COMP413 : Research Report

Interprocess Communication using the simplicity of SOAP

Daniel Ballinger

School Mathematical and Computer Sciences

Victoria University of Wellington

PO Box 600, Wellington, New Zealand 

db@mcs.vuw.ac.nz

Abstract

This report is a review of how SOAP can be used to couple distributed heterogeneous systems using interprocess communication. 

An introduction to the basic concepts of SOAP, based on the World Wide Web Consortium specification, provides a context for its position in the web services protocol stack and outlines some of the closely related protocols. Reasons why a new protocol is needed are explored before finally investigating general issues related to SOAP performance and security. 
Keywords:  SOAP, Interprocess Communication, RPC
1 Introduction

This research report contains an investigation into the nature of the SOAP
 specification and its significance for interprocess communication in distributed-computing.

As the Internet expands and the number of web services increases there is a need to provide reliable communication between various distributed services. These distributed computing services are by nature heterogeneous
, and will only continue to get more so [PLA00]. This variance in systems requires a common form of communication that can be used and understood by all interested parties.

Web services are collections of network services that provide communication endpoints capable of exchanging messages to provide services to clients. Typically they are deployed over the Internet, but they may also exist across smaller Intranets.

2 What is SOAP

SOAP is a lingua franca 
to the communication problems created by computing in a heterogeneous environment where hardware, operating systems, and programming languages can all vary. It facilitates interoperability among a wide range of programs and platforms by using common denominator technologies that almost all systems can implement.

Primarily it provides a mechanism for messaging 
between a service provider and a service requester with a common nomenclature
 of data and agreed
 function call syntax.

The SOAP specification is composed of three main parts:

1. An Envelope

The Envelope
 is the top-level container representing a message and is transmitted as the root element of the XML document that makes up the data segment of a SOAP message. It contains Header and Body sub containers. The Header
 container is a generic construct that defines an overall framework for expressing how to interpret a message, the object that should deal with it, and whether it is optional or mandatory to process. The Body is a container for mandatory information intended for the ultimate message receiver. SOAP defines one element for the body to report errors.

As Figure 1 (from [MSDN11]) below illustrates, a SOAP message may have multiple application-defined blocks within the Header and Body containers.

2. Encoding Rules

SOAP encoding rules define a serialization mechanism for expressing instances of application-defined data-types in an XML encoded exchange format.

3. An RPC Convention

The SOAP RPC
 representation defines a convention that can be used to represent remote procedure calls and responses.

[image: image1.png]SOAP Envelope

SOAP Header

Header Block

Header Block

SOAP Body

Body Block

Body Block





Figure 1. SOAP message structure

These three parts collectively form the basis of the SOAP messaging specification yet they are functionally orthogonal. Specifically, separate namespaces are used for the envelope and encoding rules in order to promote simplicity through modularity 
[ALB01pg 4].
2.1 Position in the Protocol Layer Stack

[image: image2.png]ackan

Comversations Transacions

—
— i

SOAP Msgs & Headers (il

Transport (the wire)

Misc.

Service
Chrsansics

-

wsbL

Description

-
»

Regisry

Discovery




Figure 2. The 3 main layers in web services. Image from [WSA]

Web services consist of a five-layer model providing constructed as a stack. The stack elements from the lowest to highest layers consist of network, transport, packaging, description, and discovery layers. 

SOAP provides the packaging layer in the stack and also forms part of a larger middleware layer
, between
 the application and transport mechanisms. The additional layers, as depicted in Figure 2, often include 
the Web Services Description Language (WSDL) for describing the services available and the Universal Description, Discovery, and Integration (UDDI) for listing what services are available. Both of these services are described in more detail in at the end of this section.

2.2 Transport mechanism

Although SOAP is often referred to as a wire protocol it only specifies data encoding and is independent of the transport mechanism
. In the majority of implementations HTTP (POST
) is used as the end-to-end 
protocol for several reasons.

HTTP is an RPC-like protocol in the nature of the request response mechanism. It is simple and widely deployed 
on many operating systems and platforms making it a more universal
 means of communication than any proprietary format. A third benefit is best summarised in [BOX02] with the quote that HTTP is “more likely to function in the face of firewalls
 than any other protocol known to man.”

2.3 Encoding

At the core of the SOAP communication protocol is the tree-oriented 
data representation of XML (eXtensible Mark-Up Language). It is used to provide flexible tag based encoding of all application data for on the wire transmission. XML is emerging in industry as a standard for representing data in a platform-independent way. This evolution by XML towards becoming a bedrock technology on the Internet, like HTTP, is testified by the plethora
 of XML parsers in various languages running on multiple platforms [GOV00, p.4]. 

XML’s platform independence comes from the avoidance of proprietary binary-based formats, like that used by the Internet Inter ORB Protocol (IIOP) in CORBA, in favor of the more universal ASCII. 

One advantage of using XML to encode SOAP messages is that it can be read and parsed 
by both humans and computers alike. Even if SOAP is mainly intended for processing by machines, human readability is still very beneficial for debugging
 purposes and quick implementation 
[SWL01]. This flexibility has consequences that are discussed in a later section.

2.4 Remote Procedure Call (RPC) and Remote Method Invocation (RMI)

In its most basic form the SOAP RPC
 convention specifies the transmission of one-way communication 
between a client and a server. Two of these transmissions can then be combined
 to create a request/response
 pattern [GOV00, p.4].

