was SuperCalc in 1981. Developed for the
Osborne computer, SuperCalc became the primary spreadsheet for 8-bit CP/M computers.
SuperCalc was soon followed by Lotus 1-2-3 in 1983, which was created for 16-bit MS-DOS
computers. The Lotus spreadsheet brought many new innovations and advanced features to
the paradigm, including online help, sophisticated menus, graphic and database management
capabilities, and macros. With its well thought out features it immediately became a best-
selling software product for the time, and set standards for competitive spreadsheet products
that followed [4].

With the spreadsheet user base growing and increased competition between vendors a
race to add new features to meet varying user desires ensued. This led to the development
of add- on features that have now been incorporated into the majority of spreadsheets.

One of the important phases in the expansion of the spreadsheet model was the addition
of a third dimension, and in some cases a series of named grids, to allow for multiple-page
spreadsheets to be bound into one larger workbook file. Some of the more advanced spread-
sheet applications generalise this spatial representation by making it possible to perform
inversion and rotation operations that can slice and project the data set in various ways.

More recently there has been the development of increasingly powerful spreadsheets with
advanced features and presentation-quality graphics. It is seldom now that spreadsheets are
created as standalone programs, instead forming fundamental components in larger integrated
software suites that run under various operating systems.

One spreadsheet of particular note that attempted to introduce new concepts to the
market was Lotus’s Improv [56], which offered an innovative addressing mechanism as an
alternative to the traditional A1 referencing notation. In a review of the release for Windows
3.1, Alan Zisman summarises the interface as follows:
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Figure 2.2: The trend towards Microsoft Excel market share dominance. Graph sourced from
[32].

Rows and columns become ’items’ in Improv-speak. You start off with a single-
cell worksheet, and two generic items. Give the items meaningful names: Income,
Expenses, Profit, 1992, 1993, etc. Cells are referred to by the items that define
them... 1992:Expenses, for example. [59]

Although considered to be a more flexible environment to perform spreadsheet style com-
putations in, the differences were almost certainly its downfall, with the current market of
users not willing to relearn controls to use the new interface.

In the early nineties the spreadsheet market was divided between three big players, Mi-
crosoft Excel, Lotus 1-2-3, and Quattro Pro [4], but more recently there as been a shift
towards market dominance by a single product, Microsoft Excel. Figure 2.2 clearly shows
Excel ousting 1-2-3 as the market leader in terms of revenue market share. According to data
sourced from the analysts at Gartner Group, Microsoft currently enjoys a revenue market
share of 93 percent in the category (office productivity software) [32, 9, 29].

It is this strong dominance of market share that motivated our project to concentrate on
studying Excel. The potential resources, both in the size of the user base and relevance with
other research, were strong factors in the decision to concentrate on Excel. Figure 2.3 shows
a typical user session with Excel.

2.1.3 Common components and operations

There are several important concepts that occur in the majority of spreadsheets on the
market, and in particular Excel. Before further discussing the relevant areas of spreadsheet
research it is important to have an understanding of them and their place in the underlying
model.

Perhaps one of the most important mechanisms in a spreadsheet is the cell. Each cell has
three core components: a value, an optional formula, and a coordinate defined by its position
in the worksheet grid.

For any particular cell, a user can enter a primitive data element, such as a label (or
string), a number, or a date. Alternatively, a cell’s value may be imported from some other
source file during the creation of the workbook, or be the result of computation on some
other values at locations around the spreadsheet. Computations are achieved by defining a
formula for the appropriate cell, which the interface allows for in much the same way as a

value, except that an initial “=" symbol indicates that the following expression is a formula.
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Figure 2.4: Entering a basic formula in Excel with the aid of the mouse

Although such a formula may be entered by typing in the symbols directly, a conceptually
simpler approach for many users is to enter the formula’s cell locations by “pointing to them”,
i,e. by clicking on the referenced cells while entering the formula as demonstrated in figure
2.4. The spreadsheet calculates the resulting value of a formula in a cell by using the current
values of any cells that it refers to and any operators/functions it contains. It then stores
the result as the cells new value that is displayed to the user on the screen. Generally, the
calculation of a spreadsheet is performed in an order that first evaluates any of the cells
referenced in another cell, although other options are available.

The unbounded referencing ability of formulas provides a linking mechanism between cells
that permits the construction of modular and multidimensional models. The user is free to
arrange data as they see fit, without considerations of accessibility between cells.

Notation for referencing cells is enhanced further due to the ability to reference a rectan-
gular sub-grid through a range, allowing users to concisely refer to large blocks of cells to be
used as operands in aggregate functions. Unlike traditional programming arrays, there is no
limitation that prevents a cell belonging to more than one range.

Given this versatility it is often common practice to arrange the information in a logical
fashion, particularly for a spreadsheet that is used repeatedly. Often such an arrangement
will be related to the semantics of the sheet [35]. Markus Clermont observes that for a large
sheet, business logic may dictate “arrangements where data-entry cells, cells immediately
dependent on these data entries used for preparatory operations, and cells performing the
final modelling or analysis are allotted to distinct, well identified, locations ... or laid out in
a regular pattern.” [35] These arrangements often put the values into logical sets with other
values that conceptually play the same role, such as forming base data for use in a summation
[34]. It is possible for a cell to belong to more than one conceptual set.

These layouts can provide cues about the underlying dataflow structure of the spreadsheet,
such as in an example given by Igarashi where the summation formula “is typically placed
at the end of the corresponding row or column.” [25] Other benefits of a well organised
spreadsheet include offering spatial clues for data location that enables users familiar with
layout to quickly find data, even in very large spreadsheets [39](pg 6).



Absolute and relative referencing

One of the most popular features of the spreadsheet paradigm are the copy and fill (also
known as replication) commands. David Reed accurately summarises the function of these
commands as allowing the “construction of iterative calculations in a natural way by adjusting
the formula cell references either to follow ’relatively’ to the displacement of the formula or
"absolutely’ to define a global parameter that affected all cells.” [11] Excel, along with several
other spreadsheets, uses the $ symbol to determine how a cell or range location identifier is
interpreted by a copy command. Each location identifier can have a $ symbol associated
with each dimensional component to indicate that it is to be treated as an absolute, or
constant, reference. Conversely, without the $§ symbol the reference is treated as relative. A
cell reference such as $C$1 is unchanged in copying, while $A3 varies from row to row, but
always comes from column A. When the relative cell reference, such as D3, is copied as part
of a formula to the cell in the next row down it is changed to D4, a translation equal in
distance to that of the copy command.

Copy and fill can also be applied to range references using the same mechanism, providing
a consistency in the interface that David Reed observes as allowing for “very interesting and
powerful recurrence relations to be represented naturally and obviously in the programming-
by-example metaphor.” [11].

The power of this addressing notation can have consequences, such as the ability to create
a high degree of complexity within spreadsheets. This can cause difficulties, such as those
observed by Clermont [35](pg 2) where spreadsheet users are generally not aware of this
potential complexity. The result is that “mistakes, that have been made anywhere in the
underlying model, will be propagated.”

2.1.4 Spreadsheet Commands

Spreadsheets contain many additional features, including numerical, string, table, and logic
library functions from mathematics, finance, engineering, statistics, and computing. There
are also more sophisticated functions and commands for more advanced mathematics, includ-
ing linear and multiple regression, matrix operations, random number generation, and linear
programming.

Several of these more advanced functions use the less well-known array syntax. One
example of this array syntax is used is for separating ranges of data into buckets for producing
histograms, as demonstrated in figure 2.5.

Along with many other commercial spreadsheets, Excel provides a powerful set of graphing
commands to help users with data visualisations. The graphs available range from simple
bargraphs to more complex surface maps. Of particular use with graphs is the dynamic
update that allows users to observe changes in source data affecting the graphs.

2.1.5 Features of Interest

One of the most interesting characteristics of the spreadsheet paradigm is that even people
with no traditional programming experience generally find spreadsheets to be intuitive, nat-
ural, and usable tools for business and mathematical modelling, decision making, simulation,
and problem solving. While originally regarded simply as applications programs, below their
relatively simple interfaces spreadsheets are in fact effective instruments for nonprocedural
programming in general.

In a large portion of general computation programs imperative sequential control order
is used to order the computational steps and provide the primary organisation mechanism.
A well- defined entry point is used to determine the first instruction to be executed, with

10
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Figure 2.5: Creating a histogram using the frequency function and an array of cells to perform
bucketing.
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other instructions being reachable via a prior sequence of instructions. In contrast, the non-
procedural spreadsheet environment replaces time with spatial relationships as the primary
organising principle (at least from the perspective of the user)[57].

For performance reasons, the majority of programming languages based on time for organ-
isation are compiled to a lower level representation, such as machine code or Java byte code.
Spreadsheets instead offer direct real-time manipulation of an operating program, without
the need for user interaction with an interpreter or compiler. From the users perspective a
spreadsheet doesn’t appear to run, but rather update to reflect changes in the model.

This typical spreadsheet interface is often referred to as having a WYSIWYG (“What
You See Is What You Get”) functionality via the ability for instant, and automatic, value
recalculation based on formulas and the references they create between cells. This leads
to another useful property of spreadsheets, the ability for rapid prototyping of programmes
with the capability for trying “What if...?” scenarios. Exploratory programming allows
users to experiment with the effects of a certain cell by varying its parameters or data and
observing the immediate effects of these manipulations. A typical example of such a scenario
is in financial modelling where it is possible to examine the compound effects of changes of
such interrelated components as projected sales, prices, production costs, interest rates, and
profit. Allowing the uses to “tinker” with the model in this way can aid in understanding and
debugging complex data structures. When this ability is combined with undo features it is
considered to satisfy Shneiderman’s third principle of direct manipulation: “rapid incremental
reversible operations whose effect on the object of interest is immediately visible” [49].

When first introduced, spreadsheets were used primarily in low-level decision-making, of-
ten by single individuals, to model smaller problems. Within a decade the use of spreadsheets
expanded to become a valuable management tool that is now used extensively as a medium
for implementing increasingly larger models [4]. These complex models are utilised for doing
significant high-level business decision analysis where the resulting decision can have major
consequences and repercussions. So with large spreadsheets being used increasingly for the
analysis of critical decisions it is becoming crucial to ensure the correctness of the spreadsheet
models, and current research in the field is reflecting this need.

When a user sits down to implement a model with a spreadsheet, they are typically
concerned with two underlying problems, computation and presentation [39]. The model that
a spreadsheet presents addresses both of these issues in an integrated way. The grid-based
structure provides a presentation medium, storage for persistent data, and an addressing
mechanism for information within formulas. The code that a user writes is dual purpose,
being used both for performing the required calculations, and secondly displaying the results
back in an intelligible form. This is one reason why formulas are traditionally transparent to
users in the standard interface view. As cells are the only available storage mechanism for
variables, a spreadsheet programmer must either store all information that is required for a
formula in separate cells, or recalculate the value in every formula. This lack of temporary
variables often creates a conflict between presentation and calculation requirements for a
spreadsheet. A user who is conscious of needlessly recalculating values or formula complexity
can find a solution by doing the calculation in a cell that is out of the visible screen area
(scope) of the data to be presented. However, related information is no longer spatially
grouped, which can make later debugging a more difficult task, especially for a user unfamiliar
with the sheet. Takeo Igarashi et al. comment: “But in some cases, a user must put formulas
referring to distant cells in irregular positions, which makes it difficult to understand the
structure.” [25]

As one would expect, a spreadsheet model will only contain those logical dependencies
between cells that the programmer understood during implementation. A more complex
task for this project could be to find those relationships that are only implicit in the model
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Figure 2.6: Using Excel’s Range Finder to examine a formula.

and make them more apparent to the user. A good example of an implicit relationship
is a constant value that is defined in multiple formulas around the spreadsheet. In many
situations it may be more appropriate, disregarding the problem mentioned above, to define
this value once and use absolute syntax to refer to it.

2.2 Current support for visualisation

Modern versions of Microsoft Excel provide two techniques to help visualise the invisible
dataflow model of a spreadsheet.

The first is called the “Range Finder”, which is invoked by selecting a cell containing
a formula and clicking in the formula bar. An example usage is shown in figure 2.6. This
results in Excel colouring all the addresses in the formula and the respective regions in the
spreadsheet with a rectangle of the same colour. The user can then directly manipulate the
formula by moving and adjusting the rectangles. This technique is limited to showing the
dataflow for a single, user selected, cell with no way of displaying the overall structure of the
spreadsheet. It is also of limited use when the dependencies span large distances, as the user
will need to hunt round to find the highlighted boxes.

The second built in auditing tool has the ability to display interconnections between cells
by tracing cell precedents and dependants using arrows. An example is given in firgue 2.7 For
a cell A, precedent arrows will point to A from all cells that are referenced in A’s formula,
showing the location of the source data, or the ancestors, for A. Dependent arrows show the
flow for data subsequently calculated using the data in the selected cell, that is, a cell B will
have dependent arrows to all cells that reference it in their formulas, the descendants. These
arrows also serve to allow the user to move between spatially disjoint, but logically connected,
cells by double-clicking the arrowheads. This technique is referred to as semantic navigation
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Figure 2.7: Excel’s built-in auditing tools. Note how the reference to a cell is not fully visible
and a sheet icon is the only indication of the link between sheets.

by Takeo Igarashi et al. [25] who observe that it provides cues about the relations among cells
rather than the superficial spatial continuity, serving to make the hidden dataflow patterns
more transparent. They also remark that “complicated spreadsheets can create a tangle of
arrows, making it difficult to see the relationship among cells.”

An additional limitation of the current auditing tools is the treatment of ranged references,
with Excel only depicting a minimal containing box and a single reference arrow. This is
particularly an issue with intersection references, where the dependencies may be potentially
greater than those cells immediately referenced. For example, a change in value of a remote
cell could cause the intersection region to expand.

Another function of the auditing tools is for highlighting circular references to users,
which are typically the result of an addressing error. Excel generally has acyclic relationships
between cells [1, 15], which creates a tree like dependency structure (or a forest of trees due
to multiple roots). It should be noted that this is not always the case as Excel also provides
a bound iterative calculation mode for working with specialised circular reference problems.

Multiple trees can share common branches, and in such cases it can be difficult to trace
all the connected trees using the inbuilt auditing functions. This is primarily due to Excel
only tracing dependencies in one direction at a time, requiring multiple traversals by the user
to trace the entire structure.

