COMP389 SOFTWARE ENGINEERING PROJECT, 2001

D1 PROJECT PLAN

Computer-Based SPOT

Team 7

Team Meeting: Tuesday 11:00am

Team Leader:

Rilla Khaled

(Rilla.Khaled@mcs.vuw.ac.nz)

021 137 1850

Team members:

Daniel Ballinger
(Daniel.Ballinger@mcs.vuw.ac.nz)
021 115 9226

Edward Bedwell
(Edward.Bedwell@mcs.vuw.ac.nz)

Derek Foo

(Derek.Foo@mcs.vuw.ac.nz)

021 125 9807

Anna Ladd

(Anna.Ladd@mcs.vuw.ac.nz)

021 129 9879

Supervisor: Glen Walker

Client: Dr. Paul Warren

Date: 24/07/01

 [image: image1.png]Pl

‘W“

S

Table of contents:

Page

1
Contact details for Client and Supervisor

3

2
Brief introduction

3

3
Computer-based SPOT Problem Statement

3

4
Detailed Description of the Game

4

5
Project plan

5

6
Team Organization

6

7
Hardware/Software tools and resources required

6

8
Processes, Methodologies and Standards of the Project

6

9
Project Risks

7

10
Glossary

7

11
Production of document

7

12
Appendix 1: Golden Rules of Interface Design

8

Contact details for Client and Supervisor:

Client:

Dr. Paul Warren

Senior Lecturer in Linguistics and Acting Research Director

School of Linguistics and Applied Language Studies

Victoria University of Wellington

PO Box 600

Wellington, New Zealand

Tel. +64 4 463 5631

Fax. +64 4 463 5604

Paul.Warren@vuw.ac.nz

http://www.vuw.ac.nz/lals/
Supervisor:
Glen Walker

Glen.Walker@mcs.vuw.ac.nz
Brief Introduction:

The SPOT project collects speech data using a board game in which participants have to negotiate moves of objects across game-boards, using spoken instructions from a fixed inventory of commands and responses. The goal of the SPOT project is to investigate the use of intonation to disambiguate between utterances.

The current system used to collect data about the ambiguities of speech consists of two cardboard boards and several wooden blocks. The reason the client wishes to turn SPOT into a computerized system is to reduce the level of noise created by the players using the boards and blocks as well as easily obtaining and storing the moves made during games.

Future projects that may take place on the program include the implementation of the audio commands used in the experiments to be stored on the computer. A digital camera may also be used in the future to monitor the participant's eyes as each audio command is issued.

Computer-based SPOT Problem Statement

The overall objective of computer-based SPOT is to represent the game on a computerized system for ease of data collection of moves made during a game. Each of two participants should have graphic displays of the game-boards, and should be able to move objects on the board using a mouse and cursor buttons on the screen. The game would be run on two unlinked systems simultaneously with the game-boards differing from one another in the information available. The system does not need to keep track of the game score, but it may be useful to track the interaction between "Cookies" and "Goats" (see glossary, p.8).

Functional Requirements:

· 5 different game board configurations need to be represented, where each configuration consists of a pair of boards (one for the driver, one for the slider). One of these configurations will be used for practice. Additional boards may need to be added in the future.

· The game pieces can be moved either horizontally or vertically and must move as far as possible, until a board edge or obstacle is encountered (it is not up to the system to ensure synchronization of game pieces on boards).

· All moves of game pieces made by both players need to be recorded with the exception of the practice board (for which moves are not recorded).

· Results (moves) recorded during game will be logged in a database.

Non-functional Requirements:

· The system needs to run quietly to prevent feedback with the microphones.

· The system needs to run on a web applet, to support portability.

· Neither player can see the other player's board.

· The system needs to respond within a reasonable amount of time

· A database will be used to log results for authorized users and is accessible by authorized users only.

Detailed Description of the game:

There are four participants in the game, the Referee (who oversees the game-play), the Scorekeeper (who records the score) and the two players (the Driver and the Slider).