When HTTP provides data transport the Request-URI (Universal Resource Identifier) is typically used by the server to map the message to a class or an object, but this is not mandated by the SOAP specification. Additionally, the interface name (a URI) and the name of the method to be called on the server are present in the HTTP header SOAPAction [GOV00, p.4].

Method calls are converted to compound XML data elements 
consisting of a sequence of fields, one for each parameter. If a subsequent return is required the return value is encoded into a similar structure along with any out and in/out parameters. The serialization of primitive and application-defined datatypes is defined by SOAP’s encoding rules.

Typically SOAP RMI uses an XML-Schema specification of the server interface to generate stubs and skeletons 
for objects.

A SOAP RPC Example

Figures 1 and 2 show a simple RPC to return the recorded temperature at a given latitude and longitude. This particular example is reproduced from [GOV00]. Of particular interest is the HTTP Content-Length header field, which is addressed by a later section in the context of performance.

2.5 Related web service protocols

SOAP provides packaging services in the web services stack and is often used with WSDL and UDDI to provide the upper three layers (packaging, description, and discovery).

2.5.1 Interface definition with WSDL

WSDL is the de facto standard interface definition language for use with SOAP ([LPSOAP., p.1]), providing support for the definition of complex structures. WSDL exposes web services by defining the request and response messages (using an XML document) for a number of ports, which correspond to methods for an RPC service. 

2.5.2 Discovery and description with UDDI.

UDDI is the current technology for locating a web service. It provides ‘white pages’ that describe the company offering the service (name, address, contacts, etc.). The ‘yellow pages’ include industrial categories based on standard taxonomies such as the Standard Industrial Classification and the North American Industry Classification System. The final service provided by UDDI is the ‘green pages’ that describe the interface to the service with sufficient detail for programmers to write applications for it.

UDDI overlaps some facilities of WSDL by also describing services using the flexible Type Model or tModel document, which describes a SOAP interface to an XML web service.

3 The need for another Interprocess communication protocol

Traditional RPC-style protocols such as DCOM and IIOP 
do not adapt well to the nature of communication required on the Internet. Three of the main reasons cited for this stance are pointed out in [SFAQ].

Firstly, both these protocols require a dedicated amount of non-trivial runtime support in order to implement the complete set of services that both protocols have to offer. According to [MAR00, p.2] maybe 10 to 20 percent of scenarios benefit from and thoroughly exploit the broad range of services offered by DCOM and IIOP. This leaves the remaining 80 to 90 percent that “would happily trade that wealth of features for a simpler technology that guarantees the greatest interoperability in conjunction with simplicity.” Often much of this extended functionality is really only needed in server-server
 communications and is superfluous in client-server communications.

The second issue is the result of the closed nature of the underlying runtimes combined with the relative complexity of the protocols making it difficult for developers to "drop down to the wire" when more flexibility is needed. Additionally, older systems like COM only work from one Microsoft system to another. 

Although Java RMI is more comfortable migrating between operating systems and platforms it is still a single-language protocol, limiting its overall flexibility in a distributed environment.

Finally, HTTP
 has such a strong embedding in the modern Internet security infrastructure that trying to communicate across organisations using any alternative method can require an “excessive amount of organizational and engineering resources.” A similar view is given in [MAR00, p.1] in regards to DCOM
 where the configuration complexity and the overly complicated security model render it tough to configure within a LAN, and nearly impossible to deploy over firewalls
  (typically the gateways between corporate LANs and the Internet). CORBA’s IIOP suffers from similar problems.

In some cases protocols like SOCKS 
can be used to allow routing of non-HTTP messages through firewalls. This still adds a layer of configuration complexity for any service that will need to migrate through such barriers.

3.1 Lowest Common Denominator Communication

A determining factor in the degree of interoperability 
achieved in a distributed environment is the wire format of data and the protocol used to exchange it among processes. SOAP addresses this issue by leveraging the universality of XML with ASCII encoding and HTTP.

When distributed systems are connected via more than one higher-level 
protocol SOAP can be used as the common denominator protocol to negotiate 
between the more specialized protocols and provide integration with existing computational code.

3.2 Installation

As a large component of SOAP is based on XML and HTTP, installation becomes easier as it can be implemented on top of exiting libraries. This tends to make installation
 simpler in comparison to CORBA which requires “huge software packages and does not provide a commonly accepted bootstrapping mechanism” [SWL01].

4 Issues with the SOAP specification

The SOAP specification has several shortcomings when providing interprocess-communication (many of them deliberate). Numerous higher-level interprocess communication issues are not addressed, such as object activation or lifetime management
, instead being left for other Middleware components to satisfy. Additionally, SOAP lacks unique ID’s 
to identify objects and interfaces
.

Currently the specification describes how a SOAP payload can be transmitted via HTTP, but does not address any other protocols. To maintain the benefits of universal transmission formats should be devised for the other common transport mechanisms, such as FTP and SMTP. 

Before addressing several performance issues it is important to first understand the stages that SOAP undertakes before sending or receiving a message.

4.1 Stages in a transmission

As presented in [SHPC] and [SOAP11] SOAP goes through several stages in converting an application message to the wire format and back again.