2.3 Related Work

Spreadsheets and other visual programming languages are currently an active area of re-
search, with many fields of focus being addressed. These range from devising new ways to
interact with applications, theoretical models to describe the underlying principles, methods
for detecting and correcting errors, and the cognitive issues of programming.
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Jorma, Sajaniemi presented a theoretical model of spreadsheets along with a description
of various spreadsheet auditing mechanisms employing the model [47]. Wilde’s work on
the WYSIWYC spreadsheet [58] aims to improve traditional spreadsheet programming by
making cell formulas visible and by making the visible structure of the spreadsheet match its
computational structure. Brad Myers created C32 [37], which uses graphical techniques along
with inference to specify constraints in user interfaces. These constraints are relationships
that are declared once and then maintained by the system. Burnett makes the following
observation about C32: “Unlike the other spreadsheet languages described, C32 is not a
full-fledged spreadsheet language; rather, it is a front-end to the underlying textual language
Lisp used in the Garnet user interface development environment.” [20] (pg 2)

Creating and applying specialised visualisations for visual programs has achieved less
attention than many of the other fields of research. Work done that has been influential on our
project includes James Noble’s and Robert Biddle’s visualisation of the visual programming
language for the Nord modular synthesizer [41] and the later paper on visualising a corpus of
the Nord modular patch language programs [40]. In the latter paper they make the following
comments about the current state of visual program research and corpus analysis:

Probably because most visual languages do not have a large user base, the practice
of the visual languages community has been to adopt empirical usability evalu-
ations to understand how languages are used, or to measure the effectiveness of
individual small details of language designs [...], or researchers may participate in
programming communities to evaluate their use of languages |[...].

Probably closest in spirit to our work is the empirical analysis of spreadsheet pro-
grams, where accountants or auditors work through a corpus to identify features
of programs, such as cell error rates [...]. In the mainstream textual language
community, analyses of programs are carried out mainly to improve implementa-
tions: analyses and critiques of programming style are generally based on single
examples, drawing on literary criticism [...] or the patterns movement [...] for
models.

Returning to spreadsheets, much of the emphasis in spreadsheet research at the moment
appears to be the admirable goal of detecting and correcting errors. The research focus of the
majority of published papers on spreadsheets all have errors as a common consideration. Pro-
posed methods for locating errors range from detailed inspection of individual spreadsheets
as part of an auditing process to automatic technologies.

2.3.1 Spreadsheet Errors

Since the late eighties Raymond Panko has written numerous papers relating to the spread-
sheet paradigm and end-user programming in general. The focus ranges from introducing
basic rules for creating spreadsheets, to detailed explanations of the causes of errors and
methods for detecting them.

The methodologies Panko and others are using to find these errors are developing in
maturity and verifiability. In the earlier cases, much of the discussion was only speculation
using anecdotal evidence. Now most research relies on empirical data derived from “the realm
of systematic field audits and laboratory experiments” to back up their claims [43].

Panko collected the data from a range of such research projects conducted before 2000,
and collated the data in a table with comments on the methodology used, along with the cell
error rates and percentage of models with errors. Across the diversity of techniques present in
the complied data, he found a common pattern: “every study that has attempted to measure
errors has found them and has found them in abundance.” [43]
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He has observed that errors have a tendency to occur in a few percent of all cells, resulting
in a question of not if errors exist, but rather how many errors there are in larger spreadsheets
[43]. The percentage can vary considerably depending on the auditing methodology used and
particular application the spreadsheet is being used for. Through practical experience most
consultants gave the conservative estimate that between 20 and 40% of spreadsheets contain
errors [42], with the number rising as high as around 90% for larger spreadsheets.

These errors are generally attributed to human error, with errors during programming
typically occurring for 5% of all actions performed by the user. This number is itself derived
from a series of empirical studies that Panko presents on “The Human Error Website” [42].

Many of the studies on spreadsheets involve using laboratory data, but a portion also
involved the use of operational data from real world problems. This can be important for
obtaining results that are more representative of current practices.

Despite the wealth of information that Panko and others have found to indicate the alarm-
ing error rates in spreadsheets, they have also found that many users are still overconfident
of their abilities to program error free spreadsheets. As a result, a significant portion of the
human errors go undetected due to programmers not taking steps to reduce the risk of errors.
Panko reasons that this behaviour is partially due to the reluctance of people to do formal
testing, and follow other tedious disciplines allowing them to save time and avoid onerous
practices. This is followed by the observation that the errors that are caught only serve
to further convince the users of their efficiency [42] (pg 14). More still may dismiss errors,
because many syntactic errors are automatically detected and brought to the users attention.

One of the most interesting observations that Panko has made is that spreadsheets prob-
ably contribute the largest portion to the development of large-scale end-user applications in
current times [42] (pg 2). This view is important as many regard spreadsheets as tools for
solving “small and simple scratch pad applications” by single individuals that are disposed
of shortly after computation is complete. The truth is that there are a sizeable number of
spreadsheets that are both large and complex, with their development involving multiple
people and often spanning significant periods of time.

Another interesting result from surveys that Panko and others have undertaken with
companies is that, although it is agreed that the error rate numbers are too high, there is a
general consensus that comprehensive code inspection is simply impractical. Which Panko
summarises as implying that companies “should continue to base critical decisions on bad
numbers.”

One conclusion that can be drawn from the high level of errors, but general reluctance
to check for them, is the need for easier methods of reducing most causes of errors without
consuming time and other valuable resources. Increasing user awareness of the structure and
meaning of a spreadsheet through visualisation holds promise as one technique to partially
address this need.

2.3.2 Margaret Burnett’s work on spreadsheet visualisation

Margaret Burnett is an active researcher in the field of visual programming languages. Of
particular relevance to this project is her work as the principal architect of the Forms/3
visual language. Forms/3, shown in figure 2.8, is a tabular form based visual language that
has several features similar to spreadsheets, such as the parallel between its form linking
mechanism and spreadsheet formulas. Using this language it has been possible to research
areas and methodologies that would not have been possible, or at least difficult, with many
closed source commercial spreadsheets due to the requirement for seamless integration.

The importance of seamless integration is to maintain the consistency of the spreadsheet
paradigm. Burnett takes this requirement to mean that any approach “follows the declarative,
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Figure 2.8: The Forms/3 visual programming language. The value in the Area cell is calcu-
lated using the value in the Abox cell. The red cell border indicates the cell has not been
“tested”. Image sourced from Margaret Burnett’s guided tour of Forms/3 [12].

one-way constraint paradigm of spreadsheets, emphasizing that it should follow the value rule
for spreadsheets” [20](pg 1). The definition she gives for the value rule is taken from Kay
[26] and states “that a cell’s value is defined solely by the formula explicitly given to it by
the user”.

Many of the additions that were made are related to a hypothesis about the spreadsheet
model. This hypotheses is:

that spreadsheet reliability can be improved if the spreadsheet users work col-
laboratively with the system to communicate more information about known
relationships. Spreadsheet users know more about the purpose and underlying
requirements for their spreadsheets than they are currently able to communicate
to the system, and our goal is to allow end users to communicate this information
about requirements. [7](pg 1)

Motivated by the high degree of errors present in spreadsheets and the desire to reduce
the cognitive load on the user, Burnett and others have developed a testing methodology that
applies software visualisation techniques to support testing of Forms/3 programs [46]. An
example of the Forms/3 support for testing is shown in figure 2.9. This testing methodology
was designed to help end users with the correctness of their spreadsheet programming by
allowing them to incrementally edit, test, and debug their spreadsheets in a visual way as
the model evolved. The approach, referred to as WYSIWYT (“What You See Is What You
Test”), augments the spreadsheets interface with additional information that provides visual
feedback through several techniques about the degree a spreadsheet has been tested.

One of the additions to the spreadsheet interface were dataflow arrows that show dataflow
paths among cells and, when formulas are showing, they also show the interactions between
formula subexpressions and the “testedness” of each cell via colour. These arrows are an
optional part of the interface, and to avoid adding to much clutter, each cell’s arrows are
transient and appear/disappear when the user clicks on the cell [33](pg 23).

Early research undertaken on the WYSIWYT methodology worked at the granularity of
individual cells. This approach worked well for smaller spreadsheets, as demonstrated by
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Figure 2.9: Forms/3 visual support for testing. Here testing information is displayed after
user validation.

studies conducted on testing, debugging, and maintenance tasks with the help of WYSIWYT
[7](pg 3). However, this technique often put an unnecessarily large burden on the user
for more substantial spreadsheets, which would often contain large grids that were fairly
homogenous, i.e. “they consist of many cells whose formulas are identical except for some of
the row/column indices” [33] (pg 4). This led Burnett and her colleagues to address a matter
of necessity for real-world spreadsheets: “how to establish scalable guard mechanisms that
are viable for end-users when programming spreadsheets.” [33]

A research effort relevant to our project was the creation of a cell relation graph in earlier
testing work [33](pg 7). This model consists of a collection of nodes that each form part
of a larger formula graph model. In the formula graphs an entry node models initiation of
the associated formula’s execution, an exit node models termination of that formula’s exe-
cution, and one or more predicate nodes and computation nodes, modelling execution of if-
expressions, predicate tests and all other computational expressions, respectively. Edges in
this graph control the flow between pairs of formula graph nodes. Out edges from predi-
cate nodes are labelled with the value to which the conditional expression in the associated
predicate must evaluate for that particular edge to be taken. Figure 2.10 show an example
relation graph.

Cells also form an integral part of this model because of their role as variables. Each
cell has a corresponding node in the formula graph that represents the expression defined
in that cell. This node also contains details that the cell is either for computational use (a
non-predicate node refers to it) or a predicate use (an out-edge from a predicate node that
refers it) [33]( pg 8).
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Cognitive Dimensions

Visual programming languages have strong connections with cognitive theory as they attempt
to improve a human’s ability to program effectively, making it important to understand the
cognitive issues that are relevant to programming. Burnett observes this importance with
the aim of understanding the cognitive issues that are relevant to visual programmers to help
them to use their full potential [36](pg 9). Her main research into this field is through the
work of the psychologist Thomas Green and his colleagues on “cognitive dimensions” [22],
which are “a set of terms describing the structure of a programming language’s components
as they relate to cognitive issues in programming”. When assessing usability at design time,
the cognitive dimensions framework does not provide a strict set of rules, but instead are used
as heuristics and to provide vocabulary with which to talk about important design factors.

Table 2.1 reproduces a list of the dimensions, along with a thumb-nail description of each,
that Burnett extracted from Green’s work as part of a visual programming paper [36]. Each
of these dimensions are related to a number of empirical studies and psychological principles
detailed in Green’s work [22], but it is also carefully pointed out that there are gaps in this
body of underlying evidence. This is summarised by Green and the other authors as follows,
“The framework of cognitive dimensions consists of a small number of terms which have been
chosen to be easy for non-specialists to comprehend, while yet capturing a significant amount
of the psychology and HCI of programming.”

While several of these dimensions are not applicable to most of the images planned for
this project, they are all significant as they communicate many of the important principles
of gaps in Excel that I hope to address.

This work is by no means the only to address programming from the cognitive perspective.
Other terms such as directness and immediate visual feedback have crossovers with Green’s
dimensions. Spreadsheet directness, in the context of direct manipulation, is described as “the
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Abstraction gradient What are the minimum and maximum levels of abstraction? Can
fragments be encapsulated?

Closeness of mapping What 'programming games’ need to be learned?

Consistency When some of the language has been learnt, how much of the rest can be
inferred?

Diffuseness How many symbols or graphic entities are required to express a meaning?
Error-proneness Does the design of the notation induce ’careless mistakes’?

Hard mental operations Are there places where the user needs to resort to fingers or
penciled annotation to keep track of what’s happening?

Hidden dependencies Is every dependency overtly indicated in both directions? Is the
indication perceptual or only symbolic?

Premature commitment Do programmers have to make decisions before they have the
information they need?

Progressive evaluation Can a partially-complete program be executed to obtain feedback
on “How am I doing”?

Role-expressiveness Can the reader see how each component of a program relates to the
whole?

Secondary notation Can programmers use layout, color, or other cues to convey extra
meaning, above and beyond the ’official’ semantics of the language?

Viscosity How much effort is required to perform a single change?

Visibility Is every part of the code simultaneously visible (assuming a large enough display),
or is it at least possible to compare any two parts side-by-side at will? If the code is
dispersed, is it at least possible to know in what order to read it?

Table 2.1: The cognitive dimensions devised by Thomas Green . [36](pg 9)
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feeling that one is directly manipulating the object” [48]. From the cognitive perspective,
Burnett and others describe directness in computing as having a “small distance between
a goal and the actions required of the user to achieve the goal” [36](pg 3). The example
Burnett gives of directness, given concreteness in a visual programming language, is allowing
the “programmer to manipulate a specific object or value directly to specify semantics rather
than describing these semantics textually.”

Immediate Visual Feedback in visual programming refers to the language automatically
displaying the effects of program edits. Visual languages often exhibit a degree of immediate
visual feedback, which can be categorized using on of the four levels of liveness. Liveness
is a term coined by Tanimoto to categorise the immediacy of semantic feedback that is
automatically provided during the process of editing a program [52]. At level 1 there is no
semantics implied to the computer, and at level 2 semantic feedback about a portion of a
program is available, but it is not provided automatically. Level 3 is the point of interest as
it is the level provided by most spreadsheets through automatic recalculation. At this level
“incremental semantic feedback is automatically provided whenever the programmer performs
an incremental program edit, and all affected onscreen values are automatically redisplayed”
[36](pg 3). Using this technique it is safe to assume the consistency of the display state and
system state, unless systems state changes can be triggered by events other than programmer
editing. Level 4 address these additional triggers by including possible events such as system
clock ticks and mouse clicks over time, “ensuring that all data on display accurately reflects
the current state of the system as computations continue to evolve” [36](pg 3)

Liveness exhibited by spreadsheets strongly relies on the underlying dependency graph
(or relation graph model). The importance of this structure is one reason we are exploring
ways to visualise it as part of our project.

2.3.3 Takeo Igarashi et al. work on fluid visualisations

Takeo Igarashi et al. describe spreadsheets as augmenting “a visible tabular layout with
invisible formulas” [25]. They observe that while the transparent nature of formulas allows
the cells to be used for both presentation purposes and as programming variables, the access
to the formulas and their resulting dataflow structure is often difficult, resulting in significant
cognitive overhead for users. In 1998 they published a paper [25] documenting the creation of a
set of fluid visualisations that help the user address the hidden dataflow graphs and superficial
tabular layouts of spreadsheets. They were designed to improve the users understanding of
the dataflow structure by enabling them to visually interact with the obscured structures,
while maintaining the original appearance of the spreadsheet. An example image taken from
the paper is shown in figure 2.11.

The invisible formulas can affect the both the users who create the spreadsheet and those
who may later try to understand and modify it. To fully understand a spreadsheet, Takeo
Igarashi et al. observe that a new”user must repeatedly select a cell, read the formula,
and move on to the next cell, until he has seen enough formulas to get an overview of the
spreadsheet. As spreadsheets get larger and more complicated, the overhead of understanding
shared spreadsheets increases dramatically.” [25]

This cognitive overhead is undesirable for any user, who will typically be more interested
in solving the problem at hand rather than tracking the exact structure of the spreadsheet.