Each player has a game board with the same grid but differing information. The Driver's board has the initial and final positions marked. The Slider's board has only the initial position marked but is also aware of hazards (Goats) and bonuses (Cookies).

The driver's aim is to guide the slider to move the shapes on the board to the end positions that are displayed on the board. The slider's aim is to maximize points by making the correct moves that are being described by the driver, collecting cookies and avoiding ravenous, hairy goats. The Referee's aim is to understand the ambiguities of the commands used in the game, and the aim of the Scorekeeper is to manually keep track of the score.

Only specific comments may be used when describing a movement and a situation. The comments are exchanged between the slider and the driver. The only time the Referee says anything is when he or she is correcting a slider on the move they have previously attempted. The Scorekeeper keeps track of the score that the slider has achieved.

There are several rules for each of the shapes on the grid. Each shape can only travel in one direction at a time (either vertically or horizontally). The square is the only shape that can be pushed and cannot be moved any other way. Each shape travels in its direction as far as it can go unless hindered by another shape other than the square or the edge of the grid. If a slider makes an incorrect move as observed by the Referee, they must undo the move they have just made and reattempt the move again. Many incorrect moves may take place due to the ambiguities of the commands used by the driver. The slider may ask the driver for a hint each time the driver gives them a command, e.g. "I want to change the position of the triangle", the slider may ask, or "What is the colour of the triangle?" as there may be more than one different coloured triangle on the grid at one time.

Team Organization

	Participant
	Roles
	Skills

	Daniel Ballinger
	System Architect and graphic designer.
	Programming: Java, HTML, JavaScript, MySQL, C++, C

Modelling: UML, Rational Rose, Entity Relationship Model

Databases: relational and object oriented

	Edward Bedwell
	Database Designer
	Programming: C++, Java, HTML, SQL, MySQL

Modelling: UML, Rational Rose, Entity Relationship Model

Databases: relational and object oriented

	Derek Foo
	UI designer

implementor
	Programming: C++, Java, HTML, SQL, MySQL, PHP4

Modelling: UML, Rational Rose, Entity Relationship Model

Databases: relational and object oriented

	Rilla Khaled
	Team leader and Object designer.
	Programming: C++, Java, HTML, SQL, MySQL, Perl

Modelling: UML, Rational Rose, Entity Relationship Model

Databases: relational and object oriented

	Anna Ladd
	Analyst and Designer
	Programming: C++, Java, HTML, SQL, MySQL

Modelling: UML, Rational Rose, Entity Relationship Model

Databases: relational and object oriented

All team members have chosen roles within which they wish to have a greater participation, and everyone will be involved with implementation, testing and documentation.

Hardware/Software tools and resources required:

· JDK

· Rational Rose

· EMACS

· Microsoft applications

· PHP

· MySQL

· JAVA compatible Web browser

· Blackboard

· Timetracker tool

(Note: this is just a preliminary assessment and is subject to change)
Processes, Methodologies and Standards of the Project

We will be modeling the development of our project on an Issue-based life-cycle model.

Our User Interface will be designed to meet "Shneiderman's Golden Rules of User Interface Design" (see Appendix, p.8) and "Nielson's Usability Criteria" (efficiency, learnability, memorability, satisfaction and low error-rate).

Project Risks

	Risk and type
	Likelihood and potential impact
	Mitigation strategy

	Analytical: Failure to understand client specifications
	Very likely and high impact
	We propose to have regular meetings with the client to present developments. In addition we will keep in close contact with the client via email to clear up any ambiguities.

	Managerial: Communication problems within the group.
	Likely and high impact
	We plan to do the following: have at least one weekly meeting, file share via group accounts, use email to update team members of progress and make use of the discussion board.

	Managerial: Deadlines for deliverables not met.
	Likely and high impact
	Regular status reports to ensure the project is on track.

	Managerial: Team member is unable to continue work on the project
	Unlikely and high impact
	Ensure that all team members keep up to date of all other members so roles can be delegated if necessary.