When sending a message SOAP will go through four main stages: 

1. Traversal of the data structures representing the applications message.

2. Converting the machine representation of data to ASCII.

3. Writing the XML formatted ASCII to a buffer, ready for transmission.

4. Initiating a network transmission for the buffer.

Receiving a message also has four core stages:

1. Read data from network into memory buffer.

2. Parse XML from the buffer for tags.

3. Handle elements based on tags.

4. Convert ASCII to machine/application representation.

4.1.1 Serialization and Deserialization

Sending stage 1 and 2 involves serialization to convert an object into its persistent XML based state. This process is reversed during the second to fourth receiving stage where the deserialization 
process converts objects from their persistent state to their representation in memory. 

The two popular paradigms for processing XML are the Document Object Model (DOM) and the Simple API for XML (SAX). Both paradigms make two passes through the XML message during unparsing, as they must first learn the structure of the incoming object. In contrast, Java RMI deserialization is faster 
as the class structure of the object being deserialized
 is already known. Due to the data-centric view DOM presents to the application it also builds a complete object representation in memory [SHPC, p.6]. 

Both of these features have an effect on performance
 by requiring the utilisation of more system resources
, especially for larger messages.

When an XML Schema exists a possible solution to these performance issues, presented in [SHPC, p.8], is to use it to create a schema-specific parser. However, the performance improvements achieved by better implementation of phases like deserialization, though the constraint of handling arbitrary complex data objects, will bound the maximum performance enhancements [GOV00, p.11].

4.1.2 Writing the message to a buffer

In the ideal case any distributed object protocol should ensure that there is no copying of buffers from the network layer to the runtime system (i.e., zero-copy protocol
) [GOV00, p.10]. When using HTTP 1.0 the length of the serialiser output must be inserted into the Content-Length header field. This requires that the entire message be created in a separate buffer prior to appending the HTTP fields from a separate 
buffer. Alternatively HTTP 1.1 can be used to remove the need for the length field by performing chunk encoding and transmission.

4.1.3 Operating System Calls

In the 4th send stage the application must perform a relatively expensive operating system call to transmit the contents of the message buffer. This can be a large source of inefficiency in SOAP as multiple system calls can be needed to send one logical message [LPSOAP, p.6].

The use of TCP/IP can add additional overhead. A one-packet exchange is required before transmission can begin, causing the addition of a round-trip delay to each message when establishing a separate connection. Also, resources for buffers are consumed by the operating system.

4.2 Performance and Bottlenecks

SOAP has performance issues that are the result of a tradeoff
 made between flexibility
 and speed. The primary goal of SOAP is to lean towards machine independence and operation in the diverse environment that is the Internet. XML is the main mechanism to provide this universality but also brings with it a compromise
 between machine and human-readability. The benefits of the XML representation are mentioned in earlier sections but the ASCII
 encoding, tree based structure, and delimiting tags have an effect on performance.

Comparisons undertaken by Madhusudhan Govindaraju el al. in [GOV00, p.8] demonstrate that SOAP RMI is consistently slower in corresponding serialize/deserialize tests than other communication protocols like IIOP and Java RMI. 

4.2.1 Message Size

The universality SOAP achieves using XML comes with another performance penalty
: messages are textual and hence the sizes are significantly larger than protocols that send raw binary data. This problem is inherent
 in the specification and could only be reduced by changing the protocol.

The problem of SOAP data expansion has been examined in [GOV00, p.4]. A particularly good comparison is made between the Java binary and XML representation for the encoding of a double
. In Java, each double takes exactly 8 bytes. In XML a double
 with 16 digits of precision will take at least 16 characters when converted to a string (and so 16 bytes in UTF-8). In addition to this 16 bytes, 17 bytes are needed for XML’s <double> and </double> tags. This gives a double serialised into XML a minimal size of 33 bytes. If the data is transferred using Unicode, this estimate doubles.

In general SOAP’s prodigious
 data representation size 
was calculated to be about 10 times the size 
of a standard binary representation [GOV00, p.9]. This larger size effects both memory requirements for resources like buffers
 and the transmission time for the message.

5 Security Issues

SOAP messages have similar security requirements 
to those inherent in business transactions, such as “building relationships, establishing trust, assuring quality, and exchanging sensitive information.” [HOU01, p.1]

Like much of the SOAP specification, universality is achieved by being transport-agnostic, paving the way for the development of security bindings to just about any protocol. This also means that security considerations reach beyond
 the SOAP specification itself to encompass the communication links that enable messaging.

When the SOAP payload is transmitted over HTTP it is possible for firewalls to perform filtering
 by examining the SOAP content in each packets HTTP header. This option should always be possible, as the SOAP specification explicitly states that implementations must verify that this information matches the corresponding headers and tags in the payload, otherwise the call should be rejected.

Other advantages exist when HTTP is used as the transport protocol. In many cases Secure Sockets Layer (SSL
), Transport Layer Security
 (TLS), and Internet Protocol Security (IPsec) can provide adequate security in some network settings. Using these protocols it is possible to authenticate the server 
(and optionally the client), and provide a confidential secure channel over which SOAP payload can travel. They are however not complete 
and other security protocols will also need to be used.

As the SOAP specification does not express session details the use of SSL can be venerable to message copying and replay attacks
 [HOU01, p.2]. Another disadvantage of SSL is the requirement of point-to-point sessions that necessitates a large amount or encrypting and decrypting 
at each point in the transmission. 