The diagrams produced use a range of techniques to display the information of interest.
Selections of them are static and can display large amounts of information at any one time.
The drawback of these diagrams is that they can develop many overlapping features, resulting
in a sometimes cluttered appearance. As such, Igarashi only suggests their use for gaining a
general overview of the entire structure. More advanced visualisations make use of animation
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Figure 2.11: Static global view produced by Takeo Igarashi et al. to visualise the entire
dataflow graph at once.

to reveal the structure as the user interacts with the spreadsheet. These visualisations can
allow the user to navigate and edit the dataflow structure more effectively, and perform
interactive graphical induction that is more expressive than the regular patterns achievable
using the $ symbols. It is also noted that users often make errors when using absolute
references, mainly due not knowing where to place the $ symbol. Igarashi et al. make the
following comment:

A related problem occurs when a formula is used to fill a region of a spreadsheet.
Current spreadsheet applications adjust the cell addresses in the formulas by the
distance from the source formula, which again may or may not be what the user
desires. To inhibit these adjustments, the user can specify a cell in the formula
to be an absolute reference (by using the “$” symbol), but it is difficult to place
the $ symbol correctly, which means the filled formulas must also be checked to
make sure they are correct. [25]

Although the techniques presented showed potential in many areas, Takeo Igarashi et
al. mention that in future work there is a need to integrate these diagrams into a more
realistic spreadsheet program. This is one area that our project addresses, by creating many
of the visualisations independently of the application vendor while still working with actual
spreadsheets. It will however share the same limitations for visualisations that need to be
used interactively at runtime.

2.3.4 Markus Clermont

Markus Clermont has written papers discussing the conceptual differences between traditional
programming practices and those undertaken with spreadsheets, and is currently researching
techniques for debugging excel-spreadsheets [35, 34].

At the crux of the difference discussion is the assertion that “Software is written in a
professional manner by Professionals; Spreadsheets are written by End-Users!” [34]. This in-
dicates the contrasting backgrounds between those who write traditional software, and those
who write spreadsheet programs. People trained in software engineering should develop tra-
ditional software systems from a well-founded design. Those who write spreadsheets require
no such training and possibly no formally described design.
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Often this lack of training and design is a non-issue, as only a quick and dirty solution to
a small problem is required. However, such write-and-throw-away spreadsheets, or “scratch
pads”, only contribute to a small portion of the actual spreadsheets created. Clermont
points out that “there is a rather neglected proportion of spreadsheets that are periodically
used, and submitted to regular update-cycles like any conventionally evolving valuable legacy
application software. However, due to the very nature of spreadsheets, their evolution is
particularly tricky and therefore error prone.” [35](pg 3)

While it is clear that most end-users have different background to software engineers,
spreadsheets help level the playing field in some respects. One of the most useful abilities
of a spreadsheet is the ability for users to enter raw data and formulas while being shielded
from the low-level details of traditional programming [34]. Clermont et al. reason that this
allows the users to utilise the skills from their profession when expressing themselves on the
spreadsheet without having to first relate their concepts to a corresponding programming
concept. In many ways, the two-dimensional tabular arrangements of numbers interspersed
with explanatory text seems familiar, and similar to how they would express the problem
using pen, paper and a calculator.

In more recent work on errors, Clermont et al. have developed a classification system for
the types of equivalence between different formulas [35]. As they have presented this system,
when comparing two formulas they find either no-equivalence or:

e Copy-Equivalence, which exists if “the formula are absolutely identical (i.e. the cell
contents has been copied from one cell into the other, either by copy and paste, or by
retyping the same formula.)”

e Logical-Equivalence, which exists if “the formula differ only in constant values and
absolute references.”

e Structural-Equivalence, which exists if “the formulas consist of the same operators in
the same order, but the operators may be applied to different arguments.”

This classification system has significance for this project when looking for patterns
through visualisation. Different types of equivalence can be used to conceptually group sets
of formula together before visualisation.

One particular form of error from this recent work, that also has significance to this
project, is the result from the replication feature. If a user detects an error in a replicated
block of values, rather then track down the source of the bug, they may opt to perform a quick
fix by entering the correct value or a new formula only for the effected cells. This erroneous
correction will only aggregate the problem, because the formula is showing an incorrect value
due to an error in another cell and this relationship is destroyed by “this pseudo-corrective act
in the value domain” [35]. The error detection methodology suggested in the research will help
auditors detect such a pseudo-correction using the equivalence classes, as the irregularities are
not based on causes of errors. Clermont et al. suggest that this technique allows correction
to be focused and is thus easier to perform.

2.3.5 Corpus Analysis

Defined in the loosest sense a corpus is any body of text, more commonly it is a body of
machine-readable texts, and in the strictest sense it is a finite collection of machine-readable
text, sampled to be maximally representative of a language or variety [54]. The important
point is that the texts should be naturally occurring and that, as a whole, the corpus should
“characterise a state or variety of a language” [10].
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Corpus analysis has long been the domain of linguists, who utilise a corpus as a starting
point for “linguistic description or as a means of verifying hypotheses about a language.” [10]
The methodology they use for this process is often referred to as corpus linguistics [27].

When linguists undertake research they are often not interested in an individual text or
author, but a whole variety of language [54]. In such cases there are two options for data
collection:

e They could analyse every single utterance in that variety. However, in all but a few
cases this option is impracticable. As analysing every utterance would be an unending
and impossible task, due both to the share volumes of text and the speed at which they
could process them. An example of an exceptional case would be a dead language that
only has a few known texts in existence.

e They could construct a smaller sample of that variety. This is a more plausible and
realistic option.

It is the latter option that corpus analysis concentrates on. However, the use of a sample
rather than the entire population impacts both the collection methods used and how the
results are interpreted.

One of the most influential people in the field of linguistics to comment on the use of
corpora was Noam Chomsky. In a remarkably short space of time (the late fifties and early
sixties) he changed the direction of linguistics away from empiricism and towards rationalism.
Only in more recent times has mainstream attention returned to corpus analysis as a source
of empirical data for use in research, but not without first re-evaluating and modifying the
practices in light of his observations. An empiricist approach is dominated by the observation
of naturally occurring data, typically through the medium of the corpus. An alternative to
empiricist analysis suggested by Chomsky is to use a rationalist theory, which is a theory
based on artificial behavioural data, and conscious introspective judgements.

Chomsky’s main criticism of the corpus approach for linguistics was that language is infi-
nite and therefore, a corpus would be skewed. Tony McEnery and Andrew Wilson summarise
this skew as follows:

In other words, some utterances would be excluded because they are rare, others
which are much more common might be excluded by chance, and alternatively,
extremely rare utterances might also be included several times.[54]

They follow these comments with the observation that while modern computers allow the
collection of corpora that are much larger than Chomsky had envisioned, his criticisms still
must be taken seriously. Doing this does not imply that corpus analysis should be abandoned
completely, but instead that it is important to establish techniques in which a much less biased
and representative corpus may be constructed. In linguistics this is achieved by using a broad
range of authors and genres which, when taken together, can be considered to “average out”
and provide a reasonably accurate picture of the entire population of interest. Naturally,
these same implications will apply to a corpus constructed for research into the spreadsheet
population.

There are other issues that can bias the sampling technique used for constructing the
corpus. One of these is the size and content of the corpus with respect to time. The two gen-
eral approaches are to either have static information or allow the corpus to grow dynamically
over time. The type of a corpus can be classified as being either static in size and content or
growing dynamically with time. Those that do grow are referred to as longitudinal and in-
volve a large sample study. The changes that occur over time affect the basis of the sampling
technique in a longitudinal study.
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In the same way that it is infeasible to study every existing literary document, studying
the entire population of spreadsheets is also infeasible. Much of the research into corpus
linguistics is applicable to this project, but there are fundamental differences in the source
data used to construct the corpus.

There are strong grammatical rules and dictionaries in language and part of what is done
in corpus linguistics involves looking for possibly new rules or words and proof of usage
for existing rules and words. A spreadsheet, being a computational entity is (in theory)
strongly defined and constrained by the environment it is programmed in. That is, the
programmers decide what the language can and cannot do. However, almost all software has
bugs, undocumented features, backdoors and hacks (especially for larger programs like Excel)
that allow them to do things not envisaged at the time they were designed and programmed.
The conclusion from these properties is that language has a more flexible form of evolution
than software. People are free to invent new words or change the meaning of older words,
where as programs usually require structured and planned change. Changes in software will
also mainly occur in bursts as new versions (and patches) are released.

With spreadsheets being constructed from a set of well-defined syntactic rules it would
be plausible to attempt to generate every possible spreadsheet in existence. However, study-
ing every possible construction of a spreadsheet wouldn’t tell you anything about how the
language is used in practice. Rather, it would only show you the full scope of its abilities.
The important concept here is that while it is in theory possible to generate spreadsheets
from the well-defined rules, the share magnitude of possible spreadsheets would make the
task implausible.

With corpus linguistics, the fact that the language is infinitely extendible effects the
construction of the corpus. For the purposes of our project there are a sufficient number of
possible spreadsheets that the population could be considered infinite. That is, it would not
be possible to generate all the possible spreadsheets using the syntax rules and a systematic
program. An example that serves to justify this conclusion involves considering all the possible
positions for a single occupied cell. Given that there are 256 columns and 65536 rows, there
are almost 17 million possible locations for the single occupied cell.

Corpus analysis, usability testing and interviews

The motivation for using a corpus approach is summarised by James Noble and Robert Biddle
in considering the alternative methods of gathering information:

Because they are time consuming, usability evaluations and participant obser-
vation are generally limited to tens of subjects working on tens of programs.
Surveys can provide information from many more subjects, but surveys cannot
engage with actual programs, only programmers’ opinions and beliefs about their
programs |...]. [40]

The main benefit of corpus analysis in comparison to usability evaluation or participant
observation is that while it requires a sample of several hundred or more programs, it does
not require a detailed analysis of how each of these programs were written. James Noble
and Robert Biddle observe that this makes the corpus analysis approach “best suited for
investigating the parole [...] of a language — the way it is used in practice — while other
techniques can provide more specific information about the design of languages themselves.”
[40]

When acquiring information directly from a test subject there is a risk that the very
act of testing itself could bias the results. When a user is being observed or is aware that
their work will later be analysed, they can alter their normal behaviour and work practices.
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For example, a user may be aware that a better function exists to perform a computation,
but in normal every day work would perform the same computation using several smaller
functions, simply because it was easier. Under examination the user may opt to use the more
complex function in an attempt to appear more competent with the language. A similar
problem applies to interviews, where the user may say one thing and then practice something
completely different. This is the important point about a corpus based approach, as the use
of naturally occurring data that is representative of the population. That’s not to say that
the data derived from usability testing or interviews in not valuable, just that it can be open
to bias.

One possible research technique would be to combine all the above processes into a more
comprehensive and effective methodology. Firstly, corpus analysis would be applied to indi-
cate characteristics of interest that are worth further investigation. The information derived
from the corpus could be used to devise and then perform more targeted in depth research
via usability testing and interviews.

A summary of the arguments against the uses of a corpus by XYZ serves as a good
reminder for the implications of using one:

First, the corpus encourages us to model the wrong thing - we try to model perfor-
mance rather than competence. Chomsky argued that the goals of linguistics are
not the enumeration and description of performance phenomena, but rather they
are introspection and explanation of linguistic competence. Second, even if we
accept enumeration and description as a goal for linguistics, it seems an unattain-
able one, as natural languages are not finite. As a consequence, the enumeration
of sentences can never possibly yield as adequate description of language. How
can a partial corpus be the sole explicandum of an infinite language? Finally, we
must not eschew introspection entirely. If we do, detecting ungrammatical struc-
tures and ambiguous structures becomes difficult, and indeed may be impossible.
[54]
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Chapter 3

The toolkit

A large portion of this project involved the implementation of an application toolkit that
collectively provides the functionality to extract low level structures from spreadsheet files,
analyse these structures, produce visualisations displaying the information analysed, and to
find, download, and persistently store spreadsheets located around the Internet. The purpose
of collecting spreadsheets from around the Internet is to allow the rapid collection of large
number spreadsheets that can then be used to perform corpus analysis. To reduce the amount
of code production required, many of these applications make use of libraries and services
from third parties. Discounting the code from outside sources, the toolkit is mainly composed
of 20,000 lines of Java code distributed across 6 main packages. Each package concentrates
on providing a distinct function of interest, such as finding the spreadsheets on the Internet
or producing the diagrams from the processed data.

Figure 3.1 shows the general flow of information between the packages. The process starts
with user-supplied keywords that are submitted to Google. The resulting URLs are stored
and then feed through to Fetcher, which downloads and stores all the Excel files. The next
phase involves file format conversion using the Extractor package that outputs each Excel file
in the toolkit’s internal representation. Following this translation, Analyser iterates over the
corpus of files collecting and aggregating the information of interest. Once completed, the
data is passed to the visualisation tools for presentation using various techniques.

3.1 Gobbler — Searching for spreadsheets with Google

Collecting the large volumes of spreadsheets to populate the corpus required automated tools
to firstly find the location of the spreadsheets on the Internet and secondly to download and
store them persistently.

The Gobbler application was created to satisfy the former part of this acquisition phase. It
provides automated corpus identification via keywords and standard Internet search engines.
The main focus is the formation of a collection of URLs for spreadsheets located around the
Internet with public accessibility. Google [18] was chosen for the search engine due to its
ability to narrow results to Excel files by simply appending the argument “filetype:xls” to
the search terms. Also, Google indexes hundreds of thousands of Excel spreadsheets, giving
it a sufficient magnitude for a reasonably sizeable corpus without the need to build a separate
crawler.

Search keywords were generally chosen to acquire spreadsheets that have content in com-
mon or with interesting attributes, such as particular functions or dependency structures.
Common examples of keywords used include “student marks”, “fiscal year”, and “profit and
loss”. An unanticipated benefit of this search technique is that other Google features can be
used to further refine searches. An example of such a refinement that was used on several
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Figure 3.1: The general flow of information through the toolkit
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occasions is the ability to target the search for spreadsheets from individual domains, such
as just within New Zealand or within a particular organisation.

3.1.1 First Pass Design — Standard HTTP

The main chain of events undertaken to complete the Gobbler process are modelled on the
sequences that would be followed if it were undertaken manually. The search terms and
filetype:xls argument are passed to Google. The URLs are extracted from the resulting
page and appended to any previous results. The process continues until the target number
of results is reached or Google reports that no more results are available. The last step
undertaken by the Gobbler application is to then store all the resulting URLs in a file with
the search terms used as the filename.