	Technical: Lack of skills and inability to learn required technology
	Likely and high impact
	Development of small-scale prototypes to test the usability of the technology.

Glossary
Driver (participant):
The driver initiates movements of pieces around the board and instructs

the slider.

Slider (participant):
The slider moves their pieces in accordance to the instructions given by the driver.

Referee:
The Referee oversees the game play and makes judgements about rule infractions.

Scorekeeper:
Track the accrual and loss of points.

Goat:
The "Hairy Goat" represents a hazard on the game board. Players will lose points if the sliders game-pieces land in a square with a Goat, if they do not have a Cookie to feed to the Goat.

Cookies:
Represent bonuses on the game board. Points are awarded if the sliders game-pieces land in a square with a Cookie.

The moveable game pieces:

Square with a triangle:
Cannot be pushed by any other object. It can be described

as a square with a triangle on the top.

Circle:

Cannot be pushed by any other object.

Triangle:

Cannot be pushed by any other object.

Square:

Cannot move by itself. This piece must be pushed by the

other pieces.
Contributions to document

The production of this document was a collaborative effort by all team members.

Appendix 1: Golden Rules of Interface Design

Strive for consistency. The user interface should be consistent in terms of syntax, terminology, actions, and layout. Actions required in one situation should be similar to those required in similar situations. Consistent terminology should be used throughout - in menus, prompts, system messages, and manuals. Display layout should be consistent. For example, all menus, prompts, system messages, and manuals. Display layout should be consistent. For example, all menus should follow the same format and all error messages should appear in the same location.

Enable frequent users to use shortcuts. Power users of a system are best served by having powerful shortcuts available to them. These shortcuts allow them to reduce the number of steps required to carry out an action, increase the pace of the interaction, and increase their productivity.

Offer informative feedback. Every action performed by the user should result in some sort of feedback from the system. The idea of feedback for unsuccessful actions, that is, error messages, is a familiar one. However, feedback for successful actions is just as important. Frequent and minor actions can elicit modest feedback, while infrequent and major actions should produce more substantial response. The feedback can be a simple audio tone, a phrase or sentence, a change in the task object itself (for example, the altering of text in a word-processor system), or some change in the icon representing some task dimension.

Design dialogs to yield closure. Each sequence of actions should have a discernible beginning, a middle, and an end. The feedback at the end of the sequence gives the user a sense of completion and relief, signals the user that contingency plans and ideas concerning the sequence can be dropped, and indicates that the user can begin working on the next action sequence, For example, the actions required to fill in one page of a form fill-in screen should be designed as a sequence, with a clearly designated beginning, middle, and end.

Offer simple error handling. Whenever possible, making the system so that the user cannot make serious errors. Provide facilities that allow the user to readily undo operations. In cases where error messages are necessary, the error messages should be simple, pinpoint the exact source of the error, and offer information on how to correct the error. The user should be able to correct the error without having to retype the entire command.

Permit easy reversal of actions. Whenever possible, actions should be reversible. This greatly increases productivity, as the user does not have to go back to the beginning and retrace earlier actions. It also encourages the user to explore the system and become a more proficient user. The units of reversal may be a single action, a data entry operation, or a group of actions.

Support user-centered interaction. Users should perceive themselves as the initiators of action in a human-computer interaction, not as the responders. The computer is the tool, and the human is the user of that tool: the interface should reflect this relationship. A way to describe a well-designed interface that promotes user-centered interaction is to say that the system is transparent to the user. In a transparent system, the user is able to focus on the tasks she or he wishes to perform, and the computer becomes invisible. The user's energies can be focused on task goals, rather than on dealing with the computer interface.

Reduce short-term memory load. Humans are capable of keeping only a limited amount of information currently active in their short-term memories, Ideally, the information active in short-term memory should be task related, not compute related. Displays should be designed to reduce demands on short-term memory. For example, multipage displays that require the user to remember information from previous pages should be avoided. Menus should be used instead of command languages. On-line help should be provided for a quick memory refresh.

PAGE
8