When transmitted 

The W3C is working on the XML Digital signature (XML-SIG) to encrypt/decrypt all or parts on an XML document. When finished it will be combined with XML Key Management Service (XMKS) to provide more powerful and standardised encryption capabilities for SOAP payloads [HOU01, p.2].

6 Conclusions

SOAP’s ability to achieve interoperability across heterogeneous environments makes it a valuable component in a multi-protocol environment. Primarily it forms part of the web services middleware layer that helps achieve a high level of abstraction over inter-process and inter-machine communication.

In its most common form
 SOAP is often summarised by the formula:

SOAP = RPC + HTTP + XML 

XML is used to provide a universally understood common denominator wire format for application data. This has many advantages like non-proprietary, language-independent, encoding and human readability.

The use of XML to carry data is however a trade-off between universality and speed performance. Serialization, deserialization, ASCII encoding, buffering implementations, and XML tags all affect SOAP’s performance by increasing the size of messages and requiring more system resources to send one logical message.  When networking delays are discounted XML processing can account for about 75% 
of processing time to send an empty SOAP call [LPSOAP, p.6]. 

Due the strong embedding of HTTP in the infrastructure of the Internet using it as the transport mechanism for SOAP provides many advantages over other methods of Interprocess communication. The main advantage is the ability to pass through most firewalls with minimal effort and configuration. Additionally, standard HTTP security measures such as SSL, TLS, and Ipsec can be used in providing secure communication between a client and server. There are however still holes in the SOAP security model that are being addressed by the continuing efforts of the World Wide Web Consortium with new standards like XML-SIG and  XMKS.

7 References

[ALB01
] Antonio Albarrn, Francisco Durn, and Antonio Vallecillo Junta de Andaluca (2001). From Maude Specifications to SOAP Distributed Implementations: A Smooth Transition.

http://www.lcc.uma.es/~av/publicaciones.html

[BOX02
] Don Box (2002). A Young Person's Guide to The Simple Object Access Protocol: SOAP Increases Interoperability Across Platforms and Languages, Microsoft Developer Network.

http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/0300/soap/toc.asp

[CHI02
] Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley (2002). Investigating the Limits of SOAP Performance for Scientific Computing, Proceedings of HPDC 2002, Indiana University.

http://www.extreme.indiana.edu/xgws/papers/soap-hpdc2002/soap-hpdc2002.pdf

[CHIU
] Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley. SOAP for High Performance Computing, Indiana University.

http://www.extreme.indiana.edu/xgws/papers/soapPerfPaper/soapPerfPaper.pdf

[DAVIS
] Dan Davis, Manish Parashar. Latency Performance of SOAP Implementations.

http://www.caip.rutgers.edu/TASSL/

[GOV00
] Madhusudhan Govindaraju, Aleksander Slominski, Venkatesh Choppella, Randall Bramley, Dennis Gannon (2000). Requirements for and Evaluation of RMI Protocols for Scientific Computing, Indiana University.
http://www.extreme.indiana.edu/xgws/papers/sc00_paper/

[GWS] Grid Web Services in IU Extreme! Lab.
http://www.extreme.indiana.edu/xgws/index.html

[HOU01
] Lori Houston (December 10, 2001). SOAP Security Issues.
http://dcb.sun.com/practices/websecurity/overviews/soap_security.jsp

[IBMM
] Messaging: The transport part of the XML puzzle, IBM Developerworks.

http://www-106.ibm.com/developerworks/library/xml-messaging/

[KUR01
] James E. Kurose, Keith W. Ross (2001). Computer Networking - A Top-down Approach Featuring the Internet, Addison Wesley.

http://www.awl.com/kurose-ross

[MAR00
] Davide Marcato (2000). Distributed Computing With SOAP.
http://www.devx.com/upload/free/features/vcdj/2000/04apr00/dm0400/dm0400.asp

[MSDN11] SOAP Specification Index Page for SOAP 1.1 W3C Note, Microsoft Developer Network. (2002).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoapspec/html/soapspecindex.asp

[OLA02
] Thor Olavsrud, Ryan Naraine, Robert Liu, Clint Boulton (March 13, 2002). Web Services Moving Beyond the Hype, Jupitermedia Corporation.
http://www.internetnews.com/ent-news/article.php/7_990981

[PLA00
] David Platt (August 16, 2000). What The Heck Is SOAP, Anyway?
http://www.byte.com/documents/s=443/byt20000816s0001/index.htm

[RFC793] RFC793 - TRANSMISSION CONTROL PROTOCOL, Information Sciences Institute. (September 1981).

http://www.faqs.org/rfcs/rfc793.html

[SCLI
] SoapClient.com.

http://www.soapclient.com/

[SFAQ
] SOAP Frequently Asked Questions, DevelopMentor.

http://www.develop.com/soap/soapfaq.htm

[SOAP11] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, Dave Winer (08 May 2000). Simple Object Access Protocol 1.1 W3C Note, W3C.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[SOAP12] SOAP 1.2 Working Draft, W3C. (26 June 2002).