The process of sending a page request to Google initially involved submitting a query via
the standard HTTP 1.0 GET syntax [53], which is similar to how a standard Internet browser
would send search term data from a webpage form to Google by encoding it in the URL.
With this particular technique it is possible to speed up the search process by appending
“8&num=100" to the search terms to request 100 results with each query. The resulting page
is then read back and parsed using regular expressions to remove all the URLs from the page.
Prior to the first parse for any search the estimated number of results is extracted and used
to modify the target number of URLs if necessary. Interestingly enough, during the coding
of a parser it was revealed that Google doesn’t use standard valid HTML syntax for URLs in
the link tags as they are not enclosed in parenthesises, i.e. *<ahref=link;labelj/a;* instead
of *<ahref=*“link” jlabelj/a;*.

A GNU regular expression package [13] is used to provide the regular expression support
for Java rather than the regular expression package of Sun’s Java version 1.4, mainly as
version 1.4 was not currently available on the university’s Unix computing environment.
Filtering was required on the parsed URLs as many of them were to resources other than
the files of interest, such as links to cached pages, other Google services, and advertising.
In most cases this was simply a case of matching known strings against the URLs, such as
“/search?q=cache:” to remove any cache links.

The storage of results was a relatively trivial task of writing to a file using the search
terms as the filename. In the case of an existing file with the same name, the results are
appended to those from prior searches with duplicates removed prior to downloading.

Problems

Using standard HTTP requests to the Google server proved effective for most of the toolkit’s
searching requirements, but a few issues detracted from its overall effectiveness.

Firstly, this technique may be in violation of the terms of usage for Google as it could
be defined as “sending automated queries” or performing meta-searching, a process where
several search engines are queried through one interface. We initially thought this primarily
addressed using Google’s data by other search engine providers, but then realised it might
also relate to our work.

Secondly, for any particular search, the maximum number of results returned is capped at
1000. This is generally not a major issue but it does create an upper bound for the number
of URLs available for any keyword in the corpus if this is the only search technique available.
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3.2 Refinement with the introduction of the Google web ser-
vice

In mid-April this year Google released their beta web API (Application Programmer’s In-
terface) [19] that communicates with their web service search engine via SOAP (previously
an acronym for the “Simple Object Access Protocol” [55]), an XML-based mechanism for
exchanging typed information. This allows standard query access to over 2 billion Web pages
that Google indexes. With some modification to the HTTP version of Gobbler, a second
search method was added supporting this more legitimate query method. In addition to the
benefits of conforming to Google’s terms of usage, the API also presents the URLs in a form
that can be directly appended to the result list without parsing, and hence slightly improves
performance.

Perhaps one of the greatest benefits of this search method over using standard HTTP
GET is in addressing the danger of overusing Google, as documented by Andreas Eberhart
[16] while creating a similar tool to collect RDF documents. He mentions, “that running
the automated query repeatedly might cause the requesting IP to be banned by Google.”
This could be potentially disastrous for the University, if not for myself when the cause was
traced. The exact query volumes required to trigger blocking are not publicly documented,
so all searching was generally limited per day as to become insignificant with respect to
normal university traffic. This can be roughly gauged by examining the web-cache logs that
indicate in a busy week there can be between forty and fifty thousand accesses to Google
(and sometimes up to two hundred megabytes transferred). The API also enforces a limit
of up to 100 queries per day, each returning a maximum of 10 results, through the use of a
unique identification key. This was considered to be sufficient for the requirements of this
honours project.

To make the Google Web APT’s Java interface compatible with the university computing
environment it needed to have authentication ability with the schools web proxy added. This
involved using a patch by Patrick Chanezon [14], as Google’s beta release software did not
have support for this.

3.2.1 Corpus Sampling and Representativeness

An important property of a corpus is that the sample it contains be representative of the
population. The use of Internet search engines greatly accelerates the collection process but
also skews the corpus. The causes of this skew vary from the keywords chosen when searching
for the corpus, to the nature of spreadsheets available on the Internet.

Those spreadsheets that are publicly available on the Internet exhibit characteristics that
are not representative of the population. One reasons for this difference is that many spread-
sheets are altered prior to being made publicly available, such as spreadsheets containing
student marks. This can include the removal or sensitive source data and formula. Another
form of spreadsheets in the population that will never see the Internet are the “sketchpads”
[42], those spreadsheets that only existing for short periods of time to address a small problem.

3.3 Fetcher — Downloading and storing files

The Fetcher application provides the relatively simple but important second phase task of
downloading and storing the corpus from the lists of URLs created by Gobbler. Content is
read from the Internet through a standard Java URLConnection as an array of bytes. Once
the files are acquired they are stored in a directory structure derived from the keywords used
to locate them so that later analysis can easily be constrained to particular search terms.
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While downloading Excel files it was quite common to find extremely slow web servers. To
help address this issue and improve performance when a high bandwidth Internet connection
is present, a multithreaded design was used. When combined with a multiprocessor computer
the performance improvements were considerable.

As with the Gobbler application, one of the biggest hurdles for this application was travers-
ing the schools web proxy from within the Java runtime. Exact documentation on what was
required was sparse, with several sources providing conflicting information. When resolved,
the process involved setting Java environment properties and base64 encoding usernames and
passwords that were to be submitted to the proxy when requested.

To provide reasonable performance for batch processing jobs, the user name and password
are encrypted to disk so the program can automatically retrieve this data. This later caused
issues with the Sun cryptography libraries when trying to bootstrap the Java classpath to
modify the URLConnection classes with timeouts.

Maintaining a complete list of source files and their locations is achieved by never removing
URLSs from Gobblers output files (with the exception of duplicates). This introduces the
possibility of downloading a file twice and wasting Internet connection bandwidth. The issue
is addressed by comparing the HTTP Content-Length header field with the size of any file
stored on disk having the correct path and name. If the length differs, the file is downloaded
again.

To prevent a broken link overwriting an existing file with a sever generated HTML 404
message, the MIME type is first checked to indicate Excel Data Content (application/vnd.ms-
excel, application/x-msexcel, or application/ms-excel). This technique proved effective over
a dialup connection but there may be an issue when using a web-cache that attempts to finish
downloading the file before the application reads the data, effectively defeating one reason
for the check.

3.3.1 Storage issues

Due to the large volume of files that were collected to create the corpus it was important to
make special consideration of how to store them. Asides from the obvious requirement for
persistent storage there was also the need to be able to perform an iterative retrieval of records
that may have been compressed using standard compression technologies. As mentioned
below, not only is the source Excel file stored but also the toolkit’s internal representation.

The simplest solution, and that current employed, is to store all the files in the standard
file system. As the 8000 spreadsheet occupy around 2 gigabytes of disk space it has not been
necessary to compress the files, although zip compression has been added to the toolkit to
address the issue if and when the corpus grows. Tests on Excel files between 100 and 500
kilobytes show compression levels of between 50 and 75%.

In addition to compression another future option would be store all the corpus data in
a database. This would allow for iterating over spreadsheets with selection based on more
advanced queries.

3.4 Extractor — Accessing the internals of spreadsheets

The most essential component in the toolkit involved reading the binary Excel files and
reconstructing the data present as Java objects. This is done by the Extractor application,
which provides transparency between the binary forms of Excel files stored on disk and the
toolkit’s internal representation. The aim is to present information from the corpora in a
format that can be easily processed and analysed by the rest of the toolkit.
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3.4.1 What needed to be extracted

The artefacts required from each Excel file are derived from the low-level structure of the
spreadsheets. The basic unit of interest is the cell, the atomic building block of the spreadsheet
model. Each occupied cell in the spreadsheet had to be iterated over to extract all the data
in a spreadsheet workbook. Occupied cells have a value that is of some type, such as text or
a number. Cells that are to perform a calculation and assign the result to their value will also
contain a formula. The formula extracted from the binary file requires conversion from the
stored Reverse-Polish-Notation (RPN) format to the standard formula notation presented
to the user when interacting directly with Excel. Ideally this process will be an accurate
conversion, and not missing any important elements such as absolute reference identifiers.
This requirement stems from the need to later construct the full set of dependencies between
cells using the toolkit’s formula parser, which understands standard Excel formula notation,
in order to create an internal representation of all the spreadsheets elements. Accordingly
extraction converts formulas from RPN to standard formula notation.

All cells in the spreadsheet have positioning data that must be maintained for later
computation. This information includes the worksheet the cell exists in, its column and row
coordinates, and any incoming or outgoing references created by formulas. Additional data
is stored for each worksheet, such as the sheet’s name and position in the stack of sheets,
that is of interest for use in later analysis.

All information extracted from the spreadsheets is converted into the toolkit’s internal
representation, which results in a strong degree of integration between the components of the
toolkit, partially for efficiency reasons and also to enable independent development of the
components.

3.4.2 File Format

Excel files are formatted and stored using one of several versions of the BIFF (Binary In-
terchange File Format), depending on the version of Excel used to save the file. There has
already been significant work on documenting this file format (outside Microsoft), including
that done by Daniel Rentz as part of the OpenOffice project [45].

Developing an application to process the raw binary of an Excel file from scratch is a
complex project in itself and the time required too undertake such a design and programming
task was not available within the constraints of this project. Instead, direct interaction with
the underlying file format is achieved through the use of third party APIs.

3.4.3 Accessing the internal structure of a spreadsheet

Available packages for reading and converting the Microsoft Excel file format range between
being commercial, freeware and open source. The API needed to be freeware or opensource,
as the costs of commercial packages for reading Excel are beyond the resources available for
this project.

To keep the programming consistent, the target format had to be readable by Java, and
preferably the package would be operated via a Java interface. In the ideal case the process
would be pure Java, implying platform independence and the ability to migrate comfortably
with the rest of the toolkit.

As no individual third party Excel file reader proved to have all the desired attributes,
the internal structure of the Extractor application was designed to allow for different reading
methods to be utilised. A wrapper design provides transparency through a common interface
to the rest of the toolkit about which reading method was being used. Hence, different
methods can be used depending on the required characteristics.
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3.4.4 Basic extraction options

When looking for a suitable method of converting BIFF encoded files to a representation using
Java object structures, several technologies and processes were investigated. Each of these
brought certain benefits, implications, and limitations. All techniques were assessed on the
ability to extract the required information, minimal user interaction, platform independence
and fault tolerance. Fault tolerance becomes an issue as some extraction methods encounter
difficulty with certain Excel structures and it is important that they handle them in a manner
that allows the toolkit to continue functioning with minimal missing information.

3.4.5 Microsoft ODBC Excel and Sun JDBC-ODBC

The article “It’s Excel-lent” [50] by Tony Sintes on the JavaWorld website showed how a
single Excel file could be treated as a table in a database using Microsoft’s Open Database
Connectivity (ODBC). ODBC treats the worksheet name as the database name and the first
row in a spreadsheet as the column names. Java Database Connectivity (JDBC) then allows
information to be imported into the Java runtime environment. This method requires a
large degree of user interaction and an alternative way to migrate the column names into the
extraction process. Other drawbacks include the lack of support for formulas and, through the
use of a Microsoft specific Excel ODBC driver, binding any implementation to the Windows
platform.

3.4.6 XML

In many aspects, XML provides an attractive intermediate encoding format by providing a
universally understood common denominator format for Excel data. The spreadsheet could
be saved as XML and read into Java via an XML interface (possibly using JBDC). This
has many potential advantages, including being a non-proprietary, language-independent,
encoding format that is also human readable.

Unfortunately, few techniques showed promise in this area as they would often need
commercial software to perform the conversion, require a high degree of user interaction to
manually open and then save the Excel file as XML, or lack support for formulas.

Another issue with XML is the size of the encoded files caused by the trade-off between
universality and performance in terms of speed. The ASCII encoding and XML tags all affect
performance by increasing the size of files and requiring more system resources to parse the
files. In a comparison between serialised Java binary and XML encoded with UTF-8 [21]XML
is found to be around 4 times larger in byte size. This is a cause for concern, as the number
of spreadsheets present in the corpus magnifies the implications of this larger encoding size.

3.4.7 IBM alphaWorks Java Bean

IBM alphaWorks produced the ExcelAccessor Java Bean suite [2] to access and modify the
contents of worksheets using a Windows Dynamic Link Library (DLL). This option was
trailed first as it had easier configuration options than the other available methods.

The advantage of the ExcelAccessor Bean is that it extracts information directly from
Excel, rather than individual files. All data is reproduced accurately and formatted in the
same form that the user interacts with. The Bean usually works well, but the use of native
code and requirement of having Excel installed limits its overall portability as it requires the
installation of a DLL in a directory that resides in the Windows path environment variable.
The Windows native code in the DLL then interacts directly with an Excel process to perform
the required operations. Also, it is prone to irregular crashes during larger processing jobs
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involving multiple spreadsheets. When it does crash it often leaves an Excel process open on
Windows 9x with subsequent runs having problems due to the still active process. This is
attributed to the use of the native code in the DLL, which can also be left unintentionally
running if not closed down correctly. Other unusual behaviour results from only being able
to create and dispose of the bean once per session.

A typical usage of ExcelAccessor on a spreadsheet will extract two components for each
worksheet. When first extracted, the data for both components is represented in a two-
dimensional structure created by a Java Vector of Vectors. The first component will contain
all the values in the spreadsheet and the second all the formulas. The Bean converts most
value types to an equivalent Java Object, such as a Double, Boolean, String, or Date. Only
a String value is required for the toolkit’s current representation, which is created by casting
these values. Formulas are equally simple to extract as Java Strings because they are already
in a format that matches that seen by the user.

3.4.8 JExcelAPI

An alternate extraction process found uses JExcelApi by Andy Khan [28]. Being pure Java
it integrates well with the rest of the toolkit and doesn’t require native code libraries. The
reading also tends to be faster as there is no communication with a DLL or Excel process.

Unlike the ExcelAccessor Bean, the data is extracted on a cell-by-cell basis. As each
cell is iterated over, its content type can be queried to determine the information that is to
be extracted. Any non-empty cell containing valid information will create a corresponding
toolkit cell with the value and, if appropriate, the formula.

Some element types produce problems in the current 2.2.8 version, such as array functions,
intersection area references, absolute references becoming relative in formulas, and files using
a BIFF from early versions of Excel and the more recent XP version.

Another issue involved with this API was the requirement for additional memory to be
allocated to the Java runtime than the default provides when working with larger files. This
issue can usually easily be addressed using command line arguments to allocate a larger upper
bound for the heap size.

3.4.9 Future opportunities

The capability to extract values and formulas in the user observed format from all occupied
cells of the current range of freeware Java Excel readers is improving constantly, as most are
still actively in development. An example is the Apache POI (Poor Obfuscation Implemen-
tation) project [3], where formula support is still being added. Tests that were run using
what support that was currently available indicated impressive performance results would be
possible using POI.

3.5 Internal representation

Working directly with Excel files stored in raw BIFF through a third party library can be
difficult and have an impact on performance. Early on in the project a decision had to be
made about the suitable format for the internal representation of the spreadsheets to use for
both in memory and persistent storage. Such a format had to be flexible enough to provide
source information for all analysis and visualisations while still supporting space efficient
encoding to disk and good in-memory performance.