[SRPC] soaprpc.com - Webservice Resources.

http://www.soaprpc.com/

[SRPCM] SOAP: RPC or Messaging?.

http://www.learnxmlws.com/tutors/rpcmsg/rpcmsg.aspx

[SWL01
] Semantic Web Languages: RDF vs. SOAP Serialisation, Stefan Haustein University. (2001).

http://www-ai.cs.uni-dortmund.de/PERSONAL/haustein.eng.html

[TAN02
] Andrew S. Tanenbaum, Maarten van Steen (2002). Distributed Systems - Priciples and Paradigms, Prentice Hall.
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/

[VAS00
] Clemens Vasters (2000). Why SOAP doesn't lack security while it does, newtelligence AG.

http://www.newtelligence.com/news/soap01.aspx

[WIN02
] Dave Winer (2002). SOAP News.

http://soap.weblogs.com/

[WINER
] Dave Winer. soapware.org.

http://www.soapware.org/

[WSA99
] Web Services architecture, Cyber India Online. (1999).
http://www.ciol.com/content/web_services/tutorials/102073001.asp

[WSP] Mark Gibbs (2000). Web service protocols. New Zealand PC World Magazine – August 2002, p.104-105.

[XMLRPC] XML-RPC Home Page, UserLand Software, Inc.
http://www.xmlrpc.com/

POST /Temperature HTTP/1.1


Host: www.temperature-service.com


Content-Type: text/xml


Content-Length: 357


SOAPAction: "http://weather.org/query#GetTemperature"





< SOAP-ENV:Envelope


   xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"


   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">


  < SOAP-ENV:Body>


    < m:GetTemperature xmlns:m="http://weather.org/query">


       < longitude>39W< /longitude>


       < latitude>62S< /latitude>


    < /m:GetTemperature>


  < /SOAP-ENV:Body>


< /SOAP-ENV:Envelope>


Figure 1: A SOAP request sent via HTTP.





HTTP/1.1 200 OK


Content-Type: text/xml


Content-Length: 343





< SOAP-ENV:Envelope


   xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"


   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">


  < SOAP-ENV:Body>


    < m:GetTemperatureResponse xmlns:m="http://weather.org/query">


      < centigrade>28.4< /centigrade>


    < /m:GetTemperatureResponse>


  < /SOAP-ENV:Body>


< /SOAP-ENV:Envelope>


Figure 2: A SOAP response received via HTTP.











� SOAP was initially an acronym for Simple Object Access Protocol, the current specification [SOAP12] states that this is now just a name. 


� TLS provides secure channel properties and is the IETF’s successor to SSL. It is composed of two protocol layers to achieve connection security, using some encryption method along with authentication [HOU01, p.4].





�PAGE \# "'Page: '#'�'"  ��1. A critical review or commentary, especially one dealing with works of art or literature.


   2. A critical discussion of a specified topic.


�PAGE \# "'Page: '#'�'"  ��Summarise the report in 100-150 words. It should accurately state what the report is about and what you have included. Be specific.


�PAGE \# "'Page: '#'�'"  ��Expand on the area of study by providing context, indicating its significance.


�PAGE \# "'Page: '#'�'"  ��“the distributed-computing world is by nature heterogeneous, and will only get more so.” [PLA00]


�PAGE \# "'Page: '#'�'"  ��Lack of discernment or long-range perspective in thinking or planning


�PAGE \# "'Page: '#'�'"  ��A medium of communication between peoples of different languages.�Any hybrid or other language used over a wide area as a common or commercial tongue among peoples of different speech.�A common language used by speakers of different languages


�PAGE \# "'Page: '#'�'"  ��“SOAP provides mechanism for messaging between a service provider and a service requester. It is an XML based protocol that consists of three parts,…” [CHIU, p.3]


�PAGE \# "'Page: '#'�'"  ��The technical names used in any particular branch of science or art


�PAGE \# "'Page: '#'�'"  ��SOAP provides an agreement and common nomenclature� of the data used to describe a function call. [PLA00]


�PAGE \# "'Page: '#'�'"  ��, the Envelope, specifies the overall structure of the message, its intended recipient, and other attributes of the message


�PAGE \# "'Page: '#'�'"  ��The Header is a generic container for added features to a SOAP message in a decentralized manner. SOAP defines attributes to indicate who should deal with a feature and whether understanding is optional or mandatory.


�PAGE \# "'Page: '#'�'"  ��[ALB01pg 4]


�PAGE \# "'Page: '#'�'"  ��“Although these parts are described together as part of SOAP, they are functionally orthogonal. In particular, the envelope and the encoding rules are defined in different namespaces in order to promote simplicity through modularity.”[ALB01pg 4]


�PAGE \# "'Page: '#'�'"  ��It is primarily used for transferring data via direct communication of machines over the Internet and as such will often be used in conjunction with other protocols in the middleware layers.


�PAGE \# "'Page: '#'�'"  ��It exists between the Application and the Transport layer.


�PAGE \# "'Page: '#'�'"  ��“XML Web Services are a new standardized way of integrating disparate systems and applications connected through an Internet protocol (IP) backbone. The standard relies on XML as a language for tagging data; Simple Object Access Protocol (SOAP) for transferring that data; Web Services Description Language (WSDL) for describing the services available; and Universal Description, Discovery, and Integration (UDDI) for listing what services are available.” [OLA02]


�PAGE \# "'Page: '#'�'"  ��independent of the transport mechanism used for exchange. [GOV00, p.4]


�PAGE \# "'Page: '#'�'"  ��“While SOAP doesn’t specify a transport mechanism, most SOAP RPC implementations use HTTP.” [LPSOAP] HTTP POST.