Using Java object structures stood out as the natural choice, as it would integrate well
with the rest of the Java based toolkit, serialise to disk for easy storage, maintain platform
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independence, and provide good performance when interacting with other Java objects. To
ensure that serialisation to disk is possible, all content in the structure had to be serialisable
or tagged transient while still being derivable from other encoded data. The majority of
encoded information that the structures contain can be represented using combinations of
Strings, integers, arrays, Vectors, and inter-object references constrained to the same set of
objects.

As the analysis and visualisation tools may make many passes through a particular spread-
sheet, while collecting data and constructing metrics, it is important that a large amount of
information is recorded in the internal structure, rather than derived every time the work-
book is opened. Much of this information will be redundant as it is already encoded in the
workbook. A particular example of extra information that is stored for performance reasons
is the dependencies between cells. Each cell has two structures, one for containing references
to all cells that refer to it, and a second for the cells it refers to. This information is invaluable
during later analysis and prevents the toolkit making many passes through all the cells to
reconstruct this information.

The overall data structure will be a hierarchy that most spreadsheet users would be
familiar with. At the highest level in any spreadsheet is the workbook. The workbook is a
collection of worksheets and other layers, such as graphs, that make up the contents. Each
worksheet is then composed of a grid of cells with a maximum dimension of 256 columns
by 65536 rows. As mentioned in the limitations section, merged cells, embedded graphs and
other similar elements will be ignored, as will any changes to cell width of height. Rows and
columns are not explicitly represented but rather exist implicitly as part of the grid structure
stored for every worksheet.

The toolkit’s cells are conceptually very similar to those present in Excel. They provide a
container for a value, and a formula if one is defined. As mentioned above, they also provide
structures to link to all antecedent and descendent cells. To improve performance for later
analysis, we convert each cells Al notation style coordinate to its corresponding numerical
column and row values.

Several limitations where deliberately imposed on the internal representation to simplify
aspects of our project. These mainly included elements that did not integrate well with the
grid based structure, such as floating elements (graphs and images) and other formatting
like merged cells, and cell dimensions (width and height). Any imbedded programming like
macros or Visual Basic for Applications that allow Excel to go beyond normal spreadsheet
programming were also excluded from the internal model. Currently not supported, but with
the possibilities for future expansion, include label references for cells and ranges in formulae
and arrays of cells.

3.5.1 Grammar

The design requirement of using varying methods to read Excel files meant that in many cases
there was a need to parse the string representation of a formula to extract the structures and
dependencies of interest and reconstruct them in the toolkit’s internal format. Constructing
this parser first required a grammar to describe the syntax of standard Excel formula. My
research efforts failed to find a publicly available grammar from Microsoft. I did however find
several other researchers who were proceeding along similar lines.

Markus Clermont had assembled the BNF grammar shown in table 3.1 as part of a
compiler-construction course (the version I converted it from was originally written in Ger-
man, and several non-terminal labels have been altered for clarity). It provides a syntax very
similar to that used by Excel with a few exceptions. Cells are addressed using the R1C1
notation and semicolons are used in many places where Excel would normally use a comma.
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Spreadsheet ::= Row {col Row} col

Row ::= (Formula | Number | string) {";"Row}

Number ::= ["-"] digit {digit} ["," digit {digit}]

Formula ::= "="FormulaExpression

FormulaExpression ::= Expression {("+"|"="|"x"|"/"|"~") Expression}

Expression ::= (" ("FormulaExpression")")| Number | CellAddress |FunctionCall

CellAddress ::= "R"("\$" AbsCord) |RelCord "C"("\$" AbsCord) |RelCord

RelCord ::= ["-"]digit{digit}

AbsCord ::= digit {digit}

LOgOp o= nyn | ngn | n=n | np=n | ny=n | ng="n

LogicalExpression ::= FormulaExpression [LogOp FormulaExpression]

LogArglist ::= LogicalExpression ";" LogicalExpression

FunctionCall ::= ("IF(" LogicalExpression ";" FormulaExpression,
[";" FormulaExpression] ")" |

(GroupFct" (" RargList ")") |
("NOT(" LogicalExpression ")") |
(Function "(" ArgList ")") |
(LogFunc" (" LogArgList ")") |
("SVerweis(" FormulaExpression ";"
CellAddress [":" CellAddress] ";"

FormulaExpression ";" FormulaExpression ")")
GroupFct ::= "SUM" | "MAX" |"MIN"]...
Function ::= e
LogFunc ::= "Or"|"And"|...
Arglist ::= FormulaExpression {";" FormulaExpression}
RArglist ::= RArgument [";" RArgument]
RArgument ::= RangeReference | FormulaExpression
RangeReference ::= CellAddress ":" CellAddress

Table 3.1: A BNF Grammar to describe Excel formula syntax

I have also slightly altered the original syntax for clarity reasons.

Using Markus Clermont’s work as a starting point I created a formula parser that used
a modified version of this grammar presented in the Table 3.2. This grammar is mainly
focused on extracting all the referencing components. It is also possible to recognise all the
basic operators and function tokens along with their nested arguments. The syntax is not
purely correct, for example it does not enforce the correct arguments for functions, but it does
greatly simplify the treatment of functions for parsing. Additional constraints are enforced
as part of the parser, such as limiting the row references to between 1 and 65536 (inclusive)
and creating a separate expression for the possible sheet names as defined in the workbook.

Parts of the parser design are improved by using regular expressions, again from the GNU
package [13], to accelerate the process. While advancing through the input string each regular
expression is trailed until a match for the head of the string is found. The matched string is
then used to construct the corresponding object with appropriate attributes. For structures
such as cells this process will often involve looking up currently stored cells from the grid
structure to prevent duplicate information being created.
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Formula ::= "=" FormulaExpression

FormulaExpression ::= Expression {Operator Expression}

Expression ::= ( "(" FormulaExpression ")" ) | ReferencePrefix | FunctionCall |
number | string

Operator ::= "\&" | MathOp | LogOp

Mathop ci= ll+ll | n_n | ll*ll | Il/ll | n-~n

LOgOp = nyn | ngn | n=n | ny=n | ny=n | ng="n
ReferencePrefix ::= WorkbookRef | SheetRef | Reference
WorkbookRef ::= "[" workbook_path "/" filename.xls "]" SheetRef
SheetRef ::= Sheetname"!" Reference

Sheetname ::= worksheet _names

Reference ::= AreaReference | Cell

AreaReference ::= Range | Intersection | Union

Cell ::= ["$"]1Column["$"]<Row>

Column ::= Alpha | ("A" | ... | "H") Alpha | "I" Alpha
Alpha ::= "AM || vz

Row ::= digit [digit] [digit] [digit] [digit]

Range ::= Cell ":" Cell | Vector

Vector ::= ColumnRange | RowRange

ColumnRange ::= Column ":" Column

RowRange ::= Row ":" Row

Intersection ::= Cell " " Cell

Union ::= Cell "," Cell

FunctionCall ::= Function "(" ArgList ")"

Funciton ::= "IF" | "NOT" | ... | "SUM" | "MAX" | "MIN" |
Arglist ::= FormulaExpression ["," FormulaExpression]

Table 3.2: A BNF Grammar for parsing Excel formula components
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3.6 Analyser — Calculation of corpus metrics

For the entire corpus, or a subset, the Analyser application examines a set of files for a feature
of interest and collates the information in an output format suitable for the form of analysis to
be undertaken. Within corpus linguistics such a tool is referred to as a concordance program.

With the Excel files stored in an easily handled Java format, it is possible to analyse and
perform aggregation operations on any observable spreadsheet component. In the simplest
cases this can be the position of occupied cells and the value they contain. In more complex
cases the details of interest might be the results of running the formula parser to extract
referencing operators, functions, and primitive components. The data obtained can then
be combined using various methods to create the source information for the construction of
visualisations.

Analyser incorporates all the different styles of corpus analysis that can currently do
on collections of spreadsheets. Most often this involves iterating over the toolkit’s internal
representation of workbooks that Extractor creates. The workbooks are usually passed to
specialised analysis methods that are then targeted at the style of analysis desired. Due to
memory requirements for processing large individual spreadsheets, only one file is in memory
at any one time.

In support of Analyser are the MathVector and Grid classes.

MathVector is a representation of mathematical style vectors, in 3D space, with a starting
point and magnitude. It provides simple methods to find average vectors from a collection,
unit vectors, and for pairs of vectors the angles between them as well as the cross and dot
products. These abilities are particularly useful when doing analysis with inter-cell depen-
dencies, such as finding the vector angles from the vertical axis.

As the name suggests, the Grid class provides storage for arbitrary objects in a dynam-
ically scaleable array. The main focus is on removing the need for the programmer to track
the current dimensions when inserting new values, instead expanding as required when a
new value is inserted. Grid objects have the ability to output the data they contain into a
format suitable for use by the visualisation tools (like comma-separated values or an array of
doubles). This class is also used for worksheets in the internal representation to store all the
cells.

3.7 Displaying the Information

The final phase in the process is to utilise the metrics and structures constructed by the
toolkit to generate visualisations that address issues with spreadsheets and attempt to reveal
interesting end-user programming aspects.

A collection of several programs satisfies the production of the large variety of visualisa-
tions created by the toolkit. The input data for each visualisation tool is highly dependent
on the information to be displayed.

3.7.1 Available Visualisations

We have created 10 main forms of visualisation available for the data, although there is a
degree of overlap between several of the fields. The general list of available techniques can
be classified under one of the following headings: 2D spatial, 3D spatial, 2D logical, focus +
context, animated spatial, and animated logical.
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3.7.2 Visualisation Tool Support

Two main third party tools are used to convert analysed data in to useful visualisations. The
first is VisAD (an acronym for Visualization for Algorithm Development) [23], which is a
Java component library for interactive analysis and visualisation of numerical data. VisAD
is a powerful (and sometimes complex) visualisation tool with the ability to display data in
a range of forms. It makes use of the Java3D environment to generate three-dimensional
images that can be manipulated in real time.

VisAD has a powerful utility called a spreadsheet that provides an environment for cre-
ating visualisations from data files. Like an Excel spreadsheet, it has columns and rows of
cells. Each cell can contain a visualisation and, via formulas, combinations of other cells can
create new visualisations. Data can be loaded in from a large range of formats including
comma- separated values (CSV). The main uses of VisAD have been for creating surface
maps, heat maps, and basic vector plots. A typical usage involves converting the input data
from a 2D double array into a flat field, if the 2D array has X columns a Y rows the flat field
will contain the same data in a single column with a length equal to the product of X and
Y. This information can then be passed directly to VisAD classes to create either 2D or 3D
visualisations.

The second tool used to generate visualisations is Excel itself. The data is imported via
comma-separated values and used to create classical style diagrams such as bar graphs and
radar charts. In some cases, additional computations are performed to further aggregate the
imported data.

All remaining diagrams are produced directly from Java using the Swing libraries. This
method offered the greatest flexibility to create novel images, but also required the largest
degree of programming on my part.
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Chapter 4

Collection of visualisations

One of the main focuses of this project was the creation of a series of visualisations that aid in
revealing interesting properties of spreadsheets, whether this is just exposing the underlying
structure to someone who is unfamiliar with an existing complex spreadsheet, or examining
a corpus for larger patterns. An important feature of many of the visualisations is that they
are based on structural characteristics, which are found through inspection of the low level
structures in individual spreadsheets and aggregated analysis of the corpus.

4.1 Brief background on Information Visualisation

Research in the development of information visualisation is an active field that holds much
promise; primarily due to the success of many visual tools that indicate the graphical medium
has the powerful potential to unlock the human visual system. The practice of information
visualisation is an expanding field, with origins in cartography and astronomy. As time
progresses, visualisation techniques are becoming more mature and involve degrees of ab-
straction to convey new information using spatial relationships (distance, size, shape and
orientation), colour (brightness, transparency), temporal encoding (animation), and interac-
tion (malleability and events) to name but a few approaches. In most modern visualisations
these abstractions are combined to convey important information to the user in a way that
doesn’t overwhelm the senses.

Many consider that documentation on the practice of information visualisation started
with the classical work of Jacques Bertin in 1967 with publication of the Semiology of Graphics
[8]. This work formed a large portion of the origins of information visualisation and covers
the material in a rigorous, yet understandable way. Topics covered include the foundations
of the analysis of information, the basic variables, the rules of graphic systems, including
creation and legibility rules, and its application to diagrams networks and cartography.

Price et al. use the one of the definitions given in the Oxford English Dictionary for
”visualisation” as “the power or process of forming a mental picture or vision of something
not actually present to the sight” [6]. The usual interpretation of this form of visualisation
is associated with the concept of gaining information through the human eye and resulting
in the conveyance of a mental image to the interpreter. This interpretation can, however, be
expanded to include other senses, such as sound, touch and smell, that all could contribute to
the formation of a mental image. As this project will be constrained to the resources available
on a standard computer system, and many of the results will be presented on a static print
media, we concentrate of those senses that work well with these 2D media. In some cases
this restriction is loosened to allow the creation of dynamic visualisations that can convey
information about a sequence of events in a clearer manner.
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Although the above definition of visualisation is correct, an alternative meaning is used in
this paper to instead refer to the actual information under observation. That is, the technique
of making a visible presentation of numerical data, particularly via a graphical medium.
Using definitions given by Sharon Ellershaw and Micheal Oudshoorn [17], the visualisations
presented in this paper will be a mix of program visualisation and scientific visualisation.
They define program visualisation to be ”the application of graphical transformations to
an executing program to enhance the reader’s understanding of that program.” While our
project does not directly interact with an executing spreadsheet, it does aim to enhance the
reader’s understanding. They go on to define scientific visualisation as dealing ”solely with
the graphical representation of scientific data”, with the motivation of helping users deal with
the large volumes of data present, which they would otherwise be unable to process all at
once. Visualisations generated by our project will use the presentation methods Ellershaw
et al. describe for scientific visualisation: ”Scientific visualisation attempts to convert this
deluge of data into color images, in order to convey the information produced to the user in
a manner that can be easily assimilated.”

In the paper ”A Principled Taxonomy of Software Visualisation” [6] Price et al. provide
a summary of Brad Myers work spanning 1986 to 1990. Of particular interest in this review
are the observations about the top level of Myers visualisation taxonomy having two axes:
"their level of abstraction (from showing code or data to showing algorithms) and the level
of animation in their displays (whether static or dynamic).” The visualisations presented
in our project all have a relatively low level of abstraction over the information extracted,
particularly the vector based diagrams. Also, the majority of the diagrams don’t have any
animation, although some can be dynamically manipulated and screenshots captured to create
animation. When the visualisations are expanded to larger, more complex spreadsheets,
there will be the need to adopt higher levels of abstraction to manage the resulting visual
complexity.