�PAGE \# "'Page: '#'�'"  ��“Consistent with the IIOP, MTS, and HTTP philosophies, SOAP uses endpoint-based communications.” [SFAQ]


�PAGE \# "'Page: '#'�'"  ��XML and HTTP, which SOAP is often implemented over, are two bedrock technologies.


�PAGE \# "'Page: '#'�'"  ��HTTP is certainly considered to be a widely deployed and flexible protocol.


�PAGE \# "'Page: '#'�'"  ��“HTTP is a very RPC-like protocol that is simple, widely deployed, and more likely to function in the face of firewalls than any other protocol known to man.” [BOX02]


�PAGE \# "'Page: '#'�'"  ��The lack of reliable, universally understood data-exchange format has long limited effective communication between heterogeneous systems. XML is essentially a tree-oriented data representation language that is simple to generate and parse.” [GOV00, p.2]


�PAGE \# "'Page: '#'�'"  ��  A superabundance; an excess.


�PAGE \# "'Page: '#'�'"  ��“The XML encoding makes SOAP messages simple to read and parseable by humans and machines alike, as testified by the plethora� of XML parsers in various languages running on multiple platforms.” [GOV00, p.4]


�PAGE \# "'Page: '#'�'"  ��“Human Readability: In contrast to the CORBA Internet Inter ORB Protocol (IIOP), SOAP is not a binary format but an XML-based format that is human-readable. Even if SOAP is mainly intended to be read by machines, human readability is very helpful for debugging purposes and quick implementation.” [SWL01]


�PAGE \# "'Page: '#'�'"  ��“Human readability of SOAP packets makes SOAP a useful protocol during development and debugging.”


�PAGE \# "'Page: '#'�'"  ��“* Network: RMI involves sending serialized representations of objects over a network. The time taken for this is directly proportional to the size of the serialized representation for the low-latency networks and large objects used in the testing.” [GOV00, p.10]


�PAGE \# "'Page: '#'�'"  ��“The SOAP message exchange model consists of one-way transmissions from sender to receiver which can be combined to by used as a request/response pattern.” [GOV00, p.4]


�PAGE \# "'Page: '#'�'"  ��“SOAP does not say anything about bi-directional communication, although it is possible to layer these semantics on top of a SOAP implementation (this could be as simple as sending an endpoint URI via an in parameter in a method call).


�PAGE \# "'Page: '#'�'"  ��“SOAP messages are fundamentally one-way transmissions from a sender to a receiver, but as illustrated above, SOAP messages are often combined to implement patterns such as request response.” [ALB01pg 5]


�PAGE \# "'Page: '#'�'"  ��“Remote procedure calls in SOAP are essentially client-server interactions over HTTP where the request and response comply with SOAP encoding rules. The Request-URI (Universal Resource Identifier) in HTTP is typically used at the server end to map to a class or an object, but this is not mandated by SOAP. Additionally, the HTTP header SOAPAction specifies the interface name (a URI) and the name of the method to be called on the server. … . SOAP specifies a remote procedure call convention, which includes the representation and format to be used for calls and responses. A method call is modeled as a compound data element consisting of a sequence of fields (accessors), one for each parameter. A return structure consists of the return value as well as the out and in/out parameters. SOAP encoding rules specify the serialization for primitive and application-defined datatypes.” [GOV00, p.4]


�PAGE \# "'Page: '#'�'"  ��“SOAP RMI uses an XML-Schema specification of the server interface to generate the associated stubs and skeletons. A remote object reference is an HTTP URL along with information that uniquely identifies the instance. The stubs and skeletons do not directly interact with the SOAP implementation, but instead use a communication object which is an abstraction that helps hide the underlying implementation of SOAP. This design is useful as it allows run-time insertion of different SOAP implementations.” [GOV00, p.7]


�PAGE \# "'Page: '#'�'"  ��“Existing RPC-style protocols such as DCOM and IIOP have not proven to be adaptable to the Internet. Both of these protocols require a non-trivial amount of dedicated runtime support in order to implement the complete set of services that both protocols have to offer. Additionally, the closed nature of these runtimes combined with the relative complexity of the underlying protocols has made it difficult for developers to "drop down to the wire" when more flexibility is needed. Finally, the existing Internet security infrastructure has embraced HTTP to the point that trying to communicate across organizations using anything other than HTTP requires an excessive amount of organizational and engineering resources.” [SFAQ]


�PAGE \# "'Page: '#'�'"  ��“It remains to be seen. The OMG has made no announcements regarding SOAP. Microsoft has committed its future architecture to SOAP, but has not stepped away from DCOM. Despite the lack of official statements from OMG or Microsoft, one can look at the technological forces at play. SOAP is functionally quite close to IIOP (the underlying protocol used by most CORBA products). DCOM offers additional protocol functionality (e.g., garbage collection, causality) that is not present in IIOP or SOAP. However, most of DCOM's extended functionality is really only needed in server-server communications and is superfluous in client-server communications. In defence of both IIOP and DCOM, SOAP packets tend to be larger on the wire and can be somewhat more resource intensive to parse/generate.” [SFAQ]