There are considerable benefits to be gained by using visual information to communicate
data created by the toolkit. As a communication medium, visualisation is a powerful device
with a high bandwidth capacity due to the nature of our visual system. As humans perceive
the outside world through their senses, there are strong links between their visual system
and cognitive abilities, such as the extension of memory, the grouping of related information
through visual aspects, and the finding of patterns in complex data. These links allow the
interpreter to quickly absorb large amounts of information from a single image, and then
derive patterns and relationships well before a computer could. Michele Lanza observes that
program visualisation is ”often applied because good visual displays allow the human brain
to study multiple aspects of complex problems in parallel.” [31]

4.2 The spreadsheet model

To aid in reasoning about spreadsheets, and the visualisations derived from them, it was useful
to construct a taxonomy describing the structures present in the spreadsheet paradigm. This
taxonomy provides a common naming scheme for communicating about ideas and discoveries
in spreadsheet structures, describes a base theory for reasoning purposes, and motivates
many of the visualisations. The longer term motivation for the construction of a taxonomy is
summarised by Price et al. where they write: ”a well founded taxonomy can further serious
investigation in any field of study.” [6]

Prior to defining the taxonomy within the context of spreadsheet visualisation, it is ap-
propriate to investigate the definition of this term in other fields of study. Rajalingham
summarises taxonomy from the biology perspective as:
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the establishment of a hierarchical system of categories on the basis of presumed
natural relationships among organisms. The goal of classifying is to place an
organism into an already existing group or to create a new group for it, based on
its resemblances to and differences from known forms. To this end, a hierarchy of
categories is recognised. [44]

Taxonomies already exist for the classification of areas that are strongly related to our
project. Rajalingham’s work on creating the taxonomy for spreadsheet errors [44] provided
a good starting point for the construction of our taxonomy for structure. Of particular
interest is the branch on semantics that considers structural and temporal details. Equally
relevant from the visualisation perspective is Price et al.’s principled taxonomy of software
visualisation [6]. Both provide good examples of the structure required for assembling the
taxonomy.

The creation of our taxonomy was based on prior experiences with spreadsheets and re-
search into related work. To some degree the taxonomy created for describing the structures
present is ad-hoc in nature, while being loosely based on the underlying nature of spread-
sheets and in particular the traits of Excel. This does not however invalidate its worth, as
the classification taxonomy can be generalised to include a larger body of the spreadsheet
paradigm and adapted as new research suggests the need for alterations. Ideally, this taxon-
omy will grow towards providing a classification of the spreadsheet semantics, and would be
aimed at helping to understand how users interact with the spreadsheet.

4.2.1 Spreadsheet structure

The spreadsheet paradigm exhibits two main characteristics: the spatial arrangement of cells
on a table and the logical relationships between them created by formulas. These characteris-
tics are not entirely disjoint, with the spatial relationship between cells often having a strong
correspondence to the logical dependencies between them. A third, temporal, characteristic
is exhibited by a subset of spreadsheets that go beyond a sketchpad existence, and are long-
lived and contain a large number of cells with complex dependencies. Markus Clermont et
al. observes that due to the nature of these long lived sheets, they can go through similar
evolutionary steps as conventional software [35].

These three characteristics form the highest level of the taxonomy, and are positioned
immediately below the structural root node. While the temporal dimension has great research
potential, the main focus of our project will be the spatial and logical dimensions due to the
nature of corpus analysis.

4.2.2 Spatial

The spatial properties of cells are important for several reasons, most of which were covered
in the background chapter. These include the creation of a presentation medium for the end
user of the spreadsheet, an addressing mechanism that corresponds with the use of cells as
variables in the program, and the concept of scope.

An important part of the spatial relationship between of cells is the lack of locality ex-
hibited. It is generally considered to be good programming practice to avoid unconstrained
jumping and only nest if statements to several levels deep, otherwise a program can become
difficult to follow, or worse still, develop into spaghetti code. In contrast to a trained com-
puter programmer, a novice spreadsheet user would think nothing of chaining together many
cells via formula to construct what is in essence a large and possibly complex formula. These
complex formulas can have their code distributed across large, spatially disjoint, regions.
Effectively scattering the information that is required to understand their workings. This is
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characteristic of the spreadsheet paradigm. Clermont comments on this problem from the
perspective of error prevention:

The principle of locality, an important concept for reducing the complexity of
software, is not part of the spreadsheet model, i.e. any other cell anywhere on the
spreadsheet can freely access the result value of a certain cell. Hence, the effects
of an error in an arbitrary cell will potentially influence one or more results of
the spreadsheet irrespective of their ”distance” to the erroneous cell. Worse, the
effect of an error might show at a different place than the error itself, thus further
increasing the complexity of identifying faults. [35]

Scope also has an effect on the spatial relationships that the users create. Several factors
affect the scope of a reference in Excel. A single reference could be within the visible screen
area, between worksheets, or between separate files. The effects of screen size are also variable,
as one user may only have a visible working area that is highly dependent on their monitor
size and screen resolution. Experienced spreadsheet users who realise the benefit of locality
will usually attempt to find a spatial arrangement of all logically related data within the
minimal scope plausible. The use of cell values as a presentation medium can be viewed as
a force that influences the degree of locality achieved, as certain data may need to be visible
within a separate scope to satisfy appearance requirements.

More experienced spreadsheet programmers may attempt to enforce modularity through
spatial arrangement, but the spreadsheet itself enforces no such restrictions. A programming
concept that is strongly related to modularity is encapsulation. Again, Excel does not enforce
this due to the unconstrained referencing power given to the user.

4.2.3 Logical

As hinted at in the spatial section above, there is a strong binding between spatial and logical
components resulting from the visual environment. Typically, cells that have a high degree
of logical coupling will be spatially close due to the user attempting to enforce locality. In
many respects the connection between logical and spatial relationships is not fully symmet-
ric, as the spatial aspects of a spreadsheet are provided to create an addressing scheme for
describing the logical dependencies. With presentation issues set aside, the logical dimen-
sion of a spreadsheet becomes more important than the superficial spatial relationships. The
spreadsheet interface melds both the logical and spatial aspects from the perspective of the
user, but it would be possible for the computations to function with unbounded cells, as it
is the articulation — the joints between components — between them that is of greatest
importance.

The formula present in each cell is a potential source of complexity in the logical domain.
The length of the formula, the number of operators used, and the number of functions used
(both total numbers and different functions). All contribute to making the individual formula
more complex. These complexities provide the motivation behind the construction of a set
of metrics.

4.2.4 Metrics

The following metrics are mainly derived from the logical relationships between cells that are

derived from each cells formula. Certain metrics also contain a spatial relationship compo-

nent. These metrics can then be used to show supplementary information in the visualisations.
Sample Metrics for a formula:
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Length when viewed as string — a crude but often effective measure of complexity.
Quite simply, the longer the formula is the harder it can be to understand. In traditional
programming, it is common practice to split a complex piece of code into multiple parts,
leading to modularity and encapsulation of code for easier comprehension. Formulas
can create a conflict with this concept, as there are no local variables, and to use the
replication function the user may prefer to have the entire calculation represented in a
single, often monolithic, formula.

Degree of bracket nesting present — like the nesting of if-statements in traditional
imperative programming, large degrees of nesting can be difficult to follow.

Number of (distinct) cells referenced and number of (distinct) ranges referenced — a
measure of the dependency complexity that this cell has on others. The larger this
metric is, the more complex the relationship this cell has with other cells around the
spreadsheet. Often the user must be aware of the implications of changing any one of
those remote cells. Clearly, the range syntax allows a potentially larger number of cells
to be referenced in a single statement than a single cell reference. This effect could
also be used by dividing the number of cells referenced by the number of referencing
operators.

Number of functions used — more functions can often result in a large degree of nesting
and a confusing numbers of brackets.

Number of basic operators (+, -, *, /) used

Position of formulas and raw data in a spatial and clustering sense — this has layout
implications and also effects how a user will go about learning the structure.

Cohesion of data within clusters. Density of data — What is the difference between
the average radius and maximum radius or number of nodes? A cluster with a dense
centre will tend to reach out and pull other elements in due to its dense average radius.

Branching factor information — at what rate is information dispersed through formula?

Euclidean distance between cells in dependency trees — further reaching references are
harder to follow. Locality and scope issues, are related to this.

Coupling between sheets and workbooks. — measuring the flow of information and
dependency between sheets in the workbook.

Number of non-orphan cells with values. Orphan cells provide no computational func-
tion and must therefore only be present for visual presentation reasons. An orphan cell
is a cell with no incoming or out going references — it is essentially disconnected from
the rest of the sheet. It is possible to have a cell with a formula that doesn’t reference
any other cell, such as ”=sin(60)”.

Size of the worksheet, width and height dimensions — How much of the available space
is utilised? Which parts of the available real estate are people interested in using? Are
there hidden tables off in the corner?

Comparing formulas for varying types of equivalence — As discussed in the background
chapter using work by Markus Clermont. A good method of detecting repeated pat-
terns.
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4.3 Task model - A discovery process for the exploration of
spreadsheets.

When a user is faced with an unfamiliar spreadsheet, it can be a difficult task to proceed in
building a mental model of the information present, and even harder to find only the relevant
information. As complicated as this task can be, it is still important, as the implications of
incorrect alterations often result in serious errors.

The visualisations created for individual spreadsheets are aimed at addressing certain
phases a user will go through when becoming familiar with a spreadsheet, and to provide the
information at a level of abstraction that the user is currently interested in. For a user who
is planning to modify an existing spreadsheet it is important that the visualisations provide
only that information which is directly relevant to what they are trying to accomplish at
that stage, such as, which sections of the spreadsheet they would need to exercise more care
in due to a higher level of complexity. While this is one of the main focuses of the single
spreadsheet visualisations, it is not their only use, as they may be utilised at any time to
provide additional information.

As the first phase in the discovery process, a user will need to know where the data is
located. At the highest level this involves the number of worksheets present and their overall
dimensions. Following that, a more detailed analysis at the granularity of individual sheets
and then cells will help reveal information that is located away from the core data.

The next important information to address is related to the dataflow structures. This
can involve locating the position of formula, source data for the formula, and cells that a
conceptually grouped through ranges. The logical relationships in the dataflow structure can
be used to create dependency trees that show the flow of information from source data to
final output. While initially it can be useful to observe this data using the same spatial
presentation that Excel uses, later visualisations can present this information in alternate
forms that are designed to highlight features that may not be apparent in more traditional
views.

4.4 Explorations - Areas of focus

Various different diagrams are created to address various analysed data produced by the
toolkit. The main aim of the visualisations was that they should be well founded and un-
derstandable by anybody with an interest in spreadsheets or end-user programming. To aid
the understandability of these diagrams they are often directly traceable back to individual
spreadsheets, thus providing context to the interpreter. These visualisations are principled
by and flow naturally from the taxonomy of spreadsheets created as part of our project.

4.4.1 Real-estate diagrams - Single/Corpus

Understanding where the information is located is the first step in acquiring a greater depth of
knowledge about what structures and patterns are present in a spreadsheet. It also provides
a stable foundation for building new knowledge. When a user is first presented with an
unfamiliar spreadsheet they will often scroll around the various sections looking for larger
blocks of data and cells that output final results. At any one time only a portion of the entire
grid is displayed on the screen. The actual number of cells that are present in any one screen
varies due to the width and height of the columns and rows respectively. One technique
Excel supports to help this process is to use the zoom tool to increase the number of cells
visible on the screen. Although generally effective for smaller sheets, this approach can miss
data that has been deliberately positioned towards corners of a spreadsheet. Generally the
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technique doesn’t scale well for larger spreadsheets, as the required zoom level can make it
difficult to identify occupied cells. During this early process of discovery most users are more
interested in obtaining a general orientating view of the layout than the exact values and
formulas present in each cell, which only become relevant for later tasks.

A map is one of the oldest and most common forms of visualisation for addressing issues
of location. The easiest way to begin constructing a map for a spreadsheet is to commence
with an empty grid structure and then to add details of interest as they become available. It
is seldom that the full 256 columns by 65,536 rows available in each worksheet are used in
any one problem, which is why the dimensions of the grid are only expanded to accommodate
new elements when needed. Also, if the reverse process were undertaken, resources would be
wasted during processing and the grid would have to be cropped prior to visualisation.

Collecting the source data for these visualisations proved to be a simple task of iterating
over all the cells and incrementing a count for the corresponding coordinate in a grid for any
occupied cells. The resulting data structure is a grid with a count at each coordinate for the
number of times it is occupied in all the observed input worksheets.

It is possible to generalise this information further by only considering the utilisation
of worksheet area, rather than individual cell coordinates on the grid. This is achieved by
only counting the minimal area surrounding all the cells in the worksheet. For a particular
worksheet the minimal area is defined to be the smallest possible range that will contain all
occupied cells in the worksheet.

The real-estate visualisation tools produced for the toolkit take a very abstract view
of occupancy and population information for worksheets and are capable of working with
either individual workbooks or an entire corpus. The main purpose of these diagrams is to
understand basic positioning information about the workbook. Using these diagrams it is
possible to quickly get an impression about which sections of the spreadsheet are occupied
and to what extent these sections are utilised. These diagrams also make finding sections of
data that the designer has purposely tried to obscure easier to find. These obscured sections
will often be positioned in a far corner of the sheet and provide functionality that does not
need to be seen when using the core of the sheet, such as lookup tables.

Two alternative methods are available for viewing this information.

The simplest is a 2D approach where the occupancy data is displayed over a grid, using
a coordinate scheme that is similar to how Excel displays cells. This results in a spatial
organisation that mimics Excel’s layout by positioning the origin at the top left of the screen
and then addressing the column dimension on the horizontal axis flowing right and the row
dimension on the vertical axis flowing down. The advantages of this approach include match-
ing the users current expectation for cell position, and that relationships understood in one
view can more easily be carried over to the other.

An example of the 2D real-estate diagrams produced by the toolkit are shown in figure
4.1. This visualisation is produced using the Java Swing library’s primitive components, such
as lines and circles. Any coordinate with a cell count greater than zero is assigned a coloured
circle. The colour for this circle is determined to create a heatmap effect for all the data.
Grid coordinates where a large number of cells occur will be coloured towards the red end
of the colour spectrum will those with lower counts will be coloured towards the violet/blue
end.

To create an alternative view for this information, the data was projected into 3D to
create a surface map. I believe this transformation from discrete data to continuous surface
benefits the viewer by smoothing out the effects on any one cell and aiding understanding.
It is possible to maintain hints of the discrete nature of the data by colouring the surface as
a square grid rather than a continuous colour gradient.

The 3D rendering was produced using Java3D [51] and VisAD [23], a visualisation tool
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Figure 4.1: Real-estate utilisation diagram in 2D
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Figure 4.3: The ThemeScape topographical map of word relationships between documents.

for numerical data. These tools had the benefit of allowing the user to interact with the
image via the mouse and keyboard to rotate and zoom the image. Through this interaction
the true benefit of the 3D model is gained, giving the image the feeling of solidity, continuity,
and real existence. An example of this type of diagram is figure 4.2. In this figure the left
axis contains the rows and the upper (obscured) axis the columns. The altitude represents
the occupancy level and is coloured to create a terrain type appearance.