�PAGE \# "'Page: '#'�'"  ��“HTTP requests/replies are readily passed through firewalls and handled securely, unlike the notoriously unsafe execution of arbitrary remote procedure calls (RPC) or RMI code.” [GOV00, p.2]


�PAGE \# "'Page: '#'�'"  ��“They created SOAP to meet the needs of developers who found distributed computing difficult to deploy with DCOM and CORBA, because firewalls typically don't pass these protocols and administrators are unwilling to open the firewalls to allow them. The deployment of COM vs. the deployment of DCOM has been a study in contrast” [MAR00, p.1] 


�PAGE \# "'Page: '#'�'"  ��“COM doesn’t work well in a widely distributed environment like the Internet. … The first reason is that COM only works from one Microsoft system to another. … DCOM has trouble working through Internet firewalls” [PLA00]


�PAGE \# "'Page: '#'�'"  ��“For web services, JavaRMI may be encapsulated within HTTP or routed through firewalls using protocols like SOCKS. Since SOAP’s overhead is greater the JavaRMI even discounting HTTP overhead, we expect that JavaRMI or CORBA will be faster over HTTP as well.” [LPSOAP, p.6]


�PAGE \# "'Page: '#'�'"  ��The criteria for an effective communication protocol include reliability, robustness, readability, ease of use, seamless integration with existing computational code and interoperability.” [CHIU, p.2]


�PAGE \# "'Page: '#'�'"  ��“The universality and extensibility of XML facilities the use of SOAP as a basis for building other higher-level services (eg, protocols for service discovery, event subscription, message queuing, etc.)” [GOV00, p.4]


�PAGE \# "'Page: '#'�'"  ��“To support heterogeneity there is a need to separate the representation of the function call from the protocol used to transport the call from one box to another.” [PLA00] This requires finding the lowest common denominator that all systems on the Internet can support.


�PAGE \# "'Page: '#'�'"  ��“Simple Installation: While CORBA requires huge software packages and does not provide a commonly accepted bootstrapping mechanism, SOAP is based on HTTP and can be implemented with little effort on top of existing libraries for XML and HTTP.” [SWL01]


�PAGE \# "'Page: '#'�'"  ��“In general, associating high-level structures is not easy for the programmer as with JavaRMI or CORBA.” [LPSOAP, p.2]


�PAGE \# "'Page: '#'�'"  ��“There is no unique ID to identify objects and interfaces.” [MAR00, p.5]


�PAGE \# "'Page: '#'�'"  ��SOAP does not mandate any particular language for interface description, although the XML Schema specification is a reasonable way to describe interfaces and user-defined types.” [SFAQ]


�PAGE \# "'Page: '#'�'"  ��“Deserialization converts objects from their persistent state to their representation in memory. Deserialization in SOAP involves parsing the XML representation of an object and instantiating the object using reflection. “[GOV00, p.11]


�PAGE \# "'Page: '#'�'"  ��”In Java RMI deserialization the class structure of the object being deserialized is already known. On the other hand, in SOAP deserialization the class structure is learned as the XML is parsed. “[GOV00, p.11]


�PAGE \# "'Page: '#'�'"  ��”This coupled with the already large size of the XML representation of the serialized object makes the SOAP deserialization considerably less efficient. The Figures in Appendices C and D show this dichotomy� consistently.” [GOV00, p.11]


�PAGE \# "'Page: '#'�'"  ��“They found that the encoding time for SOAP was greater than for protocols such as Java’s object seralization.” [LPSOAP, p.2] Due to parsing and formatting.


�PAGE \# "'Page: '#'�'"  ��“In defence of both IIOP and DCOM, SOAP packets tend to be larger on the wire and can be somewhat more resource intensive to parse/generate.” [SFAQ]


�PAGE \# "'Page: '#'�'"  ��“* Buffer copying: Ideally, any distributed object protocol should ensure that there is no copying of buffers from the network layer to the runtime system (i.e., zero-copy protocol). However, for transporting SOAP over HTTP, the serializer output needs to be copied into a buffer before sending it on the wire if the length of the stream is to be sent as an HTTP header. The cost of copying is small and could be eliminated if the content-length header is not sent.” [GOV00, p.10]


�PAGE \# "'Page: '#'�'"  ��, usually requires two separate buffers


�PAGE \# "'Page: '#'�'"  ��compromise


�PAGE \# "'Page: '#'�'"  ��The encoding process is a trade off of flexibility and speed.


�PAGE \# "'Page: '#'�'"  ��“While one of the original ideas of XML is to provide some kind of compromise between machine and human-readability,” [SWL01] and machine independence. This can have an effect on performance.


�PAGE \# "'Page: '#'�'"  ��Tagged data is sent as characters.


�PAGE \# "'Page: '#'�'"  ��“A common trade-off in computing is between the needs of universality and high performance. The qualities of SOAP that make it universally usable tend to work against high performance communications. In particular, XML specifies a primarily ASCII format.” [CHI02, p.1]


�PAGE \# "'Page: '#'�'"  ��“The experiments show that SOAP has a significant performance penalty. Some of this is inherent - SOAP must send larger amounts of data, and that cannot be reduced without changing the protocol. “[GOV00, p.11]


�PAGE \# "'Page: '#'�'"  ��“This increase in size is from the translation of binary data into text. For example, in Java, each double takes 8 bytes. The string representation in XML of a double with 16 digits of precision takes at least 16 characters (and so 16 bytes in UTF-8) in addition to the 17 bytes for the tags <double> and </double>. Thus, each double serialized into XML could take at least 33 bytes. If the data is transferred using Unicode, that estimate doubles.” [GOV00, p.9]


�PAGE \# "'Page: '#'�'"  ��“the two most costly operations are the conversion of ASCII to double and vice versa.” [CHIU, p.8]


�PAGE \# "'Page: '#'�'"  ��Impressively great in size, force, or extent; enormous: a prodigious storm.