Colouring occupancy levels in real-estate diagrams in the same fashion as topographical
maps can utilise the interpreter’s previous understanding when examining new diagrams.
An example of this approach is the ThemeScape surface map visualisation from the Aureka
client/server system [5]. ThemeScape, shown in figure 4.3, is a text analysis tool that visu-
alises data sets from a 30,000-foot perspective topographical map, which is based on word
relationships between a large collection of patents and other non-patent documents. The
diagrams it produces bare a strong resemblance to traditional maps, particularly in contour
colouring. This allows the user to carry over their prior knowledge of such diagrams in
interpreting the new image.

Although this topographical colouring can be effective in helping the user gain a better
understanding of what the image is conveying, other useful information can also be associated
with the image through colouring. For example, the colourmap could be used for conveying
information other than altitude, such as the average formula complexity metric for that cell.

The information presented in the real-estate images can be further abstracted from cell
occupancy to sheet occupancy. Using this process, individual cells are ignored and instead
the occupied dimensions for each worksheet are used (the minimal and maximal columns
that form a range around all the cells contained in that sheet). This new visualisation is
better suited for studying a corpus of spreadsheets, although it may be used for individual
workbooks. When used across the corpus new details can be observed, such as the tendency
for a larger sheet to use many more rows than columns (as would be expected due to the
coordinate system provided by Excel).

There is potential to further refine and utilise these real-estate images to observe more
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interesting spreadsheet properties. Rather than abstracting from individual cells to the gran-
ularity of worksheet dimensions as the units of interest, ranges of cells could be used. This
would make the location of large input data blocks and replicated functions more apparent.
A hypothesis I’ve had from an early stage in the project is that many spreadsheets will be
destined for a print media and as such the arrangement of cells will be oriented towards the
dimensions of the paper they will be printed on. In many cases this would be standard A4
sheets and so units with the equivalent cell dimensions (with Excel’s default cell width and
height) could also be of interest. I suspect that because many spreadsheets would be arranged
to facilitate printing that an A4 (paper size) ratio pattern would emerge.

4.4.2 Clustering - Single/Corpus

All the real-estate images mentioned above rely on the user to observe the blocks of data
themselves. Although this technique is generally effective, it is also possible to highlight
certain spatial relationships programmatically.

Clustering is a technique that partitions records into clusters (groups) that are similar
according to two or more common attributes. Conversely, records in separate clusters are
dissimilar according to the same attributes. To determine if an instance is part of a cluster
a distance function is used to calculate similarity and a user defined cut-off value determines
membership. Generally, as the cut-off value gets larger the clusters become bigger and engulf
more instances.

When the clusters are graphed they provide a useful visual cue as to the relationship
between several instances of some type, perhaps further simplifying the process of identifying
blocks of data.

The main use of the clustering algorithms to date has been looking at the spatial rela-
tionships between cells using the Euclidean distance between them as the similarity metric.
Using alternative metrics in defining a new distance function would allow the technique to
be extended to look for non-spatial clustering relationship.

In the case of these diagrams such as figure 4.4, spatial similarities between rows and
columns of occupied cells are investigated using rectangular or circular depictions. Of par-
ticular interest are locations where the clusters clump together, indicating islands of data in
the worksheet. For these pockets of data it may be sensible to expand the cut-off value to
form larger clusters. These diagrams are interesting for observing the conceptual grouping
of data the user has created for the particular model. In many cases there could be a degree
of fragmentation, or zoning, as users separate different areas of functionality. Much like the
real- estate diagrams, clustering can help with locating hidden tables present in a worksheet.

Visualisation support in the toolkit is supplied by the ClusterGraph application. A Clus-
terGraph can be created for a grid of cells present at a certain sheet depth or for an entire
workbook. When considering clustering for a corpus of spreadsheets, the visualisation cur-
rently doesn’t scale well due to the high density of information present, making basic clus-
tering diagrams somewhat irrelevant. Several options exist to address this problem. After
the initial run of the clustering algorithm, clusters could replace individual cells as the unit
of interest, providing a higher level of abstraction over the cell. With the source data at the
granularity of clusters the algorithm could then be run recursively to do clustering on the
clusters (after increasing the cluster radius). Another alternative is to use the coordinate
occupancy levels to add another dimension in the distance functions. This could cause the
clustering algorithm to produce contouring information in addition to the spatial clustering.

Formula used and example graph. jdatamining26; jdatamining27; jdatamining28;,

The cluster finding algorithm used was derived from notes on data mining multidimen-
sional data in a data-warehousing course, which in turn was derived from work on artificial

50



#& ClusterGraph 2002
(2.0,2.0)

Figure 4.4: Clustering in a single worksheet

51



3 0 0| o 4] .. | e | S o |

ng (PHG Image, 10245768 pixels) - Mozilla {Build ID: 2002053012}
File Go Bookmarks Iooks Wind

- D [ file:4C: My2220D oouments/E ducation/Uriversiy public_himl/images/iui-Clustering prg T m
[+]

Help

€h % % TheMoeilaDr. % LalestBuids S UniWeb page .. % Java 2 Flatform

[ wiClstering png (PG Image, 10244768 pi.. |
Ba 2 67 Jr i e

& ClusterGraph 2002 [ [4 &; Rect Clustering
B ooon Colp) (6.0} (0.0,00) Colt) (60)

2 3

s | (14.0)

~ & ocoupancyGnd Worklo 1] .
[ I

0 = o T Document: Dane [0L49 secs) \ =l

Figure 4.5: Clustering in a single worksheet

intelligence. Although this algorithm was simple to implement within the toolkit, other clus-
tering algorithms may be better tuned to the grid like spatial structure of spreadsheets. One
cluster search strategy considered involved scanning each worksheet on a row-by-row basis
looking for blocks of data. When a occupied cell is encountered that is not part of a previous
block, all the cells reachable in the immediately adjacent blocks would form a larger block
unit. This block forming technique would expand out recursively to encompass all cells that
are spatially connected.

This algorithm has the potential to find all the spatial clusters in a worksheet, and with
alterations could instead search for logical clustering. Logical clustering would involve using
the same recursive search across adjacent cells, with the additional requirement of Clermont
et al.’s formula equivalence, as document in the background chapter.

4.4.3 Formulas at a Worksheet Level

After examining the layout of the spreadsheet it is useful to then focus on the dataflow through
the spreadsheets created by formula. As mentioned in the background section, Takeo Igarashi
et al. observed that the process of dataflow discovery often involved clicking on individual
cells and tracing the formula manually, putting an unreasonable strain on the user. Excel
does provide some assistance via the range finder and auditing tools, but they were found to
be lacking for complex and large spreadsheets. It is important that any process devised not
put a heavy load on the user to manually trace the dependencies that exist.

The first stage in creating a visualisation for displaying these dataflow structures is to
consider all the components individually. A formula can be considered to create both spatial
and logical relationships, or dependencies between cells, both in two and three dimensions.
Making these dependencies more accessible to the user is the primary aim of many of the
following visualisations.

Figure 4.6 demonstrates the four main techniques that Excel allows a user can use in
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Figure 4.6: Excel’s precedent trace auditing tool for sheet 1. Note that I have added by hand
boxes to the right of each cell containing the relevant formula.

a formula to reference other cells and the precedent trace arrows added by Excel’s built in
auditing tools. Notice how Excel’s trace is somewhat deceptive in the case of an intersection,
in this case looking more like an individual cell reference. In figure 4.7, created by the
toolkit, a precedent cell dependency is represented by a blue arrow in a similar fashion to
that presented by Excel’s auditing tools. As with the real-estate visualisations, the layout
is designed to mimic that of Excel. However, as the diagrams being presented here are
unconcerned with actual cell values, they are omitted from the diagram, significantly reducing
the amount of information that the user has to process. Any ranged references are depicted
using a shaded box. A single range is shaded light grey while a union has the left and right
sub-ranges coloured blue and green respectively. Intersections use yellow and red boxes for
the left and right sub-ranges. The actual resulting intersection is shaded dark blue. The use
of shading and transparency in these diagrams would not be as viable within Excel as they
would obscure the cell values.

An extremely common spreadsheet operation is to sum the values in a range of cells.
Figure 4.8 demonstrates such an operation with a more realistic style of worksheet where a
series of columns are summed and then cross-checked with the sum of the rows. The circles
in the diagram are indications of the complexity of the formula in those cells. Note how
the bottom right cell is significantly more complex than those that just sum a single row or
column. This style of image is similar to the static global view presented by Igarashi et al.
[25].

A more specialised form of precedent tracing not supported by Excel’s auditing tools
involves examining the referencing syntax. Relative and absolute referencing between cells
creates two different forms of dependency, those that change in a formula as the replication
commands are applied and those that remain constant in one or two dimensions. Using the
replication command in conjunction with combinations of relative and absolute references
explicitly encourages the user to create regular patterns in the dependencies. Making these
patterns more apparent through visualisation was one focuses of our project.

Figure 4.9 demonstrates the colouring of relative and absolute cell references used by

53



(0.0,0.0) Colix) (4.0)

E—F]
Gr

£
R oy

t
&

(12.0)

Figure 4.7: Formula extracted and displayed by the toolkit
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Figure 4.8: Using the summation operation on both the columns and rows in a table.

55



(1.0,1.0)

Figure 4.9: Both Excel’s and the toolkit’s trace of simple absolute and relative inter-cell
dependencies.
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Figure 4.10: Jinsight’s Reference Pattern View for exploring data structures and finding
memory leaks.

the toolkit. The reference from B1, coloured blue, is a standard relative reference (Excel’s
default reference). B3 has a red absolute reference. A2 and C2 are both partially absolute
references, in that only one axis is fixed with the $§ symbol, and are coloured yellow and
green respectively. When these colourings are applied to complex real-world spreadsheets,
the regular patterns used in cell referencing can become more apparent.

One hypothesis that we had from an early stage is that absolute cell references will be
one of the main causes of long and angled dependency vectors. The first motivation for this
hypothesis is that locality encourages regions where a large number of inter-cell dependencies
exist to be spatially close to each other. This would imply that most cell references that
refer to a distance cell would in fact be referring to a single parameter. The exception to
this reasoning would be caused by presentation considerations, which may encourage the
programmer to duplicate or refer to large ranges across some distance.

Related work to this search for patterns has been done by IBM alphaWorks on the Jinsight
project [24]. The Jinsight project covers many visualisations, with the relevant reference
pattern view shown in figure 4.10 being useful for exploring data structures and finding
memory leaks.

The absolute and relative referencing capabilities of the toolkit are currently only applica-
ble for references to individual cells. There is the future opportunity to expand the colouring
scheme to include range references. One possible approach would be to colour range boxes
and arrows as single references are. This would require simplification of the depiction of
ranges, perhaps to show only the minimal containing range for intersections.

It is possible to substitute the source data used for the generation of the 2D real-estate
visualisations the any data in the same format. This allows the creation of an alternative view
for measuring formula complexity to be created using the same visualisation application. In
the range and summation example shown in figure 4.6, a metric is used to define the size of
a circle indicating the complexity of a formula. Either this string length metric, or another
appropriate metric from the spreadsheet model section, can be used to create the source data
that is displayed by either a circle with dimensions specified by the metric or a colour map
based on the range of complexity values observed.
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4.4.4 Precedent Tracing - Corpus/Single

Techniques presented for formulas in the prior section can be applied on a much larger scale to
visualise the entire dataflow structure present in single worksheets or across a larger corpus.

Each dependency created by logical references between cells in formulas can be converted
to a pair of mathematical vectors. From the toolkit’s perspective, each dependency has two
component vectors. The first is a displacement vector that is transparent when viewed and
alters the starting coordinates for the second vector to the position of the referencing cell. The
second vector has a magnitude equal to the distance between the two cells and an orientation
that causes it to end at the coordinates of the referenced cell. Plotting all second vectors can
show the general flow direction created by the dependency graph and help make the patterns
in the spreadsheets more apparent.

When viewed for a single worksheet, the vectors serve to graphically represent the depen-
dencies created by the formula in each cell, helping users visually understand the dataflow
structure without any tedious interaction with cells or formula. Cells with a complex depen-
dency on many other cells become more apparent due to the large out degree of arrows.

With a single large worksheet, viewing all the dependency arrows in one visualisation can
still convey useful information to the user, partially as most larger problem models have a
high degree of homogeneity [33]. As the number of vectors grows, there can be the need to
perform abstractions to reduce the amount of information presented to the user. Although
this is seen as an important scalability issue for the visualisations, techniques to resolve it
have only been considered in theory.

One possible solution to address the clutter that can be created by having a large number
of vectors displayed in a small space is to make the image interactive. All vectors by default
will be semi-transparent and when the mouse is over a certain cell its vectors will become
opaque. This interface could be further enhanced by allowing the user to fix and then toggle
the opacity by clicking on a cell that vectors originate from. However, care must be taken to
not recreate the problem of requiring a high degree of user interaction to explore the dataflow
structure.

When the precedent trace exists for a data sourced from a larger number of worksheets,
two simple alterations to the vectors displayed can reduce the volume of information displayed.
Firstly, the magnitude of each vector could be altered to create unit vectors. This removes
the consideration of spatial distance and instead concentrates of flow direction. The second
approach is to display just the average outgoing vector for each cell. These two techniques
are usually combined to create a visualisation depicting the direction of dataflow. Figure
4.11 is an interesting example of this technique and shows a trend for the flow to curve back
towards the origin. This particular visualisation is created using VisAd, with the columns
assigned to the horizontal axis and rows to the vertical.

Using the same clustering technique outlined above it would be possible to change the
unit of visualisation from a single cell to a cluster. The outgoing vector for all the cells present
in the cluster could be the average of all their outgoing vectors. When combined with the
spatial aggregation that clustering already provides this technique could present patterns in
a larger homogenous model clearer.

Another solution considered involves abstracting over the dataflow structure. In many
cases this involves aggregation over sets of logically related vectors. The initial aggregation
considered involves summing all the vectors between pairs of root nodes and leaf nodes in
the dataflow graph, which will in essence create a new vector from the root cell to the leaf
cell. The presence of range references complicates this matter due to the potential for great
breadth in the dependency tree.

All the dependency visualisations considered above have a two-dimensional perspective
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Figure 4.11: Data dependency flow using the average unit vectors.
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Figure 4.13: A single dependency tree.

on the dataflow structure. The worksheet stack that Fxcel provides can also create a three-
dimensional flow of data as formulas reference data in sheets that are above or below their
worksheet depth. We suspected that most of these three-dimensional dependencies will flow
from the higher sheets towards the lower sheets; with the highest sheet in the stack considered
to be the first worksheet the user sees when they open the spreadsheet. Some visualisations
have focused on this area, mainly using 3D images with dependencies represented as vec-
tors. Figure 4.12 is an example showing this flow. It should be noted that this particular
visualisation relies on the user being able to manipulate it to observe the full structure.

4.4.5 Dependency Trees

For any particular model the entire dataflow graph can be large and complex, featuring a
range of layout structures for solving varying problems. In many situations the user may
instead be interested only in a single part of this larger structure, whether it be a trace from
a root cell to all the leaf cells that depend on it, or a trace for a leaf cell to all the root cells
that it depends on.

To help the user focus on a single tree the toolkit is capable of identifying all the root
and leaf cells in a worksheet, and then for any particular cell, tracing either all the cells that
depend on it or those cells that is depends on. The resulting set of cells can then be stored
in a new grid structure and used to produce visualisations focused on the single tree.

Many of the prior visualisations are still appropriate for a single dependency tree, with
the particular advantage of a reduction in the volume of information. An example of a simple
tree trace in given in figure 4.13.

In addition to utilising the prior visualisations, new images can are created to investigate
characteristics that would not have been possible with the larger structures present in the
entire dataflow model.

60



L

§5cramh|e§| Shake | M label [ Stress [ Random

Figure 4.14: A spring view of the dependency structure between cells. By disregarding the
spatial bounds usually enforced on cells, structures such as the chain between cells 110 and
H12 become clearer.

Spring View

The first of these tree specific visualisations uses a 2D layout algorithm based on the idea
of spring forces to arrange the spatial positions of the cells, with an example given in figure
4.14. To do this, cells and the edges between them are automatically arranged based on the
internal structure of the graph. If two cells are connected via dependencies they are attracted
to each other, otherwise they are pushed apart. If the algorithm is iterated a few times, the
graph reaches a stable position and does not move anymore.

This has several benefits, such as the ability to untangle many complex dependency struc-
tures. When the structure has untangled it is of interest to observe if cells that were previously
spatially related are still spatially related, or if instead they have drifted apart. If more than
one tree structure is inserted into this visualisation they will often separate completely, as
there are no attractive forces between them. Due to its nature, this visualisation is dynam-
ically manipulable by the users, who can drag cells around to aid in the untangling process
or fix them in position to enforce a particular structure.

Fisheye view

The tree structures resulting from formula dependencies can span large numbers of cells over
great spatial distances, making it difficult to view all the information and still derive useful
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Figure 4.15: The fisheye view of 4 dependency trees.
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Figure 4.16: Radar and line graph views of bucket data for 259 spreadsheets from the corpus.
The upper bucket count is cropped at 550.

patterns. The fisheye visualisation involves warping this tree over a hyperbolic lens that
makes it is possible to achieve both focus on an aspect of interest near the centre of the
visualisation and the larger context for that aspect. Figure 4.15 is an example of 4 trees in
a single worksheet being arranged around a red artificial root node. Alternative renderers
are available for use with this visualisation to add additional information, such as the cell
address.

4.4.6 Radar View - Corpus

The direction of dependency vectors leaving a cell is investigated using the visualisation
referred to as the compass view. This visualisation is applied to dependency direction data
contained in a series of buckets extracted from a corpus of spreadsheets. Each of the 36
buckets is created to store a count of the number of outgoing vectors that occur in the
corresponding angle, e.g. 0 to 10 degrees.

Storing the bucket data using comma separated value files allows the data to be read by
Excel. Excel’s graphing features can then be used to display the data as either a radar of a
line graph, as the example figure 4.16 demonstrates. It is clearly visible in these graphs that
the rectangular grid layout of a spreadsheet encourages many of the inter-cell references to
be either vertical or horizontal.

Worksheet Centre - Corpus

In figure 4.19 the spatial centre for each worksheet in a corpus of 259 workbooks is plotted.
Some interesting observations include the trend towards a centre that has the column as the
majority component. Also, the table containing data about the run reports a large number
of orphan cells (no incoming or outgoing references).

Function Utilisation - Corpus

After applying the toolkit’s parser to the formula in each cell in is possible to count the
functions utilised in each worksheet. Using this data and the Excel defined categorises for
each function figure 4.20 is produced. This bar graph addresses the degree to which each
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Figure 4.17: The upper bucket count is cropped at 150

Figure 4.18: The upper bucket count is cropped at 40
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Figure 4.19: Worksheet centre for a corpus of 259 workbooks.

Function groupings

Figure 4.20: Function utilisation in a corpus of 259 spreadsheets.
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function is utilised in the corpus. Indications from this graph are that users only utilise a
relatively small subset of commands. To draw reliable conclusions the size of the corpus
used to generate this image will need to be greatly increased. Consideration would also have
to be made as to the abilities of the extraction process to read certain functions and their
associated source data.

This diagram is motivated by the hypothesis that large portions of users succeed in using
spreadsheets while only utilising a very small subset of available functions, with the primitive
operators and most basic functions, such as sum, average, and logical primitives, making up
the majority of cases.

4.4.7 Future Visualisation Potential

While the above visualisations can provide insight into the low-level structure of spreadsheets
and how they are utilised by end-users, they only begin to address the full potential for
visualisation in this research area. Much of the data structures for the following visualisations
is already provided by the toolkit, and a considerable amount more could be provided with
only minor modifications. Outlined below are ideas for visualisations that could be produced
in the future.

An interesting visualisation would be a combination of both the real estate and formula
information for an individual worksheet. This new visualisation would give a broad overview
of each cell’s function in the dataflow graph relative to its spatial position. Cells would be
classified and coloured depending on their purpose in this graph. Example graph functions
could include: 7 Root cells, which are referenced by other cells but reference no cells them-
selves. 7 Intermediate cells, which both reference other cells and are referenced. 7 Leaf cells,
which reference other cells but are not referenced. 7 Orphan cells, which have no incoming or
outgoing references. 7 Pure calculation cells, which contain a formula but make no reference
to other cells. 7 Translation or mirroring cells, which contain only a single reference to a
single cell, i.e. "=B3”.

Mirroring cells seem to serve no real computational benefit, but merely transfer a value
to a more convenient location for the programmer. When a larger group of cells performs
such a transfer of data it is mirroring larger ranges. Other then for presentation purposes,
this may be done to bring variables or constants within the scope of the visible screen area.

Another possible visualisation would create a transient (animated) global view. In creat-
ing this view several steps would be undertaken. Firstly, all the root/source cells are found.
Then a sequence of frames is then generated showing the addition of dependencies at singe
level steps. All prior arrows could be included in subsequent frames to build the entire tree,
or alternatively removed to give a moving view of the flow.

Several existing visualisations address areas of the spatial relationships between cells.
These could be expanded and new visualisations created to consider in more depth the dis-
tance of dependencies. In particular, it is important to understand how far these dependencies
reach, if there is a relationship between the distance of the dependency and the number of
cells referenced, and if there is a significant difference between the horizontal and vertical
components. Investigating these characteristics relates to considering the spatial and logical
relationships between cells in a combined view.

Another area could include looking for a relationship between a cell’s value and its position
(either as the spatial coordinate or displacement from the origin). These visualisations could
also be expanded to consider data from the corpus, such as aggregating the numerical values
in cell coordinates to investigate where the values of highest magnitude are in a spreadsheet.

The total number of logical dependencies created by the formula for a single cell can
be classified as referring to one, few, or many other cells. Range references present in the
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formula of a single cell allow it to reference a significant number of cells via the lightweight
syntax, resulting in dependency trees with the potential for great breadth. When combined
with common functions such as sum, there is the potential for large clusters of data to be
referenced by very few cells. In addition to considering the breadth of the dependency trees
it is also sensible to investigate the tree depth.

One interesting result of the logical dependencies created by formula is that they are
typically acyclic, resulting in a tree structure. When a user does create a circular reference,
Excel will alert them to the fact using the built in auditing tools to create trace arrows. It is
possible to switch Excel into an iterative calculation mode that allows circular references to
be created. In this mode, Excel will cease calculations either after a specific number of cycles
or the new value calculated comes within a fixed value of the previous value. The toolkit is
currently capable of detecting cyclic references and extracting all the cells that exist in the
path. Visualisations could be created to address characteristics like the spatial dimensions of
the cycle, the number of cells involved in each cycle, and the functions involved in the cycle.

As detailed in the background chapter, Clermont observed that users would sometimes
perform a quick fix when using the replication function by entering correct values over the
formula for those cells that produced erroneous values. This allowed the user to avoid debug-
ging the formula and to finish the spreadsheet with less effort, but creates a potential source
of errors for later modifications. A visualisation could be created to specifically address this
issue by helping the user detect one off values within larger blocks of formula.

Rendering visualisations directly over the image of a blank spreadsheet, or possibly even
the source spreadsheet, could make the relationship more apparent between Excel and visu-
alisations that display relatively low-level data.
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Chapter 5

Conclusions

This project involved visualising low-level structures in individual spreadsheets and data from
corpus analysis.

In chapter 2, the background details such as what spreadsheets are, how they work, and
the related research are covered. Chapter 3 presents the toolkit developed for this project,
outlines how it was constructed, and the purpose of each application. Chapter 4 contains a
brief background on information visualisation, the spreadsheet model used as a basis for the
visualisations, and presents example visualisations that can be created using the toolkit for
both individual spreadsheets and corpus analysis data.

5.1 Contributions

5.1.1 Designed and implemented a toolkit for low level analysis and visu-
alisation of spreadsheets

Undertaking this project required a system to be designed and programmed that supports
the creation of spreadsheet visualisations independently from the applications they were cre-
ated in. The toolkit supports the full process required to find and collect the spreadsheets
that are scattered around the Internet, extract the artefacts of interest and then convert
the information collected into visualisations. Significant parts of this work include the inter-
nal representation and the associated formula parser, the process of reliably extracting the
information from the spreadsheets, the visualisation applications, and the corpus analysis
tools.

5.1.2 Developed a principled model of spreadsheet structures

This model describes the low-level structures that are present in the spreadsheet in terms of
spatial and logical relationships between cells. The model is used as a basis for constructing
the visualisations presented and for reasoning about the observed spreadsheet characteristics.
The structure for this model is based on related research undertaken in the field of end-user
programming and spreadsheets, as well as observation of applications and low-level structures
present.

5.1.3 Demonstrated sample spreadsheet visualisations

Examples are made demonstrating the use of the toolkit to inspect the low-level structures
present in a single spreadsheet. These visualisations are in part motivated by an exploration
process for end-users to learn more about the layout and dataflow structures in spreadsheets
that they are unfamiliar with. The visualisations serve to augment those capabilities already
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provided by Excel in helping the user understand the dataflow model for a spreadsheet. Each
visualisation is based on the principled underlying model, which aids in discussion of observed
characteristics. A second motivation was to inspect the structures and patterns that result
when end-users program a spreadsheet.

5.1.4 Demonstrated sample corpus visualisations

Using the automated applications in the toolkit, a corpus of more than 8000 spreadsheets was
collected to provide a source of empirical data to answer questions about how spreadsheets
are utilised via the inspection of low-level structures.

An advantage of corpora is that when constructed correctly, they are representative of the
population of naturally occurring data. Thus the corpus analysis approach can be used as
an early research tool that would be applied before more in-depth analysis such as usability
testing, interviews or auditing.

5.2 Related work

The following outlines how work in this project expands or complements related work that
is covered in more detail in the background chapter.

Panko

Raymond Panko has done in depth studies into the causes of spreadsheet errors. Based
on this research, and that of others, he has found alarming error rates that indicate users
have difficulty creating reliable models of problems using spreadsheets. He attributes these
problems to several areas, such as overconfidence, the unwillingness to test models for errors,
and the difficulties caused by characteristics such as the transparent dataflow model. As men-
tioned above, our project uses corpus analysis to research into many times more spreadsheets
than Panko is able to do manually. However, Panko’s auditing processes are more detailed
and focused on errors than the analysis undertaken in this project.

Igarashi

Takeo Igarashi has researched visualisations that make the usually transparent dataflow
structures more apparent to end-users. In addition, he has also created techniques that
expand the spreadsheet interface to allow users to express relationships between cells in
a more powerful way. There are similarities between the some of the static visualisations
he presents and those we have created for displaying the dataflow graph. Igarashi’s work
relies on a specially built spreadsheet application to integrate the new visualisations into the
interface. While this approach allows him to create innovative visualisations, he comments
on the need to integrate them into a more realistic spreadsheet in future work. By creating
the visualisations independently of the application, our toolkit is more versatile as it is not
constrained by the limitations of the application.

Burnett

Margaret Burnett’s recent work in visual programming languages has been motivated
to examine spreadsheets due to the high number to errors observed. She mainly does this
through the Forms/3 application, which is capable of helping the user perform visual testing
of models they create. Her research into end-user programming and cognitive dimensions has
influenced this project when considering how best to convey information back to the user.
Also of relevance is her work on creating a cell-relation graph model, which had an influence
on the principled model of spreadsheets that was presented in chapter 4.

Clermont

Like the other researchers in this field, Markus Clermont’s research is motivated by the
high degree of errors. His research into the differences between traditional and end-user
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programming was considered in this project when looking for characteristics to observe. Other
relevant material he produced includes the grammar for describing Excel formula syntax,
equivalence classes for comparing formula, and the implementation of a tool to perform
automated error detection.

The grammar he describes for formula syntax is used as the basis for the creation of a
grammar for our toolkits parser. There is the potential in future work to utilise his model
of formula equivalence in a metric that could be used to conceptually group cells prior to
visualisation.

5.3 Future Work

Through the addition of a principled query language for the corpus it would be possible to
create a tool of great value. The current form of the toolkit allows new queries and forms of
analysis to be constructed programmatically using the toolkit’s internal spreadsheet model
and corpus analysis basics. The expansion of the toolkit to include a proper query language
would allow queries of interest to be answered/verified with much greater ease. Much of the
work in this area could be based on the principles of concordance construction from corpus
linguistics.

With or without the aid of a query language, there is still the prospect to harness the
full potential of the toolkit in creating new visualisations. Several potential visualisations
that have not been possible due to time constraints, and are mentioned at the end of the
visualisations chapter, with many only requiring minor modifications of the toolkit to achieve.

The metrics presented along with the spreadsheet model have the potential to be utilised
in a great number of the visualisations to create valuable characteristic analysis. These are
by no means the only metrics available, with the opportunity for future expansion of the set
and integration into query language.

There is also the potential to expand the visualisation applications to integrate with the
query language. In the ideal case the query would be proposed and the data formatted
correctly for visualisations.

Any new work in query languages or visualisation should be properly evaluated to measure
its effectiveness and possible weakness when utilised by the end-user. New visualisations
should be accessed using approaches such as that of cognitive dimensions, and both the
visualisations and query language need to be assessed via usability evaluation.

All future work should be based on observation and modelling of end-user spreadsheet
usage. This will allow us to address the needs of spreadsheet users, and provide insight into
better end-user computing.
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