�PAGE \# "'Page: '#'�'"  ��“Our previous experience revealed that the memory usage of SOAP can be prodigious. A typical SOAP message may be 4-10 times the size of the corresponding machine representation. This can be significant for large arrays.” [CHIU, p.5]


�PAGE \# "'Page: '#'�'"  ��“* The most significant defect of using SOAP for RMI is performance; just sending the 8-byte double in XML, <double> 3.141592653589793E+000 </double>, requires 40 bytes of data. Determining the precise performance penalty is important for deciding when SOAP is appropriate. Figure 6 shows that SOAP's data representation size in general is about 10 times the size of binary representations.” [GOV00, p.9]


�PAGE \# "'Page: '#'�'"  ��“Serializing Java objects into SOAP-encoded XML data takes approximately ten times more memory than the binary representation.” [GOV00, p.9]


�PAGE \# "'Page: '#'�'"  ��“Requirements for building security into SOAP messaging stem from necessities inherent to business transactions, like building relationships, establishing trust, assuring quality, and exchanging sensitive information.” [HOU01, p.1] Several good points given, eg confidentiality.


�PAGE \# "'Page: '#'�'"  ��“And because SOAP depends upon underlying Web transport protocols, security considerations reach beyond the SOAP specification itself to encompass the communication links that enable messaging.” [SSI, p.1]


�PAGE \# "'Page: '#'�'"  ��Does SOAP open security holes in my network?


“SOAP is simply another payload that can be carried via HTTP, so the potential vulnerabilities are similar as with straight HTTP. However, since SOAP packets declare their "intent" by publishing interface and method names in the HTTP header, it is possible for firewalls to perform filtering based on this information (the SOAP spec states that implementations must verify that this information must match the corresponding headers and tags in the SOAP payload, otherwise the call should be rejected). As with HTTP, requiring authentication (e.g., via SSL) helps tremendously, and SOAP can run happily in this environment.


�PAGE \# "'Page: '#'�'"  ��As with HTTP, requiring authentication (e.g., via SSL) helps tremendously, and SOAP can run happily in this environment.


�PAGE \# "'Page: '#'�'"  ��Since SOAP runs over HTTP, the standard authentication mechanisms that are HTTP-friendly can be used with SOAP. These protocols can authenticate the server (and optionally the client), and can provide a confidential channel over which SOAP payload can travel.” [SFAQ]


�PAGE \# "'Page: '#'�'"  ��Can make use of other existing web technologies such as “Secure Sockets Layer (SSL), Transport Layer Security (TLS), and Internet Protocol Security (IPsec) – may provide adequate security in some network settings but do not meet all messaging security requirements in the Web services framework.” [HOU01, p.2]


�PAGE \# "'Page: '#'�'"  ��[HOU01, p.2] The SOAP specification does not express session details. Using SSL can be venerable to message copying and replay attacks.


�PAGE \# "'Page: '#'�'"  ��[HOU01, p.5]


�PAGE \# "'Page: '#'�'"  ��One who is doubtful or noncommittal about something


�PAGE \# "'Page: '#'�'"  ��Summarise what you have found out. A good conclusion will link back to the significance that you cited in your introduction


�PAGE \# "'Page: '#'�'"  ��(vanilla form/flavor)


�PAGE \# "'Page: '#'�'"  ��“Even for a SOAP call that does nothing, XML processing accounts for about 75% of the processing time when network delays are discounted.”


�PAGE \# "'Page: '#'�'"  ��FMSSOAPDI


�PAGE \# "'Page: '#'�'"  ��YPGTS


�PAGE \# "'Page: '#'�'"  ��ILSPSC


�PAGE \# "'Page: '#'�'"  ��SHPC


�PAGE \# "'Page: '#'�'"  ��LPSOAPI


�PAGE \# "'Page: '#'�'"  ��RERMIP


�PAGE \# "'Page: '#'�'"  ��SSI


�PAGE \# "'Page: '#'�'"  ��MTPXMLP


�PAGE \# "'Page: '#'�'"  ��CNTDA


�PAGE \# "'Page: '#'�'"  ��DCSOAP


�PAGE \# "'Page: '#'�'"  ��WSMBH


�PAGE \# "'Page: '#'�'"  ��WTHISOAP


�PAGE \# "'Page: '#'�'"  ��SCDC


�PAGE \# "'Page: '#'�'"  ��SOAPFAQ


�PAGE \# "'Page: '#'�'"  ��SWLRvsS


�PAGE \# "'Page: '#'�'"  ��DSPP


�PAGE \# "'Page: '#'�'"  ��WSDLWD


�PAGE \# "'Page: '#'�'"  ��SOAPN


�PAGE \# "'Page: '#'�'"  ��SOAPWORG


�PAGE \# "'Page: '#'�'"  ��WSA





